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Products of k-spaces, and questions

Yoshio Tanaka

Abstract. As is well-known, every product of a locally compact space with a k-space is
a k-space. But, the product of a separable metric space with a k-space need not be a
k-space. In this paper, we consider conditions for products to be k-spaces, and pose
some related questions.

Keywords: k-space, sequential space, strongly Fréchet space, bi-k-space, strongly se-
quential space, Tanaka space

Classification: 54D50, 54D55, 54B10, 54B15

Definitions and preliminaries

We assume that all spaces are regular and T1, and all maps are continuous
surjections.
Let X be a space. For a (not necessarily open or closed) cover P of X , X

is determined by a cover P , if U ⊂ X is open in X if and only if U ∩ P is
relatively open in P for every P ∈ P . Here, we can replace “open” by “closed”.
(Following [3], we shall use “X is determined by P” instead of the usual “X has
the weak topology with respect to P”.) Obviously, every space is determined by
its open cover. As is well-known, a space is a k-space (resp. sequential space) if
it is determined by the cover of all compact (resp. compact metric) subsets. We
recall that every k-space (resp. sequential space) is characterized as a quotient
space of a locally compact space (resp. metric space [2]). Every sequential space
is a k-space, and the converse holds if each point is a Gδ-set ([7]).
We recall elementary facts which will be used later on. These are routinely

shown, but Fact (4) is due to [15].

Facts: (1) Let X be a space determined by a cover P , and let C be a cover of X .
If each element of P is contained in some element of C, then X is also determined
by C.
(2) Let X be a space determined by a cover {Xα : α}. If each Xα is determined

by a cover Pα, then X is determined by the cover
⋃
{Pα : α}.

(3) (i) Let f : X → Y be a quotient map. If X is determined by a cover C,
then Y is determined by the cover {f(C) : C ∈ C}.
(ii) For a cover P of a space Y , Y is determined by the cover P if and only

if the obvious map f : Σ P → Y is quotient (where Σ P is the topological sum
of P).
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(4) Let f : X → Y be a closed map. If Y is determined by a cover P , then X
is determined by the cover {f−1(P ) : P ∈ P}.

A spaceX is Fréchet if for any A ⊂ X and any x ∈ A, there exist points xn ∈ A
such that {xn : n ∈ N} converges to x. Also, a space X is strongly Fréchet [12];
or countably bi-sequential [7], if for every decreasing sequence {An : n ∈ N} of
subsets of X with x ∈ An for any n ∈ N, then there exist points xn ∈ An (n ∈ N)
such that {xn : n ∈ N} converges to the point x.

Let f : X → Y be a map. Then f is bi-quotient [6] (resp. countably bi-quotient
[12]) if, whenever y ∈ Y and U is a cover (resp. countable cover) of f−1(y) by
open subsets of X , then finitely many f(U), with U ∈ U , cover a nbd of y in Y .
Also, f is hereditarily quotient (or pseudo-open) if f |f−1(S) : f−1(S) → S is
quotient for every S ⊂ Y (equivalently, for any nbd U of f−1(y) in X , int f(U)
is a nbd of y in Y (see [7]).

Obviously, we have the following implications: open (or perfect) map → bi-
quotient map→ countably bi-quotient map→ hereditarily quotient map← closed
map. Also, hereditarily quotient map → quotient map.

We recall the following characterizations by means of these maps. For these,
and intrinsic definitions of related spaces, see [7]. Here, a space is an M -space if
it is an inverse image of a metric space under a quasi-perfect map.

Characterizations: (1) A spaceX is bi-sequential (resp. countably bi-sequential;
Fréchet; sequential)⇔X is a bi-quotient (resp. countably bi-quotient; hereditarily
quotient; quotient) image of a metric space.

(2) A space X is bi-k (resp. countably bi-k; singly bi-k; k) ⇔ X is a bi-
quotient (resp. countably bi-quotient; hereditarily quotient; quotient) image of a
paracompact M -space.

