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The structure of the σ-ideal of σ-porous sets

Miroslav Zelený, Jan Pelant

Abstract. We show a general method of construction of non-σ-porous sets in complete
metric spaces. This method enables us to answer several open questions. We prove that
each non-σ-porous Suslin subset of a topologically complete metric space contains a non-
σ-porous closed subset. We show also a sufficient condition, which gives that a certain
system of compact sets contains a non-σ-porous element. Namely, if we denote the space
of all compact subsets of a compact metric space E with the Vietoris topology by K(E),
then it is shown that each analytic subset of K(E) containing all countable compact
subsets of E contains necessarily an element, which is a non-σ-porous subset of E. We
show several applications of this result to problems from real and harmonic analysis (e.g.
the existence of a closed non-σ-porous set of uniqueness for trigonometric series). Finally
we investigate also descriptive properties of the σ-ideal of compact σ-porous sets.

Keywords: σ-porosity, descriptive set theory, σ-ideal, trigonometric series, sets of unique-
ness

Classification: 28A05, 26E99, 42A63, 54H05

1. Introduction

Let (P, ρ) be a metric space, x ∈ P and r > 0. We denote

B(x, r) = {y ∈ P ; ρ(x, y) < r} (the open ball with radius r and center x),

B(x, r) = {y ∈ P ; ρ(x, y) ≤ r} (the closed ball with radius r and center x).

Let M ⊂ P , x ∈ P and R > 0. Then we define

θ(x,R,M) = sup{r > 0; there exists an open ball B(z, r)

such that ρ(x, z) < R and B(z, r) ∩M = ∅},

p(x,M) = lim sup
R→0+

θ(x,R,M)

R
.

We say that M ⊂ P is porous at x ∈ P (in the space P ) if p(x,M) > 0. We
say that M ⊂ P is porous (in P ), if p(x,M) > 0 whenever x ∈M . A set M ⊂ P
is said to be σ-porous (in P ), if it is a countable union of porous sets (in P ).

Research supported by the grants MSM 113200007, GAČR 201/97/1161, GAČR 201/97/0216,

GAČR 201/00/1466 and GAUK 160/1999.



38 M.Zelený, J. Pelant

The notion of σ-porosity was firstly defined by Dolzhenko in [Do] to describe
certain sets of exceptional points in the theory of boundary behavior of func-
tions. This notion appears naturally in many problems from cluster sets theory
and differentiation theory. The reader can consult [Za2] for more information.
The notion of σ-porosity was used to obtain stronger versions of some results on
exceptional sets replacing some kind of smallness (for example meagerness) by
σ-porosity.
Let us explain how the paper is organized. In §2 we introduce auxiliary notions

and notation. Then we prove a series of technical lemmas, which provide a basic
tool for our constructions of non-σ-porous sets. The most complicated result is
contained in §3. We prove:

Each Suslin non-σ-porous subset of a topologically complete metric space contains
a closed non-σ-porous subset.

This result was firstly obtained by J. Pelant. M. Zelený proved independently
the same result in compact metric spaces using a completely different method. The
proof presented combines Pelant’s original idea and techniques from §2 developed
by Zelený. The other results of the paper are due to Zelený.
In §4 we prove theorems, which provide a general method of construction of

small but non-σ-porous subsets of a compact metric space. We obtain in particular
the following result:

Let E be a compact metric space. Suppose that A is an analytic subset of the
space of all compact subsets of E (with the Vietoris topology) and contains all
countable compact subsets of E. Then there exists L ∈ A such that the set L is
not a σ-porous subset of E.

