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Locally solid topologies on spaces

of vector-valued continuous functions

Marian Nowak, Aleksandra Rzepka

Abstract. Let X be a completely regular Hausdorff space and E a real normed space.
We examine the general properties of locally solid topologies on the space Cb(X, E) of

all E-valued continuous and bounded functions from X into E. The mutual relationship
between locally solid topologies on Cb(X, E) and Cb(X) (= Cb(X, R)) is considered. In
particular, the mutual relationship between strict topologies on Cb(X) and Cb(X, E) is
established. It is shown that the strict topology βσ(X, E) (respectively βτ (X, E)) is the
finest σ-Dini topology (respectively Dini topology) on Cb(X, E). A characterization of
σ-Dini and Dini topologies on Cb(X, E) in terms of their topological duals is given.

Keywords: vector-valued continuous functions, strict topologies, locally solid topologies,
Dini topologies

Classification: 47A70, 46E05, 46E10

0. Introduction

Let X be a completely regular Hausdorff space, βX its Stone-Čech compacti-
fication and let (E, ‖ · ‖E) be a real normed space. Let SE stand for the closed
unit sphere in E. Let Cb(X, E) be the space of all bounded continuous functions
f from X into E. We will write Cb(X) instead of Cb(X, R), where R is the field
of all real numbers. For a function u ∈ Cb(X), u denotes its unique continuous
extension to βX . For a function f ∈ Cb(X, E) we will write ‖f‖(x) = ‖f(x)‖E

for all x ∈ X . Then ‖f‖ ∈ Cb(X) and the space Cb(X, E) can be equipped with
a norm ‖f‖∞ = supx∈X ‖f‖(x) = ‖ ‖f‖ ‖∞, where ‖u‖∞ = supx∈X |u(x)| for
u ∈ Cb(X).
A subset H of Cb(X, E) is said to be solid whenever ‖f1‖ ≤ ‖f2‖ (i.e. ‖f1(x)‖E

≤ ‖f2(x)‖E for all x ∈ X) and f1 ∈ Cb(X, E), f2 ∈ H implies f1 ∈ H . A linear
topology τ on Cb(X, E) is said to be locally solid if it has a local base at 0 consist-
ing of solid sets (see [Ku], [KuO]). The so-called strict topologies on Cb(X, E) and
some subspaces of Cb(X, E) have been considered by many authors (see [A], [F],
[K1], [K2], [K3], [Ku], [KuO], [KuV1], [KuV2]). It is well known that the strict
topologies βt(X, E), βτ (X, E), βσ(X, E), β∞(X, E), βg(X, E) and βp(X, E) on
Cb(X, E) are locally solid (see [Ku, Theorem 8.1], [KuO, Theorem 6], [KuV1,
Theorem 5]).
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In Section 1 we examine some general properties of solid sets in Cb(X, E)
and next, in Section 2, general properties of locally solid topologies on Cb(X, E).
It is shown that a locally convex topology τ on Cb(X, E) is locally solid iff τ

is generated by some family of solid seminorms defined on Cb(X, E). Recall
here that a seminorm ρ on Cb(X, E) is called solid whenever ρ(f1) ≤ ρ(f2) if
f1, f2 ∈ Cb(X, E) and ‖f1‖ ≤ ‖f2‖. In Section 3 we introduce a general method
which establishes a mutual relationship between locally solid topologies on Cb(X)
and Cb(X, E). In particular, in Section 4, the mutual relationship between strict
topologies defined on Cb(X) and Cb(X, E) is established. In Section 5 we dis-
tinguish some important classes of locally convex-solid topologies on Cb(X, E).
Namely, a locally convex-solid topology τ on Cb(X, E) is said to be a σ-Dini topol-

ogy whenever for a sequence (fn) in Cb(X, E), ‖fn‖ ↓ 0 (i.e. ‖fn(x)‖E ↓ 0 for each
x ∈ X) implies fn → 0 for τ . Replacing sequences by nets in Cb(X, E) we obtain
a Dini topology on Cb(X, E). It is shown that the strict topology βσ(X, E) (resp.
βτ (X, E)) is the finest σ-Dini topology (resp. Dini topology) on Cb(X, E). We
obtain a characterization of both the σ-Dini and the Dini-topologies on Cb(X, E)
in terms of their topological duals.