(3) A spaceX is bi-quasi-k (resp. countably bi-quasi-k; singly bi-quasi-k; quasi-
k) ⇔ X is a bi-quotient (resp. countably bi-quotient; hereditarily quotient; quo-
tient) image of an M -space.

We recall that a decreasing sequence {An : n ∈ N} of sets is a k-sequence (resp.
q-sequence) [7] if K =

⋂
{An : n ∈ N} is compact (resp. countably compact), and

any open set U ⊃ K contains some An. Recall that a space X is of pointwise
countable type (resp. q-space) if each point has nbds {Vn : n ∈ N} which is a k-
sequence (resp. q-sequence). Obviously, every first countable space is of pointwise
countable type.

Recall that a space X is of pointwise countable type (resp. q-space) if and only
if X an open image of a paracompactM -space (resp.M -space); see [7]. Thus, we
can replace “paracompactM -space (M -space)” by “space of pointwise countable
type (resp. q-space)” in Characterizations.

As weaker concepts than “strongly Fréchet spaces”, let us recall Tanaka spaces
and strongly sequential spaces defined by F. Mynard.
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A space X is a Tanaka space (or Tanaka topology) [10] if it satisfies the fol-
lowing condition (C) in [16].
(C) Let {An : n ∈ N} be a decreasing sequence of subsets of X with x ∈ An

for any n ∈ N. Then there exist xn ∈ An such that {xn : n ∈ N} converges to
some point y ∈ X .
Obviously, every sequentially compact space is precisely a countably compact

Tanaka space. We note that every Tanaka space need not be sequential (not even
a k-space).

A space X is strongly sequential [9] if, whenever {An : n ∈ N} is a decreasing
sequence of subsets of X with x ∈ An for any n ∈ N, then the point x belongs
to the (idempotent) sequential closure of the set A of limit points of convergent
sequences {xn : n ∈ N} with xn ∈ An. Namely, a space X is strongly sequential
if and only if it is a sequential space such that if {An : n ∈ N} is a decreasing
sequence of subsets of X with x ∈ An for any n ∈ N, then the point x belongs to
the (usual) closure of the above set A.

A space X is inner-closed A [8] if, whenever {An : n ∈ N} is a decreasing

sequence of subsets of X with x ∈ An − {x} for any n ∈ N, then there exist
Fn ⊂ An which are closed in X such that

⋃
{Fn : n ∈ N} is not closed in X .

Among sequential spaces, we can assume that the Fn are singletons.

Let S = {∞}∪ {pn : n ∈ N} ∪ {pnm : n, m ∈ N} be an infinite countable space
such that each pnm is isolated in S, K = {pn : n ∈ N} converges to ∞ /∈ K,
and each Ln = {pnm : m ∈ N} converges to pn /∈ Ln. The space S is called
the Arens’ space S2, if for every finite Fn ⊂ Ln (n ∈ N),

⋃
{Fn : n ∈ N} is

closed in S. The quotient space S2/(K ∪ {∞}) is the sequential fan Sω; that is,
Sω is the space obtained from the topological sum of countably many convergent
sequences by identifying all the limit points. The sequential spaces S2, Sω, and
their modifications have played important roles in the theory of products of k-
spaces; see [21], [22], [24], and [25], for example.

The following diagrams, etc., hold in view of Characterizations, or these are
easily shown, but the first implication in Diagram (6) is shown in [7].

Diagrams: (1) First countable space → bi-sequential space → countably bi-
sequential → Fréchet space → sequential space → k-space.
(2) Countably bi-sequential space (= strongly Fréchet space) → strongly se-

quential space → sequential space.
(3) Countably bi-sequential space → countably bi-k-space → countably bi-

quasi-k-space ← bi-quasi-k-space ← bi-k-space ← bi-sequential space.
(4) Compact space → paracompact M -space → space of pointwise countable

type → bi-k-space → countably bi-k-space → singly bi-k-space → k-space →
quasi-k-space.
(5) Countably compact space → M -space → q-space → bi-quasi-k-space →

countably bi-quasi-k-space → singly bi-quasi-k-space → quasi-k-space.
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(6) Countably bi-quasi-k-space→ inner-closed A-space→ space which contains
no closed copy of Sω, and no S2 ← Tanaka space.