We show that several results from different fields can be obtained using this
theorem. Section 5 is devoted to applications of the preceding results. We show
the existence of closed non-σ-porous sets of Hausdorff dimension zero. We answer
negatively Laczkovich’s question, whether each proper analytic subgroup of R

is necessarily σ-porous. We answer also the question posed in [Za2] and [BKR]
showing that there exists a closed non-σ-porous set of uniqueness. Such a set of
uniqueness is in some sense big.
The last section is devoted to an investigation of descriptive properties of the

σ-ideal Iσ-p(E) of compact σ-porous subsets of a nonempty compact metric space
E. It is shown that if E has no isolated point, then Iσ-p(E) has no Borel basis.
In this case we reprove the unpublished result of Debs and Preiss that Iσ-p(E) is

Π1
1
-complete and also the result of Reclaw ([Re]) that Iσ-p(E) is not thin.

2. Several lemmas

Lemma 2.1. Let P be a metric space. Let A ⊂ T ⊂ P and let T be porous at
no point of A. Then C ⊂ A is σ-porous in T if and only if C is σ-porous in P .
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Proof: If C is σ-porous in T , then C is obviously σ-porous in P . Now assume
that C ⊂ A is porous in P . Suppose that x ∈ C. There exist η > 0 and a
sequence of open balls (B(yn, rn))

∞
n=1 such that limn→∞ yn = x, rn/ρ(x, yn) > η

and B(yn, rn) ∩ C = ∅. The set T is not porous at x. Thus there exists n0 ∈ N

such that for every n ≥ n0 we have B(yn, rn/2) ∩ T 6= ∅. This means that for
every n ∈ N, n ≥ n0, there exists a ball B(wn, rn/2) ⊂ B(yn, rn) with wn ∈ T .
The sequence {B(wn, rn/2)}∞n=n0 shows that C is porous at x in the space T .
Thus C is porous in T . It gives that each set C ⊂ A, which is σ-porous in P , is
σ-porous in T , too. �

Setting 2.2. Throughout the rest of this section we will work in a nonempty
complete metric space (P, ρ) without isolated points.

Thus each ball (open or closed) in P has a positive diameter. A ball (open or
closed), considered as a set, does not uniquely determine its center and its radius,
therefore a ball will be identified with a pair (center, radius). From this point of
view, two distinct balls need not be geometrically different.

We will use the convention that dist(A, ∅) = +∞, whenever A ⊂ P . The sym-
bol N (N0, respectively) stands for the set of positive (non-negative, respectively)
integers.

Some ideas of this section can be found in [Ze2].

Definition 2.3. (i) Let H ⊂ P , η > 0. We say that A ⊂ P is an η-net of H if
for every h ∈ H there exists a ∈ A with ρ(a, h) < η.
(ii) Let V be a system of closed balls. Then the symbol ap(V) stands for the
set of all points x ∈ P such that for every ε > 0 there exist infinitely many
B ∈ V with B ∩B(x, ε) 6= ∅.

(iii) Let B be a ball. Then c(B) denotes the center of B.
(iv) Let V be a system of closed balls. Then c(V) denotes the set of centers of

balls from V .
(v) Let V be a nonempty system of closed balls satisfying

(a) V is point finite, i.e. each x ∈ P is contained at most in finitely many
balls from V ,

(b) ap(V) ⊂ c(V).

Then we say that V is a B-system.

Lemma 2.4. (i) Let V be a B-system and for every B ∈ V let V(B) be a B-
system such that

⋃
V(B) ⊂ B and c(B) ∈ c(V(B)). Then U =

⋃
{V(B); B ∈ V}

is a B-system.
(ii) Let V be a B-system and for every B ∈ V let F (B) be a closed subset of

B such that c(B) ∈ F (B). Then the set F =
⋃
{F (B); B ∈ V} is closed.

(iii) Let V be a B-system. Then
⋃
V is a closed set.

(iv) A union of finitely many B-systems is a B-system.
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Proof: (i) The system U clearly contains only closed balls and is point finite.
Let x ∈ ap(U). Then we distinguish the following two possibilities.

1) There exist a sequence (Bn)
∞
n=1 of pairwise distinct closed balls and D ∈ V

such that Bn ∈ V(D) and B(x, 1/n) ∩ Bn 6= ∅. Then we have x ∈ ap(V(D)) ⊂
c(V(D)) ⊂ c(U).