1. The solid structure of spaces of vector-valued continuous functions

In this section we examine the solid structure of the space Cb(X, E).

Definition 1.1 (see [Ku]). A subset H of Cb(X, E) is said to be solid whenever
‖f1‖ ≤ ‖f2‖ and f1 ∈ Cb(X, E), f2 ∈ H implies f1 ∈ H .

The following lemma will be of a key importance for an examination of the
solid structure of Cb(X, E).

Lemma 1.1 [The solid decomposition property]. Assume that for f, g1, . . . , gn ∈
Cb(X, E), ‖f‖ ≤ ‖g1+ . . .+ gn‖. Then there exist f1, . . . , fn ∈ Cb(X, E) satisfy-
ing: ‖fi‖ ≤ ‖gi‖ (i = 1, 2, . . . , n) and f = f1 + · · ·+ fn.

Proof: By using induction it is enough to establish the result for n = 2. Thus
assume first that ‖f(x)‖E ≤ ‖g1(x) + g2(x)‖E for all x ∈ X , where f, g1, g2,∈
Cb(X, E).

Let us put (for i = 1, 2)

fi(x) =

{ ‖gi‖(x)
‖g1‖(x)+‖g2‖(x)

f(x) if ‖g1‖(x) + ‖g2‖(x) > 0,

0 if ‖g1‖(x) + ‖g2‖(x) = 0.

It is seen that fi ∈ Cb(X, E) and f1 + f2 = f . To show that ‖fi‖ ≤ ‖gi‖ for
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i = 1, 2, assume first that ‖g1‖(x0) + ‖g2‖(x0) > 0 for x0 ∈ X . Then

‖fi‖(x0) =
‖gi‖(x0)

‖g1‖(x0) + ‖g2‖(x0)
‖f‖(x0)

≤
‖gi‖(x0)

‖g1‖(x0) + ‖g2‖(x0)
(‖g1‖(x0) + ‖g2‖(x0)) = ‖gi‖(x0).

Next, let ‖g1‖(x0) + ‖g2‖(x0) = 0 for some x0 ∈ X . Then ‖fi‖(x0) = 0 ≤
‖gi‖(x0) (i = 1, 2). Thus the proof is complete. �

Theorem 1.2. The convex hull (conv H) of a solid subset H of Cb(X, E) is
solid.

Proof: Let H be a solid subset of Cb(X, E), and let ‖f‖ ≤ ‖g‖, where f ∈
Cb(X, E) and g ∈ conv H . Then there exist g1, . . . , gn ∈ H and numbers
α1, . . . , αn ≥ 0 with

∑n
i=1 αi = 1 such that g =

∑n
i=1 αigi. Hence by Lemma 1.1

there exist f1, . . . , fn ∈ Cb(X, E), such that ‖fi‖ ≤ αi‖gi‖ for i = 1, 2, . . . , n

and f =
∑n

i=1 fi. Putting hi = α−1
i fi we get ‖hi‖ ≤ ‖gi‖, so hi ∈ H , (i =

1, 2, . . . , n). But then f =
∑n

i=1 fi =
∑n

i=1 αihi ∈ conv H , so convH is solid, as
desired. �

2. Locally solid topologies on spaces of vector-valued continuous

functions

We start this section with the definition of locally solid topologies on Cb(X, E).

Definition 2.1 (see [Ku]). A linear topology τ on Cb(X, E) is said to be locally
solid if it has a local base at zero consisting of solid sets.