For a space, let us consider the following properties. Here, a cover P of a space
X is called a k-network for X if, for any compact subset K of X and any open
set V ⊃ K, K ⊂

⋃
P ′ ⊂ V for some finite P ′ ⊂ P . Every countably bi-k-space

having property (P4) has a point-countable base, and every quotient Lindelöf
image of a metric space has property (P4); see [3]. Here, a map is Lindelöf if
every inverse-image of a point is Lindelöf. As for products of k-spaces having
certain point-countable k-networks, see [24].

(P1) Fréchet space.
(P2) Space in which every point is a Gδ-set.
(P3) Hereditarily normal space.
(P4) Space with a point-countable k-network.
(P5) Closed image of a countably bi-k-space.
(P6) Closed image of an M -space.

Let us recall the following results. For (1) & (2); (3); (4); (5); and (6), see [20];
[4]; [25]; [16]: and [7] respectively.

Results: (1) For a space X having (P1), X is strongly Fréchet⇔ X contains no
(closed) copy of Sω.
(2) For a sequential space X having (P2) or (P3), X is strongly Fréchet ⇔ X

contains no (closed) copy of Sω, and no S2.
(3) For a k-space X having property (P4), X is first countable ⇔ X contains

no (closed) copy of Sω , and no S2.
(4) For a sequential space X having properties (P5) (resp. (P6)), X is a count-

ably bi-k-space (resp. q-space) ⇔ X contains no (closed) copy of Sω.
(5) For a space X having (P1) or (P2), X is strongly Fréchet⇔ X is a Tanaka

space.
(6) For a sequential space X which is a quotient Lindelöf image of a paracom-

pact space S, if S is bi-sequential (resp. countably bi-sequential; bi-k; countably
bi-k; bi-quasi-k; countably bi-quasi-k), then so is X respectively ⇔ X is inner-
closed A (equivalently, Tanaka space).

Results and questions

In [16], it is shown that, for a first countable space X , if X × Y is sequential,
then X is locally countably compact, or Y is a sequential Tanaka space, and that
the converse holds under some conditions on Y . F. Mynard [10] and [9] obtained
Theorems 1 and 2 below respectively. Theorem 1 implies that every sequential
countably bi-quasi-k-space is strongly sequential by Diagram (6).

Theorem 1. For a space X , the following are equivalent.

(a) X is strongly sequential.
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(b) X is sequential inner-closed A.
(c) X is a sequential Tanaka space.

Theorem 2. Let X be first countable, and Y be sequential. Then X × Y is se-
quential if and only if X is locally countably compact, or Y is a strongly sequential
space.

The following lemma holds in view of the proof of Lemma 6 in [19].

Lemma 3. Let X be a space determined by a point-countable cover C. Then,
for a q-sequence {An : n ∈ N} in X , some An is contained in a finite union of
elements of C.

Proposition 4. LetX be a space determined by a point-countable cover C. Then
each point of X has a nbd which is contained in a finite union of elements of C
if the following (a), (b), or (c) holds.

(a) X is countably bi-quasi-k, and C is closed.
(b) X is sequential and inner-closed A (equivalently, strongly sequential).
(c) X is inner-closed A, and C is countable, and closed (or increasing).

Proof: Case (a): Suppose that some point x of X has no nbds which are con-
tained in a finite union of elements of C. Let {C ∈ C : x ∈ C} = {Cn : n ∈ N},
and let Bn =

⋃
{Cm : m ≤ n} for each n ∈ N. Then, x ∈ X −Bn for each n ∈ N.