2) There exist sequences (Bn)
∞
n=1, (Dn)

∞
n=1 of closed balls such that Bn ∈

V(Dn), Dn ∈ V , the Dn’s are pairwise distinct and B(x, 1/n)∩Bn 6= ∅. We have
x ∈ ap(V) ⊂ c(V). Thus there exists a ball H ∈ V with c(H) = x. We obtain
x ∈ c(V(H)) ⊂ c(U) and assertion (i) is proved.

The proofs of (ii) and (iv) are straightforward and will be omitted. Asser-
tion (iii) follows immediately from (ii). �

Definition 2.5. (i) Let M ⊂ P , x ∈ P and B1, B2 be two closed balls with
x ∈ B2 ⊂ B1. Then we denote

Γ(x,B1, B2,M) = sup{r/ρ(x, z); z ∈ B1 \B2, B(z, r) ⊂ B1 \M}.

(ii) Let M ⊂ P , B be a closed ball and x ∈ B. Then we denote

Γ⋆(x,B,M) = sup{r/ρ(x, z); B(z, r) ⊂ B \M, z 6= x}.

(iii) Let S ⊂ P . The set of all accumulating points of S is denoted by S′.
(iv) LetM ⊂ P , x ∈ P and µ > 0. We say that x is a point of µ-porosity (non-

µ-porosity, respectively) of M , if p(x,M) ≥ µ (p(x,M) < µ, respectively).
We say that x is a point of non-porosity of M , if p(x,M) ≤ 0.

(v) Let S be a system of subsets of P and A ⊂ P . We say that S is discrete
in P \A, if for every x ∈ P \A there is r > 0 such that B(x, r) intersects
at most one element of S.

Roughly speaking the quantity Γ(x,B1, B2,M) measures porosity of M at x
with respect to B1 \ B2 and Γ

⋆(x,B,M) does the same job with respect to B.
Now we introduce inductively two notions, which will play a key role in the sequel.

Definition 2.6. Let B be a closed ball, S be a closed nonempty subset of B
and n ∈ N, δ, κ, α ∈ (0, 1). We say that S has the C(0, δ, κ, α)-property in B if
S = {c(B)}. We say that S has the C(n, δ, κ, α)-property in B if

(C1)n ∀x ∈ S : dist(x,Bc) > δn diamB,
(C2)n Γ

⋆(y,B, S) ≤ κ whenever y ∈ S′,
(C3)n each point x ∈ S′ is a point of non-ακ-porosity of the set S,
(C4)n S′ has the C(n− 1, δ, κ, α)-property in B.
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Definition 2.7. Let B be a closed ball, V be a B-system, n ∈ N, δ, β, ε ∈ (0, 1).
We say that V has the P(0, δ, β, ε)-property in B if V = {B0}, c(B0) = c(B) and
B0 ⊂ B. We say that V has the P(n, δ, β, ε)-property in B if

(P1)n ∀V ∈ V : dist(V,Bc) > diamV ,
(P2)n ∀V ∈ V : dist(V,Bc) > δn diamB,

(P3)n ∀V ∈ V : diamV ≤ 1
2 diamB,

(P4)n there exists a B-system R ⊂ V with the P(n − 1, δ, β, ε)-property in B
such that, for an arbitrary set J intersecting each ball from V , we have

∀R ∈ R ∀x ∈ R : dist(x,Rc) > β diamR ⇒ Γ(x,B,R, J) < ε.

We will need the following two easy observations later.

Observation 2.8. If P is separable, B ⊂ P is a closed ball and S ⊂ P is a
set with the C(n, δ, κ, α)-property in B for some n ∈ N, δ, κ, α ∈ (0, 1), then S is
countable.