Theorem 2.1. Let τ be a locally solid topology on Cb(X, E). Then the τ -closure

H of a solid subset H of Cb(X, E) is solid.

Proof: Let Bτ be a local base at 0 for τ consisting of solid sets. Then H =
⋂

{H + V : V ∈ Bτ}. Assume that ‖f‖ ≤ ‖g‖, where f ∈ Cb(X, E), g ∈ H , and
let V0 ∈ Bτ . Then g = g1 + g2 where g1 ∈ H and g2 ∈ V0. Since ‖f‖ ≤ ‖g‖, by
Lemma 1.1 there exist f1, f2 ∈ Cb(X, E) such that f = f1 + f2 and ‖fi‖ ≤ ‖gi‖
(i = 1, 2). Hence f1 ∈ H and f2 ∈ V0, because both sets H and V0 are solid.
Thus f ∈ H + V for every V ∈ Bτ , so f ∈ H. This means that H is solid, as
desired. �

Definition 2.2. A linear topology τ on Cb(X, E) that is at the same time locally
solid and locally convex will be called a locally convex-solid topology on Cb(X, E).

In view of Theorems 1.2 and 2.1 we see that for a locally convex-solid topology
on Cb(X, E) the collection of all τ -closed, convex and solid τ -neighborhoods of
zero forms a local base at 0 for τ .
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Definition 2.3. A seminorm ρ on Cb(X, E) is said to be solid whenever ρ(f1) ≤
ρ(f2) if f1, f2 ∈ Cb(X, E) and ‖f1‖ ≤ ‖f2‖.

Theorem 2.2. For a locally convex topology τ on Cb(X, E) the following state-
ments are equivalent:

(i) τ is generated by some family of solid seminorms;

(ii) τ is a locally convex-solid topology.

Proof: (i) ⇒ (ii). It is obvious.
(ii)⇒ (i). Let Bτ = {Vα : α ∈ A} be a basis of zero for τ consisting of τ -closed,

solid and convex sets. Let ρα stand for the Minkowski functional generated by
Vα, that is

ρα(f) = inf{λ > 0 : f ∈ λVα} for f ∈ Cb(X, E).

Then ρα is a solid τ -continuous seminorm and {f ∈ Cb(X, E) : ρα(f) < 1} ⊂
Vα = {f ∈ Cb(X, E) : ρα(f) ≤ 1}. This means that the family {ρα : α ∈ A}
generates the topology τ . �

3. The relationship between topological structures of Cb(X) and
Cb(X, E)

In this section, using Theorem 2.2 we introduce a general method which es-
tablishes a mutual relationship between locally solid topologies on Cb(X) and
Cb(X, E).
Recall that the algebraic tensor product Cb(X)⊗E is the subspace of Cb(X, E)

spanned by the functions of the form u⊗ e, (u⊗ e)(x) = u(x)e, where u ∈ Cb(X)
and e ∈ E.
Given a Riesz seminorm p on Cb(X) let us set

p∨(f) := p(‖f‖) for all f ∈ Cb(X, E).

It is easy to verify that p∨ is a solid seminorm on Cb(X, E).
From now on let e0 ∈ SE be fixed. Given a solid seminorm ρ on Cb(X, E), let

us put
ρ∧(u) := ρ(u ⊗ e0) for all u ∈ Cb(X).

It is seen that ρ∧ is well defined because ρ(u⊗e0) does not depend on e0 ∈ SE ,
due to solidness of ρ. It is easy to check that ρ∧ is a Riesz seminorm on Cb(X).

Lemma 3.1. (i) If ρ is a solid seminorm on Cb(X, E), then (ρ∧)∨(f) = ρ(f)
for all f ∈ Cb(X, E).

(ii) If p is a Riesz seminorm on Cb(X), then (p
∨)∧(u) = p(u) for u ∈ Cb(X).