Since X is countably bi-quasi-k, there exists a q-sequence {An : n ∈ N} such that

x ∈ ((X −Bn) ∩An) for all n ∈ N ([7]). But, by Lemma 3, some Am is contained
in a union of finitely many closed sets Fn in C. Let V = X−

⋃
{Fn : x /∈ Fn}, then

V is a nbd of x, so x ∈ ((V −Bn) ∩An) for all n ∈ N. But, some (V −Bn) ∩An

must be empty. This is a contradiction. Thus each point has a nbd which is
contained in an element of the cover C.
Case (b): Suppose that some point x of X has no nbds which are contained

in a finite union of elements of C. As is known, since X is sequential, if x ∈ A,
then x ∈ B for some countable B ⊂ A; see [7], for example. Then, there exists
a sequence {Bn : n ∈ N} of countable subsets such that B1 = {x}, x ∈ Bn,
and Bn ∩ Ci(Bj) = ∅ whenever i < n and j < n, here {Ci(Bj) : i ∈ N} =
{C ∈ C : C ∩ Bj 6= ∅}. Let An =

⋃
{Bk : k ≥ n}. Then {An : n ∈ N}

is a decreasing sequence such that x ∈ An, but any C ∈ C meets only finitely
many An. Since X is inner-closed A, there exist Fn ⊂ An which are closed in X ,
but A =

⋃
{Fn : n ∈ N} is not closed in X . Since X is determined by C and A

is not closed in X , some C ∈ C meets infinitely many closed sets Fn, so infinitely
many An. This is a contradiction. Thus, each point has a nbd which is contained
in a finite union of elements of C.
Case (c): We can assume that C = {Cn : n ∈ N} is increasing. Suppose that

some point x ofX has no nbds which are contained in some Cn. Then x ∈ X − Cn
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for each n ∈ N. But, X is inner-closed A, so some Cm meets infinitely many
X − Cn, a contradiction. �

As is well-known, every product of a closed map with the identity map need
not be quotient. Also, every product of a quasi-perfect map f with the identity
map need not be closed ([13]).

Lemma 5. (1) Let fi : Xi → Yi (i = 1, 2) be quasi-perfect maps. If X1 is a
k-space, and Y1 × Y2 is sequential, then f1 × f2 is quasi-perfect ([13]).
(2) Every product of bi-quotient maps is bi-quotient ([6]).
(3) Let f : X → Y be a countably bi-quotient map. If Z is first countable,
then f × idZ is countably bi-quotient ([7]).

We have the following sufficient conditions for products to be k-spaces. The
result for case (c) or (e) is shown in [25]. For case (d) (resp. (e)), when X is
countably bi-quasi-k or strongly sequential (resp. inner-closed A), X is locally
compact by means of Proposition 4.

Theorem 6. One of the following (a)–(e) implies that X × Y is a k-space.

(a) X is strongly sequential, and Y is a k-space which is bi-quasi-k.
(b) X is bi-k, and Y is a k-space which is countably bi-quasi-k.
(c) X is sequential, and Y is a k-space which is locally countably compact.
(d) X and Y are singly bi-quasi-k-spaces determined by a point-countable
closed cover of locally compact subsets.

(e) X and Y are spaces determined by a countable, and closed (or increasing)
cover of locally compact subsets.

Proof: Case (a): Let Y be an image of an M -space S under a bi-quotient map
f by Characterization (3). Let S be an inverse image of a metric space T under
a quasi-perfect map g. Then X × T is a sequential space by Theorem 2. Hence,
X × S is an inverse image of the sequential space X × T under a quasi-perfect
map idX ×g by Lemma 5(1). While, X × T is a k-space, so it is determined by
the cover of all compact subsets. Thus, by Fact (1), X × T is determined by a
cover {C × T : C is compact in X}. Thus, by Fact (4), X × S is determined by
a cover {C × S : C is compact in X}. But, X × Y is an image of X × S under
a quotient map idX ×f by Lemma 5(2). Thus, X × Y is determined by a cover
{C × Y : C is compact in X} by Fact (3). But, as is well-known, each element
C×Y is a k-space, for C is compact and Y is a k-space. Thus, X×Y is a k-space,
for it is determined by the cover of all compact subsets by Facts (1) & (2).
Case (b): Let X be the image of a paracompactM -space S under a bi-quotient