Observation 2.9. Let n ∈ N, δ, β, ε ∈ (0, 1). If V has the P(n, δ, β, ε)-property
in a closed ball B and k ∈ N0, k < n, then there exists a B-system R ⊂ V with
the P(k, δ, β, ε)-property in B such that, for an arbitrary set J intersecting each
ball from V , we have

∀R ∈ R ∀x ∈ R : dist(x,Rc) > β diamR ⇒ Γ(x,B,R, J) < ε.

We show how to construct B-systems with the P(n, δ, β, ε)-property (under
some conditions on δ, β, ε) for an arbitrary n ∈ N. The following picture indicates
how these B-systems will look like for n = 0, 1, 2 and some δ, β, ε ∈ (0, 1). The B-
system V0 has the P(0, δ, β, ε)-property in B, the B-system V1 has the P(1, δ, β, ε)-
property in B and the B-system V2 has the P(2, δ, β, ε)-property in B.

V0 V1 V2

The next lemma will enable us to deal with simpler sets during our construction.
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Lemma 2.10. Let B be a closed ball, ξ > 0. Let A and T be nonempty subsets
of B such that A is closed, A ⊂ T and Γ⋆(y,B, T ) < ξ whenever y ∈ A. Then
there exists a closed set D such that D ⊂ T , D′ = A and Γ⋆(y,B,D) < 5ξ
whenever y ∈ A.

Proof: Put

Fk = {z ∈ T ; dist(z,A) ≤ (1 + ξ) diamB/k}, k ∈ N.

Let Wk ⊂ Fk, k ∈ N, be a discrete ξ diamB/k-net of Fk. Put D = A∪
⋃∞

k=1Wk.
It is easy to see that D is closed, D ⊂ T and D′ = A.
Take y ∈ A and a ball B(z, s) ⊂ B \D. We distinguish two cases.
1) If s ≥ ξρ(y, z), then B(z, ξρ(y, z)) ⊂ B(z, s) ⊂ B \D. Since Γ⋆(y,B, T ) < ξ,

we have B(z, ξρ(y, z)) ∩ T 6= ∅ and we can find t ∈ T with ρ(t, z) < ξρ(y, z).
There exists k0 ∈ N such that diamB/(k0 + 1) ≤ ρ(y, z) ≤ diamB/k0. Then we
have

ρ(t, y) ≤ ρ(t, z) + ρ(z, y) < (ξ + 1)ρ(z, y) ≤ (1 + ξ) diamB/k0

and therefore t ∈ Fk0 . Thus we can find w ∈ Wk0 with ρ(t, w) < ξ diamB/k0.
We estimate

s ≤ ρ(z, w) ≤ ρ(z, t) + ρ(t, w) < ξρ(y, z) + ξ diamB/k0

and

s

ρ(y, z)
< ξ +

ξ diamB/k0
diamB/(k0 + 1)

= ξ + ξ
k0 + 1

k0
≤ 3ξ < 5ξ.

2) If s < ξρ(y, z), then obviously s/ρ(y, z) < ξ < 5ξ.
The above considerations show that Γ⋆(y,B,D) ≤ 3ξ < 5ξ. �

Lemma 2.11. Let M ⊂ P , x ∈ M and ξ > 0. If p(x,M) < ξ, then there exists
a closed set D such that D ⊂M , D′ = {x} and p(x,D) < 5ξ.

Proof: Since p(x,M) < ξ, there exists r0 > 0 such that Γ
⋆(x,B(x, r0),M ∩

B(x, r0)) < ξ. Putting A := {x}, T :=M ∩B(x, r0), B := B(x, r0) and applying
Lemma 2.10 we obtain the desired set D. �

The aim of Lemma 2.12 (Lemma 2.13, respectively) is to provide some condi-
tions under which one can construct sets with the property C(n, δ, κ, α) (systems
with the property P(m, δ, α, ε), respectively).