Proof: (i) For f ∈ Cb(X, E) we have (ρ∧)∨(f) = ρ∧(‖f‖) = ρ(‖f‖⊗ e0), where
‖(‖f‖ ⊗ e0)(x)‖E = ‖ ‖f‖(x)e0‖E = ‖f‖(x) = ‖f(x)‖E for all x ∈ X . In view of
the solidness of ρ we get (ρ∧)∨(f) = ρ(f).
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(ii) For u ∈ Cb(X) we have (p
∨)∧(u) = p∨(u ⊗ e0) = p(‖u ⊗ e0‖), where

‖u ⊗ e0‖(x) = ‖(u ⊗ e0)(x)‖E = ‖u(x)e0‖E = |u(x)| = |u|(x) for x ∈ X . Since p

is a Riesz seminorm, we get (p∨)∧(u) = p(|u|) = p(u). �

Let τ be a locally convex-solid topology on Cb(X, E). Then in view of The-
orem 2.2 τ is generated by some family {ρα : α ∈ A} of solid seminorms on
Cb(X, E). By τ∧ we will denote the locally convex-solid topology on Cb(X) gen-
erated by the family {ρ∧α : α ∈ A} of Riesz seminorms on Cb(X). One can check
that τ∧ does not depend on the choice of a family {ρα : α ∈ A} of solid seminorms
on Cb(X, E) generating τ .
Next, let ξ be a locally convex-solid topology on Cb(X). Then ξ is generated by

some family {pα : α ∈ A} of Riesz seminorms on Cb(X) (see [AB, Theorem 6.3]).
By ξ∨ we will denote the locally convex-solid topology on Cb(X, E) generated by
the family {p∨α : α ∈ A} of solid seminorms on Cb(X, E). One can verify that ξ∨

does not depend on the choice of a family {pα : α ∈ A} of Riesz seminorms on
Cb(X) that generates ξ.
In view of Lemma 3.1 we can easily get:

Theorem 3.2. (i) For a locally convex-solid topology τ on Cb(X, E) we have:
(τ∧)∨ = τ .

(ii) For a locally convex-solid topology ξ on Cb(X) we have: (ξ
∨)∧ = ξ.

Theorem 3.3. Let ξ be a locally convex-solid topology on Cb(X) and let τ be a

locally convex-solid topology on Cb(X, E).

(i) For a net (fσ) in Cb(X, E) we have:

fσ
τ

−→ 0 if and only if ‖fσ‖
τ∧

−→ 0.

(ii) For a net (uσ) in Cb(X) we have:

uσ
ξ

−→ 0 if and only if uσ ⊗ e0
ξ∨
−→ 0.

Theorem 3.4. Let τ1 and τ2 be locally convex-solid topologies on Cb(X, E) and
let ξ1 and ξ2 be locally convex-solid topologies on Cb(X). Then

(i) if τ1 ⊂ τ2, then τ∧1 ⊂ τ∧2 ;

(ii) if ξ1 ⊂ ξ2, then ξ∨1 ⊂ ξ∨2 .

Proof: (i) Let {ρα : α ∈ A} and {ρβ : β ∈ B} be generating families of
solid seminorms for τ1 and τ2 respectively. Since τ1 ⊂ τ2, for each α ∈ A there
exist β1, . . . , βn ∈ B such that ρα(f) ≤ amax1≤i≤n ρβi

(f) for some a > 0 and all

f ∈ Cb(X, E). It easily follows that ρ∧α(u) ≤ amax1≤i≤n ρ∧βi
(u) for all u ∈ Cb(X),

and this means that τ∧1 ⊂ τ∧2 .