map f by Characterization (2). Let Y be the image of an M -space S′ under a
countably bi-quotient map g by Characterization (3). Let S be the inverse image
of a metric space T under a perfect map p. Let S′ be the inverse image of a metric
space T ′ under a quasi-perfect map q. Then, T×S′ is the inverse image of a metric
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space T ×T ′ under a quasi-perfect map idT ×q. Then, T × S′ is determined by a
cover {C × S′ : C is a compact in T }. While, T × Y is the image of T × S′ under
a quotient map idT ×g by Lemma 5(3). Thus, T × Y is determined by a cover
{C × Y : C is a compact in T }. But, S × Y is the inverse image of T × Y under
a perfect map p × idY , so S × Y is determined by a cover {p−1(C) × Y : C is a
compact in T } (by means of Fact (4)). Since X × Y is the image of S × Y under
a quotient map f × idY , X × Y is determined by a cover {f(p−1(C)) × Y : C is
a compact in T }. But, each element f(p−1(C))× Y is a k-space since f(p−1(C))
is compact in X . Thus, X × Y is also a k-space.
Case (d): Let X (resp. Y ) be determined by a point-countable closed cover C

(resp. K) of locally compact subsets. We will show that X × Y is determined by
a cover L = {C × K : C ∈ C, K ∈ K}, then X × Y is a k-space, because each
element C ×K is locally compact (hence a k-space). So, for F ⊂ X ×Y , suppose
that F ∩ (C ×K) is closed in C ×K for each C ×K ∈ L. To show F is closed in
X × Y , let A = X − F , and let (x, y) ∈ A. Let {C ∈ C : x ∈ C} = {Cn : n ∈ N},
and {K ∈ K : y ∈ K} = {Kn : n ∈ N}. Here, we can assume that Cn ⊂ Cn+1

and Kn ⊂ Kn+1 since Cn and Kn are closed in X and Y respectively. Since
A ∩ (Cn × Kn) is open in Cn × Kn for each n ∈ N, by induction, it is routine
to show that there exist nbds Un of x in Cn, and nbds Vn of y in Kn such that
(Un × V n) ⊂ (Un+1 × Vn+1) ⊂ (Un+1 × V n+1) ⊂ (Cn+1 ×Kn+1) ∩ A, and all
Un, V n are compact sets. Let U =

⋃
{Un : n ∈ N}, and V =

⋃
{Vn : n ∈ N}.

Then U × V ⊂ A. Also, U is a nbd of x in X . Indeed, suppose U is not a
nbd of x in X . Then x ∈ X − U . Since X is singly bi-quasi-k, there exists a
q-sequence {An : n ∈ N} such that x ∈ ((X − U) ∩An) for all n ∈ N ([7]). But,
by Lemma 3, some Am is contained in a finite union of elements of C. Then,
x ∈ ((X − U) ∩ C) for some C ∈ C. Then, x ∈ C, so we can assume C = Ck for
some k ∈ N. But, Uk∩(X−U) ⊃ Uk∩((X−U)∩Ck) 6= ∅. This is a contradiction
to Uk ∩ (X − U) = ∅. Hence U is a nbd of x in X . Similarly, V is a nbd of y in
Y . Then A is open in X × Y , thus F is closed in X × Y . This shows that X × Y
is a k-space. (For case (e), we can assume that the countable closed cover C is
increasing by Fact (1), then X × Y is a k-space as in the first half of the proof).

�

Corollary 7. The following (a) or (b) implies that X × Y is a k-space.

(a) X is sequential countably bi-quasi-k, and Y is a k-space which is bi-quasi-
k.

(b) X is bi-k, and Y is countably bi-k ([17]).

Lemma 8. Let X and Y be sequential spaces. Then X × Y is sequential if and
only if it is a k-space ([14]).

Corollary 9. Each of the following items (a), (b), or (c) implies that X × Y is
a sequential space.

(a) X is strongly sequential, and Y is sequential bi-quasi-k.
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(b) X is sequential countably bi-quasi-k, and Y is sequential bi-quasi-k.
(c) X is sequential, and Y is sequential locally countably compact ([1]).