Lemma 2.12. Let B be a closed ball, m ∈ N0, δ, κ, α ∈ (0, 1), 40δ < κ and P0 ⊂
P1 ⊂ · · · ⊂ Pm be subsets of P such that c(B) ∈ P0 and Γ

⋆(y,B, Pj+1) < ακ/10
whenever j ∈ {0, 1, . . . ,m− 1}, y ∈ Pj ∩B.
Then there exist sets S0, . . . , Sm such that

(i) Sj ⊂ Pj , j = 0, . . . ,m,
(ii) S′

j+1 = Sj , j = 0, . . . ,m− 1,

(iii) Sj has the C(j, δ, κ, α)-property in B, j = 0, . . . ,m.
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Proof: We will proceed by induction. If m = 0, then we put S0 = {c(B)}. The
set S0 has clearly the C(0, δ, κ, α)-property in B. Observe that 2 dist(c(B), B

c) ≥
diamB and δ < 1/40. Thus dist(c(B), Bc) > δ diamB.
Now assume that we have proved the case “m = k”. We will deal with the

case “m = k + 1”. Suppose that sets P0, . . . , Pk+1 are given. According to the
induction hypothesis there exist sets S0, . . . , Sk satisfying (i)–(iii) for m = k.
Define

B̃ = {x ∈ B; dist(x,Bc) > δk+1 diamB}, T = Pk+1 ∩ B̃.

Choose y ∈ Sk and a ball B(z, s) with B(z, s) ⊂ B \T . We have two possibilities:

1) If B(z, s) ⊂ B̃, then s/ρ(y, z) < κ/10 since B(z, s) ⊂ B \ Pk+1 and
Γ⋆(y,B, Pk+1) < ακ/10 < κ/10.

2) If B(z, s) ∩ B̃c 6= ∅, then s ≤ dist(z, B̃c) + δk+1 diamB. We have also

dist(z, B̃c) < κρ(y, z)/10 since B(z, dist(z, B̃c)) ⊂ B \Pk+1 and Γ
⋆(y,B, Pk+1) <

κ/10. We have

ρ(y, z) ≥ dist(y,Bc)− dist(z,Bc) ≥ δk diamB − (dist(z, B̃c) + δk+1 diamB)

≥ δk(1 − δ) diamB − κρ(y, z)/10,

ρ(y, z) ≥
1

1 + κ/10
δk(1− δ) diamB >

1

2
δk(1− δ) diamB.

We estimate

s

ρ(y, z)
=
dist(z, B̃c)

ρ(y, z)
+
s− dist(z, B̃c)

ρ(y, z)
< κ/10 +

δk+1 diamB
1
2δ

k(1− δ) diamB

= κ/10 +
2δ

1− δ
< κ/10 + 4δ < κ/10 + κ/10 = κ/5.

The above discussion gives that Γ⋆(y,B, T ) < κ/5 whenever y ∈ Sk.
According to Lemma 2.10 there exists a closed set D ⊂ T such that D′ = Sk

and Γ⋆(y,B,D) < κ whenever y ∈ Sk. We associate with each point x ∈ Sk \ S′
k

a closed ball Bx centered at x in such a way that

• the system S := {Bx; x ∈ Sk \ S′
k} is discrete in P \ S′

k,

• ∀x ∈ Sk \ S′
k : dist(Bx, B

c) > δk diamB.

For every x ∈ Sk \S
′
k we have p(x,Bx∩Pk+1) < ακ/10 since Γ⋆(x,B, Pk+1) <

ακ/10. Then there exists a closed set Dx (according to Lemma 2.11) such that

• Dx ⊂ Pk+1 ∩Bx,
• D′

x = {x},
• p(x,Dx) < ακ.
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We put Sk+1 = D∪
⋃
{Dx; x ∈ Sk \S

′
k}. We show that S0, . . . , Sk+1 have the

desired properties.
(i) This condition is obviously satisfied.
(ii) We have S′

j+1 = Sj for j = 0, . . . , k− 1 by the induction hypothesis. Since

S is discrete in P \ S′
k we have that Sk+1 is closed. Since D

′ = Sk and S is
discrete in P \ S′

k we have S
′
k+1 = Sk.