(ii) Let {pα : α ∈ A} and {pβ : β ∈ B} be generating families of Riesz
seminorms for ξ1 and ξ2 respectively. Since ξ1 ⊂ ξ2 for each α ∈ A there exist
β1, . . . , βn ∈ B such that pα(u) ≤ amax1≤i≤n pβi

(u) for some a > 0 and all



478 M.Nowak, A.Rzepka

u ∈ Cb(X). It follows that p∧α(f) ≤ amax1≤i≤n p∧βi
(f) for all f ∈ Cb(X, E), and

this means that ξ∨1 ⊂ ξ∨2 . �

4. Strict topologies on spaces of continuous functions

In this section, by making use of the results of Section 3, we establish a mutual
relationship between strict topologies on Cb(X) and Cb(X, E) which allows us
to examine in a unified manner strict topologies on Cb(X, E) by means of strict
topologies on Cb(X).
First we recall some definitions (see [S], [W], [Ku], [KuO], [KuV1]). For a

compact subset Q of βX \ X let CQ(X) = {v ∈ Cb(X) : v|Q ≡ 0}. For each
v ∈ CQ(X) let

pv(u) = sup
x∈X

|v(x)u(x)| for u ∈ Cb(X)

and
ρv(f) = sup

x∈X
|v(x)| ‖f‖(x) for f ∈ Cb(X, E).

Then pv is a Riesz seminorm on Cb(X) and ρv is a solid seminorm on Cb(X, E).
For each u ∈ Cb(X) and a fixed e0 ∈ SE we have:

(4.1) ρ∧v (u) = ρv(u ⊗ e0) = sup
x∈X

|v(x)| |u(x)| = pv(u)

and moreover, for each f ∈ Cb(X, E) we get:

(4.2) pv(‖f‖) = sup
x∈X

|v(x)| ‖f‖(x) = ρv(f).

Let βQ(X) be the locally convex-solid topology on Cb(X) defined by {pv :
v ∈ CQ(X)} and let βQ(X, E) be the locally convex-solid topology on Cb(X, E)
defined by {ρv : v ∈ CQ(X)}.
Thus βQ(X) = βQ(X, R) and by (4.1) and (4.2) we get:

(4.3) βQ(X)
∨ = βQ(X, E)

and

(4.4) βQ(X, E)∧ = βQ(X).

Now let C be some family of compact subsets of βX \ X . The strict topolo-
gy βC(X, E) on Cb(X, E) determined by C is the greatest lower bound (in the
class of locally convex topologies) of the topologies βQ(X, E), as Q runs over C.
Thus βC(X, E) is an inductive limit topology, and we denote it by LIN {βQ(X, E) :
Q ∈ C}.
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We will shortly write βC(X) instead of βC(X, R). It is well known that the
strict topology βC(X) on Cb(X) is locally solid (see [W, Theorem 11.6]). Observe
that the strict topology βC(X, E) on Cb(X, E) has a local base at 0 consisting of
all sets of the form:

(+) abs conv
(

⋃

Q∈C
Wv

Q
: for some vQ ∈ CQ(X)

)

where for vQ ∈ CQ(X), Wv
Q
= {f ∈ Cb(X, E) : ρv

Q
(f) ≤ 1}.

By making use of Lemma 1.1 it is easy to check that the sets of the form (+)
are solid. Thus we get:

Theorem 4.1. The strict topologies βC(X, E) on Cb(X, E) are locally solid.

Remark. The property of local solidness of strict topologies βC(X, E) on
Cb(X, E) for some important classes Cτ , Cσ (see definition below) was obtained
in a different way in [Ku].

The following theorem establishes a mutual relationship between strict topolo-
gies βC(X, E) on Cb(X, E) and βC(X) on Cb(X).

Theorem 4.2. We have:

βC(X)
∨ = βC(X, E) and βC(X, E)∧ = βC(X).

Proof: By the definition of strict topologies and (4.3) and (4.4) we get

βC(X) ⊂ βQ(X) = βQ(X, E)∧ and βC(X, E) ⊂ βQ(X, E) = βQ(X)
∨.