Corollary 10. Let fi : Xi → Yi (i = 1, 2) be maps such that Xi are locally
compact (resp. sequential locally compact). Then each of the following items
(a)–(e) implies that Y1 × Y2 is a k-space (resp. sequential space).

(a) fi are quotient maps, and Xi are Lindelöf.
(b) fi are quotient Lindelöf maps, Xi are paracompact, and Yi are singly
bi-quasi-k.

(c) fi are hereditarily quotient Lindelöf maps, Xi are paracompact.
(d) fi are closed maps, Xi are paracompact, and Yi are locally Lindelöf.
(e) fi are closed Lindelöf maps.

Proof: For case (a), Xi are determined by a countable cover of compact subsets,
then so are Yi by Fact (3). Hence Y1×Y2 is a k-space by Theorem 6. For case (b),
Xi are determined by a locally finite cover of compact subsets, Yi are determined
by a point-countable cover of compact subsets by Fact (3). But, Yi are singly
bi-quasi-k, then Y1 × Y2 is a k-space by Theorem 6. Case (c) implies case (b),
because every hereditarily quotient image of a locally compact space is singly bi-k
([7]), hence singly bi-quasi-k. For case (d), it is routine that Yi are determined
by a hereditarily closure-preserving cover of compact subsets. Then, since Yi are
locally Lindelöf, each point of Yi has a nbd which is determined by a countable
cover of compact subsets. Thus, Y1×Y2 is a locally k-space by Theorem 6. Hence,
Y1 × Y2 is a k-space by means of Fact (2). The result for case (e) is due to [18].
The parenthetic part holds by means of Lemma 8. �

Remark 11. (1) As is well-known, there exist a separable metric space X (or,
closed image X of a metric locally compact space), and a closed image Y of a
separable metric locally compact space such that X × Y is not a k-space; see [2],
[18], for example.
(2) (2ω0 < 2ω1). There exist countable, strongly Fréchet spaces X and Y such

that X × Y is not a k-space ([11]).
(3) There exists a paracompact space X which is a quotient compact image of

a metric locally compact space such that X2 is not a k-space ([19]).

We note that every quotient Lindelöf image of a paracompact locally compact
space is precisely a space determined by a point-countable cover of compact sub-
sets by Fact (3). In view of Theorem 6, Corollary 10 and Remark 11(3), the
author has a question whether every product of quotient Lindelöf images of para-
compact locally compact spaces is a k-space if the images are Lindelöf. We recall
the following general question. (1), (2) was posed in [21], [22] respectively.

Question 12. (1) Let X and Y be quotient Lindelöf images of paracompact
locally compact spaces. What is a necessarily and sufficient condition for X × Y
to be a k-space ?
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(2) Let X and Y be closed images of paracompact bi-k-spaces. What is a
necessarily and sufficient condition for X × Y to be a k-space ?

Let us review partial answers to Question 12. First, we recall some related
matters. For a cardinal number α, a space is a kα-space if it is determined by a
cover C of compact subsets with |C| ≤ α. A space X is locally < kα if each point
x ∈ X has a nbd whose closure is a kβx

-space, βx < α. Every locally compact
space is locally kω (i.e., locally < kω1), and so is every space determined by a
countable closed cover of locally compact subsets ([24]).
For products of k-spaces, we recall the following Hypotheses (H) and (H∗);

see [21] and [22] (or [24]). (A pair of spaces X and Y is said to have Tanaka’s
condition in [5], if (a’), (b), or (c) in (H) holds, where (a’) X and Y are first
countable.)

(H): Let X and Y be k-spaces. Then X × Y is a k-space if and only if (a), (b) or
(c) below holds. (The “if” part of (H) is valid).

(a) X and Y are bi-k.
(b) X or Y is locally compact.
(c) X and Y are locally kω .

(H∗): Same as (H), but change (c) to (c’): One of X and Y is locally kω , and
another is locally < kc, c = 2

ω.