(iii) The induction hypothesis gives that Sj , j = 0, . . . , k, has the C(j, δ, κ, α)-
property in B. It remains to show that Sk+1 has the C(k + 1, δ, κ, α)-property
in B:

(C1)k+1 This property follows from the definition of T and from the fact that

dist(Bx, B
c) > δk diamB for every x ∈ Sk \ S′

k.

(C2)k+1 We have Γ
⋆(y,B,D) < κ for every y ∈ Sk. Since S

′
k+1 = Sk and

D ⊂ Sk+1 we conclude that Γ
⋆(y,B, Sk+1) < κ for every y ∈ S′

k+1.

(C3)k+1 Let x ∈ S′
k+1 = Sk. If x ∈ S′

k, then p(x, Sk) < ακ by the induction

hypothesis. Thus we also have p(x, Sk+1) < ακ. If x ∈ Sk \ S′
k, then

x is a point of non-ακ-porosity of Dx and therefore x is also a point of
non-ακ-porosity of Sk+1.

(C4)k+1 The set S
′
k+1 has the C(k, δ, κ, α)-property in B by the induction hypo-

thesis. �

Lemma 2.13. Let B be a closed ball, m ∈ N, δ, κ, α, ε ∈ (0, 1), 10κ < ε, Sm ⊂ B
be a set with the C(m, δ, κ, α)-property in B. Then there exists a function s :
Sm → (0,+∞) such that, for every function r : Sm → (0,+∞) with r ≤ s, we
have that Vm = {B(x, r(x)); x ∈ Sm} forms a B-system with the P(m, δ, α, ε)-
property in B.

Proof: We put Sm−1 := S′
m, Sm−2 := S′

m−1, . . . , S0 := S′
1 and S−1 := ∅. We

know that Sj , j ∈ {0, . . . ,m}, has the C(j, δ, κ, α)-property in B.
Fix k ∈ {0, . . . ,m} and x ∈ Sk \ Sk−1. Observe that

• if k ≥ 1, then dist(x,Bc) > δk diamB; if k = 0, then dist(x,Bc) >
δ diamB,

• dist(x, Sk−1) > 0 since Sk−1 is closed and x /∈ Sk−1,
• dist(x, Sk \ {x}) > 0 since Sk \ {x} is closed,
• if k < m, then p(x, Sk+1) < ακ.

Using these observations we choose s(x) > 0 so that s(x) satisfies the following
conditions:

(1) s(x) < 1
3 dist(x,B

c),

(2) if k ≥ 1, then s(x) < dist(x,Bc) − δk diamB; if k = 0, then s(x) <
dist(x,Bc)− δ diamB,

(3) s(x) < 1
4 diamB,

(4) s(x) < 1
4ακ dist(x, Sk−1),
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(5) s(x) < 1
4 dist(x, Sk \ {x}),

(6) if k < m, then θ(x,R, Sk+1) < ακR whenever R ∈ (0, 4s(x)).

This finishes the construction of the function s.
Let r : Sm → (0,+∞) be a function with r ≤ s. We define

Aj = {B(x, r(x)); x ∈ Sj \ Sj−1},

Vj = {B(x, r(x)); x ∈ Sj}, j ∈ {0, . . . ,m}.

Claim. The system Aj is discrete in P \ Sj−1, j ∈ {0, . . . ,m}.

Proof of Claim: Let z ∈ P \ Sj−1. Then we have that Sj \ {z} is a closed set.

Let d ∈ (0, 14 dist(z, Sj \{z})). Suppose that there are x1, x2 ∈ Sj \Sj−1, x1 6= x2,

with B(xi, r(xi)) ∩ B(z, d) 6= ∅, i = 1, 2. This implies s(xi) ≥ r(xi) >
3
4ρ(xi, z).