Hence by Theorem 3.2 and Theorem 3.3 for each Q ∈ C we have

βC(X)
∨ ⊂ (βQ(X, E)∧)∨ = βQ(X, E), so βC(X)

∨ ⊂ βC(X, E)

and

βC(X, E)∧ ⊂ (βQ(X)
∨)∧ = βQ(X), so βC(X, E)∧ ⊂ βC(X).

Thus

βC(X, E) = (βC(X, E)∧)∨ ⊂ βC(X)
∨ ⊂ βC(X, E), so βC(X, E) = βC(X)

∨

and

βC(X) = (βC(X)
∨)∧ ⊂ βC(X, E)∧ ⊂ βC(X), so βC(X) = βC(X, E)∧.

Thus the proof is complete. �

As an application of Theorem 4.1, Theorem 4.2 and Theorem 3.3 we get:
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Corollary 4.3. (i) For a net (fσ) in Cb(X, E) we have:
fσ → 0 for βC(X, E) if and only if ‖fσ‖ → 0 for βC(X).

(ii) For a net (uσ) in Cb(X) we have:
uσ → 0 for βC(X) if and only if uσ ⊗ e0 → 0 for βC(X, E).

Now we distinguish some important families of compact subsets of βX \ X .
Let

Cτ = the family of all compact subsets of βX \ X .
Cσ = the family of all zero subsets of βX \ X .

The strict topologies βτ (X, E) and βσ(X, E) on Cb(X, E) are now obtained by
choosing Cτ and Cσ as C appropriately (see [W, Definition 7.8, Definition 10.13],
[Ku]). In particular, in view of Theorem 4.2 we get:

Corollary 4.4. We have:

βτ (X)
∨ = βτ (X, E), βσ(X)

∨ = βσ(X, E),

and

βτ (X, E)∧ = βτ (X), βσ(X, E)∧ = βσ(X).

Remark. The statement (i) of Corollary 4.3 was obtained in a different way for
topologies βτ (X, E) and βσ(X, E) in [Ku, Lemma 2.4].

Remark. The important classes of strict topologies βs(X, E), βp(X, E) and
βg(X, E) on Cb(X, E) can also be defined as inductive limit topologies by tak-
ing appropriate classes C of subsets of βX \ X (see [W, Definitions 10.13, 10.15],
[KuV], [KuO]).

5. Dini topologies on spaces of vector-valued continuous functions

The well known Dini’s theorem is telling us that whenever a topological space
X is pseudocompact then for a net (uσ) in Cb(X), uσ ↓ 0 (i.e., uσ(x) ↓ 0 for
each x ∈ X) implies ‖uσ‖∞ → 0. F.D. Sentilles (see [S, Theorem 6.3]) showed
that a Dini type theorem holds for topologies βσ(X) and βτ (X) for X being a
completely regular Hausdorff space, that is, βσ(X) (resp. βτ (X)) is the finest

of all locally convex topologies ξ on Cb(X) such that un ↓ 0 implies un
ξ

−→ 0

(resp. uσ ↓ 0 implies uσ
ξ

−→ 0). These properties of strict topologies justify the
following definition of σ-Dini and Dini topologies in the vector-valued setting.

Definition 5.1. (i) A locally convex-solid topology τ on Cb(X, E) is said to
be a σ-Dini topology whenever for a sequence (fn) in Cb(X, E), ‖fn‖ ↓ 0 (i.e.,
‖fn‖(x) ↓ 0 for each x ∈ X) implies fn → 0 for τ .

(ii) A locally convex-solid topology τ on Cb(X, E) is said to be a Dini topology
whenever for a net (fσ) in Cb(X, E), ‖fσ‖ ↓ 0 (i.e., ‖fσ‖(x) ↓ 0 for each x ∈ X)
implies fσ → 0 for τ .



Locally solid topologies on spaces of vector-valued continuous functions 481

Thus βσ(X) (resp. βτ (X)) is the finest σ-Dini (resp. Dini) topology on Cb(X).
In this section, by making use of the results of Sections 3 and 4 we show that

βσ(X, E) (resp. βτ (X, E)) is the finest σ-Dini (resp. Dini) topology on Cb(X, E).
We need the following technical results.