Let F be the collection of all functions from N to N. The set-theoretic axiom
BF(ω2) means that if whenever A ⊂ F with |A| < ω2, there exists g ∈ F such
that f ≤ g for all f ∈ A, here f ≤ g means {n ∈ N : f(n) > g(n)} is finite. (CH)
implies BF(ω2) is false, and Martin’s axiom (MA) + ¬ CH implies BF(ω2).
Then, for example, we have the following partial answers to Question 12. (1)

holds by means of [24, Theorem 1.1] and [23, Theorem 2.3], and (2), (3), and (4)
are due to [22, Theorem 1.1].

Theorem 13. (1) Let X and Y be Fréchet spaces which are quotient Lindelöf
images of metric spaces. Then Hypothesis (H) holds.
(2) Let X and Y be sequential spaces which are closed Lindelöf images of

paracompact bi-k-spaces. Then Hypothesis (H) holds.
(3) BF(ω2) is false if and only if the assertion (∗) below is valid. When X = Y ,

(∗) is valid without any set-theoretic axiom.
(∗): Let X and Y be sequential spaces which are closed images of paracompact

bi-k-spaces. Then Hypothesis (H) holds.
(4) Let X and Y be sequential spaces which are closed images of paracompact

bi-k-spaces. Then the “only if” part of Hypothesis (H∗) holds. Also, under (MA),
Hypothesis (H∗) holds if all compact sets in X and Y are metric (in particular,
X and Y are closed images of metric spaces).

However, Hypothesis (H) does not suggest an answer to Question 12. Indeed,
under BF(ω2), there exist spaces X and Y which are quotient finite-to-one (or
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closed) images of metric locally compact spaces such that X×Y is a k-space, but
none of the properties (a), (b), and (c) holds ([5] or [24]).

Now, the author does not know whether every product of countably compact
k-spaces is a k-space, more generally he has the following question in view of
Theorem 6. When X is sequential, this is affirmative by Corollary 7.

Question 14. Let X be a k-space which is bi-quasi-k (or countably bi-quasi-k),
and let Y be a k-space which is bi-quasi-k. Is X × Y a k-space ?

Lemma 15. Let X be a bi-k-space, and let Y be sequential. If X × Y is a
k-space, then X is locally countably compact, or Y is a Tanaka space ([25]).

The following holds by means of Lemma 15, and Theorems 1 & 6.

Theorem 16. Let X be a bi-k-space, and let Y be sequential. Then X × Y is a
k-space if and only if X is locally countably compact, or Y is a Tanaka space.

Question 17. In the previous theorem, is it possible to replace “bi-k-space” by
“k-space which is a bi-quasi-k-space (or M -space)” ?

The “if” part of Theorem 16, under Y being a k-space which is bi-quasi-k,
remains true by Theorems 1 & 6. Thus, Question 17 is reduced to the question
whether the replacement in Lemma 15 remains valid.

The following holds by means of Theorem 16, Corollary 7, and Results.

Corollary 18. Let X be a bi-k-space. Let Y be a sequential space having one
of the properties (P1)–(P6) in the previous section. Then the following (a), (b),
and (c) are equivalent ([25]).

(a) X × Y is a k-space.
(b) X is locally countably compact, or Y is a Tanaka space.
(c) X is locally countably compact, or Y contains no (closed) copy of Sω, and
no S2.

Question 19. Let X be a bi-k-space, and let Y be a sequential space. Is it
true that X × Y is a k-space if and only if X is locally countably compact, or Y
contains no (closed) copy of Sω, and no S2 ?

The “only if” part holds by Theorem 16. Question 19 is reduced to the question
whether every sequential is a Tanaka space if it contains no (closed) copy of Sω,
and no S2.

Question 19 is affirmative if Y is a quotient Lindelöf image of a metric space
by Corollary 18. But, the author does not know whether Question 19 is also
affirmative if Y is a sequential space which is a quotient Lindelöf image of a
paracompact, and M -space (or bi-k-space) in view of Results.
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