According to (5) we have s(xi) <
1
4ρ(x1, x2). Then we have

3

4
ρ(x1, x2) ≤

3

4
(ρ(x1, z) + ρ(z, x2)) < s(x1) + s(x2) <

1

2
ρ(x1, x2),

a contradiction. This shows that Aj is discrete in P \ Sj−1. �

The system V0 is clearly a B-system with the P(0, δ, α, ε)-property in B. As-
sume that we have proved that Vj , 0 ≤ j < m, is a B-system with the P(j, δ, α, ε)-
property in B. We shall deal with Vj+1. According to (5) we have that Aj+1 is
a disjoint system. The system Vj is point finite by the induction hypothesis and
therefore Vj+1 is also point finite.
Since Aj+1 is discrete in P \ Sj by Claim, we have ap(Aj+1) ⊂ Sj . Then we

have

ap(Vj+1) = ap(Vj) ∪ ap(Aj+1) ⊂ c(Vj) ∪ Sj = Sj ⊂ Sj+1 = c(Vj+1).

Thus Vj+1 is a B-system. It remains to verify properties (P1)j+1–(P4)j+1.

(P1)j+1: Take x ∈ Sj+1. Using (1) we have

dist(B(x, r(x)), Bc) ≥ dist(x,Bc)− r(x) > 3s(x)− s(x) = 2s(x).

Thus we have

dist(B(x, r(x)), Bc) > 2s(x) ≥ diam(B(x, r(x))).

(P2)j+1: Take x ∈ Sj+1. According to (2) we have

dist(B(x, r(x)), Bc) ≥ dist(x,Bc)−r(x) > s(x)+δj+1 diamB−s(x) = δj+1 diamB.
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(P3)j+1: This property follows immediately from (3).

(P4)j+1: Since Vj has the P(j, δ, α, ε)-property in B, it is sufficient to prove
that, for an arbitrary set J intersecting each element of Vj+1, we have

∀V ∈ Vj ∀x ∈ V : dist(x, V c) > α diamV ⇒ Γ(x,B, V, J) < ε.

Let J be a set intersecting each element of Vj+1. Fix y ∈ Sj and denote V =

B(y, r(y)). Take x ∈ V with dist(x, V c) > αdiamV . Consider a ball B(z, d) ⊂
B \ J with z /∈ V . Denote d1 = dist(z, Sj+1). Since S

′
j+1 = Sj we can find

w ∈ Sj+1 \ Sj with

(2.1) ρ(w, z) < d1 +
1

5
d .

Denote W = B(w, r(w)). Since J intersects W we have

d ≤ ρ(z, w) + diamW < d1 +
1

5
d+ diamW.

This gives

(2.2) d ≤
5

4
(d1 + diamW ) < 2d1 + 2diamW.

Using (4) we obtain

(2.3) diamW ≤ 2r(w) ≤ 2s(w) <
1

2
ακ dist(w, Sj) ≤

1

2
ακρ(w, y).

Inequalities (2.2) and (2.3) imply

(2.4) d < 2d1 + ακρ(w, y).

Now we distinguish two cases.
1) First suppose that ρ(z, y) < 2 diamV . Then ρ(z, y) < 4s(y) and according

to (6) we have d1 ≤ ακρ(z, y). Using this, (2.1) and (2.4) we obtain

d < 2ακρ(z, y) + ακρ(w, y) ≤ 2ακρ(z, y) + ακ(ρ(w, z) + ρ(z, y))

< 3ακρ(z, y) + ακ(d1 +
1

5
d) ≤ 3ακρ(z, y) + α2κ2ρ(z, y) +

1

5
ακd

< 4ακρ(z, y) +
1

5
d.