Lemma 5.1. (i) If ξ is a σ-Dini topology (resp. a Dini topology) on Cb(X),
then ξ∨ is a σ-Dini topology (resp. a Dini topology) on Cb(X, E).

(ii) If τ is a σ-Dini topology (resp. a Dini topology) on Cb(X, E), then τ∧ is

a σ-Dini topology (resp. a Dini topology) on Cb(X).

Proof: (i) Assume that ξ is a σ-Dini topology on Cb(X) generated by a family
{pα : α ∈ A} of Riesz seminorms on Cb(X). Then for a sequence (fn) in Cb(X, E)
with ‖fn‖ ↓ 0 we get p∨α(fn)→ 0, because p∨α(fn) = pα(‖fn‖) for each α ∈ A and
n ∈ N. This means that fn → 0 for ξ∨, as desired.
Similarly we get fσ → 0 for ξ∨ whenever ξ is a Dini topology.

(ii) Assume that τ is a σ-Dini topology on Cb(X, E) generated by a family
{ρα : α ∈ A} of solid seminorms on Cb(X, E). Then for a sequence (un) in Cb(X)
with un ↓ 0 and a fixed e0 ∈ SE we get ‖un ⊗ e0‖ ↓ 0, because ‖un ⊗ e0‖(x) =
‖un(x)e0‖E = |un(x)|. Since ρ∧α(un) = ρα(un ⊗ e0) for each α ∈ A and n ∈ N,
we have that un → 0 for τ∧, as desired.
Similarly, we obtain that uσ → 0 for τ∧ whenever τ is a Dini topology. �

The next theorem is an extension of the Sentilles results (see [S, Theorem 6.3],
[W, Corollary 11.16, Corollary 11.28]).

Theorem 5.2. (i) The strict topology βσ(X, E) is the finest σ-Dini topology on

Cb(X, E).

(ii) The strict topology βτ (X, E) is the finest Dini topology on Cb(X, E).

Proof: (i) Since βσ(X) is a σ-Dini topology on Cb(X), by Lemma 5.1 and
Corollary 4.4 we obtain that βσ(X, E) is a σ-Dini topology on Cb(X, E). Now
assume that τ is a σ-Dini topology on Cb(X, E). Then by Lemma 5.1 τ∧ is a
σ-Dini topology on Cb(X). Hence τ∧ ⊂ βσ(X), because βσ(X) is the finest σ-
Dini topology on Cb(X) (see [S, Theorem 6.3]). By making use of Theorem 3.2,
Theorem 3.4 and Corollary 4.4 we get τ = (τ∧)∨ ⊂ βσ(X)

∨ = βσ(X, E), as
desired.

(ii) Similarly as in (i). �

Now we are going to characterize σ-Dini topologies and Dini topologies on
Cb(X, E) in terms of their topological duals.
For a linear topology τ on Cb(X, E) by (Cb(X, E), τ)′ we denote the topological

dual of (Cb(X, E), τ). In particular, let Cb(X, E)′ stand for the topological dual
of (Cb(X, E), ‖ · ‖∞).
We shall need the following definitions.
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Definition 5.2. (i) A functional Φ ∈ Cb(X, E)′ is said to be σ-additive whenever
for a sequence (fn) in Cb(X, E), ‖fn‖ ↓ 0 implies Φ(fn)→ 0. The set consisting
of all σ-additive functionals on Cb(X, E) will be denoted by Lσ(Cb(X, E)).

(ii) A functional Φ ∈ Cb(X, E)′ is said to be τ-additive whenever for a net
(fσ) in Cb(X, E), ‖fσ‖ ↓ 0 implies Φ(fσ)→ 0. The set consisting of all τ -additive
functionals on Cb(X, E) will be denoted by Lτ (Cb(X, E)).

Now we are in position to state our desired result.

Theorem 5.3. For a locally convex-solid Hausdorff topology τ on Cb(X, E) the
following statements are equivalent:

(i) (Cb(X, E), τ)′ ⊂ Lσ(Cb(X, E));
(ii) τ is a σ-Dini topology.

Proof: (ii) ⇒ (i). It is obvious.

(i) ⇒ (ii). Let {ρα : α ∈ A} be the family of solid seminorms on Cb(X, E)
that generates τ (see Theorem 2.2), and let τ∧ denote the locally convex-solid
topology generated by the family {ρ∧α : α ∈ A} of Riesz seminorms on Cb(X),
where ρ∧α(u) = ρ(u ⊗ e0) for some fixed e0 ∈ SE and u ∈ Cb(X).
We shall first show that (Cb(X), τ

∧)′⊂Lσ(Cb(X)). Indeed, let ϕ∈(Cb(X), τ
∧)′

and let un ↓ 0 (i.e. un(x) ↓ 0 for all x ∈ X), where un ∈ Cb(X). Define a
linear functional Φϕ on a subspace Cb(X)(e0) (= {u ⊗ e0 : u ∈ Cb(X)}) of
Cb(X, E) by putting Φϕ(u⊗ e0) = ϕ(u). Since ϕ ∈ (Cb(X), τ

∧)′ there exist c > 0
and α1, . . . , αn ∈ A such that |Φϕ(u ⊗ e0)| = |ϕ(u)| ≤ cmax1≤i≤n ρ̂αi(u) =
cmax1≤i≤n ραi(u ⊗ e0) for all u ∈ Cb(X). This means that
Φϕ ∈ (Cb(X)(e0), τ |Cb(X)(e0))

′, so by the Hahn-Banach extension theorem there

is Φϕ ∈ (Cb(X, E), τ)′ such that Φϕ(u ⊗ e0) = ϕ(u) for all u ∈ Cb(X). By our

assumption Φϕ ∈ Lσ(Cb(X, E)), so Φϕ(un⊗e0)→ 0, because ‖un⊗e0‖ = un ↓ 0.
It follows that ϕ(un)→ 0, so ϕ ∈ Lσ(Cb(X)).
Thus in view of [K2, Theorem 5.6] (applied to a Banach lattice E = R), τ∧

is a σ-Dini topology on Cb(X), so by Lemma 5.1 (τ
∧)∨ is a σ-Dini topology on

Cb(X, E). But by Theorem 3.2 τ = (τ∧)∨, and the proof is complete. �

We have an analogous result for Dini topologies with a similar proof.

Theorem 5.4. For a locally convex-solid Hausdorff topology τ on Cb(X, E) the
following statements are equivalent:

(i) (Cb(X, E), τ)′ ⊂ Lτ (Cb(X, E));
(ii) τ is a Dini topology.

Remark. In case E is a Banach lattice, the spaces Cb(X, E) and Crc(X, E) (=
the space of all f ∈ Cb(X, E) for which f(X) is relatively compact in E) became
vector lattices under the natural ordering: f ≤ g whenever f(x) ≤ g(x) in E

for all x ∈ X . Thus one can consider the concepts of solidness and a locally



Locally solid topologies on spaces of vector-valued continuous functions 483

solid topology for Cb(X, E) and Crc(X, E) in terms of the theory of Riesz spaces
(see [AB]). Moreover, in [K2, Section 5] a functional Φ ∈ Crc(X, E)′ is called
σ-additive if Φ(fn) → 0 for a sequence (fn) in Crc(X, E) such that fn(x) ↓ 0 in
E for all x ∈ X . Similarly τ -additive functionals on Crc(X, E) are defined. The
above Theorems 5.3 and 5.4 are analogous to [K2, Theorem 5.6, Theorem 5.5].
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