This implies d < 5ακρ(z, y). We estimate

d

ρ(x, z)
=

d

ρ(z, y)
·
ρ(z, y)

ρ(x, z)
≤ 5ακ ·

2 diamV

α diamV
= 10κ.
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2) Suppose now that ρ(z, y) ≥ 2 diamV . Moreover suppose that B(z, d1) ⊂ B.
Then d1 ≤ κρ(z, y) since Γ⋆(y,B, Sj+1) < κ. Using this, (2.1) and (2.4) we obtain

d < 2d1 + ακρ(w, y) ≤ 2κρ(z, y) + κρ(w, y) ≤ 2κρ(z, y) + κ(ρ(w, z) + ρ(z, y))

< 3κρ(z, y) + κ(d1 +
1

5
d) ≤ 3κρ(z, y) + κ2ρ(z, y) + κ

1

5
d < 4κρ(z, y) +

1

5
d.

This implies d < 5κρ(z, y).
If B(z, d1)∩B

c 6= ∅, then d1 > d and B(z, d)∩Sj+1 = ∅. Using Γ⋆(y,B, Sj+1)
< κ we obtain d ≤ κρ(z, y) < 5κρ(z, y).
In both cases we have d < 5κρ(z, y). We have also

ρ(x, z) ≥ ρ(z, y)− ρ(x, y) ≥ 2 diamV − diamV = diamV.

We estimate

d

ρ(x, z)
=

d

ρ(z, y)
·
ρ(z, y)

ρ(x, z)
< 5κ ·

ρ(y, x) + ρ(x, z)

ρ(x, z)
≤ 5κ

(
diamV

diamV
+ 1

)

= 10κ.

This shows that Γ(x,B, V, J) ≤ 10κ < ε. �

The next lemma follows easily from the previous one.

Lemma 2.14. Let B be a closed ball, m ∈ N, δ, κ, α, ε ∈ (0, 1), 10κ < ε, Sm ⊂ B
be a set with the C(m, δ, κ, α)-property in B, let r : Sm → (0,+∞) be a function.
Then there exists a B-system Vm such that

• Vm has the P(m, δ, α, ε)-property in B,
• c(Vm) = Sm,
• for every V ∈ Vm we have V ⊂ B(c(V ), r(c(V ))).

Lemma 2.15 establishes a relationship between the quantity Γ (defined in Defi-
nition 2.5) and the index of porosity p.

Lemma 2.15. Let ε ∈ (0, 1), M ⊂ P , x ∈ M and (Bn)
∞
n=1 be a sequence of

closed balls such that for every n ∈ N we have

(i) x ∈ Bn,
(ii) dist(Bn+1, B

c
n) ≥ diamBn+1,

(iii) Γ(x,Bn, Bn+1,M) < ε,

(iv) diamBn+1 ≤
1
2 diamBn.

Then p(x,M) < 4ε.

Proof: Denote ψn = Γ(x,Bn, Bn+1,M). Suppose that B(z, s) is an open ball
with B(z, s) ⊂ B2 \M . Since z 6= x and condition (iv) holds, there exists n ∈ N,
n ≥ 2, such that z ∈ Bn \Bn+1. Suppose that B(z, s)∩B

c
n−1 6= ∅. Then we have
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dist(Bn, B
c
n−1) < s. Since x ∈ Bn \B(z, s) we have s ≤ ρ(x, z) ≤ diamBn. Thus

dist(Bn, B
c
n−1) < diamBn, a contradiction with (ii). Thus B(z, s) ⊂ Bn−1.

Suppose that B(z, s) ⊂ Bn; then

s

ρ(x, z)
≤ ψn < ε.

Now suppose that B(z, s) ∩ (Bn−1 \Bn) 6= ∅. Then we have

(2.5)
dist(z,Bc

n)

ρ(x, z)
≤ ψn.

There exists w ∈ Bn−1 \Bn such that

(2.6) ρ(z, w) < dist(z,Bc
n) + s/5

and ρ(z, w) < s. Put d = ρ(z, w) and r = s − d. We have B(w, r) ⊂ B(z, s) ⊂
Bn−1 and so

(2.7)
r

ρ(w, x)
≤ ψn−1.

Using (2.5) and (2.6) we have

(2.8) d < dist(z,Bc
n) + s/5 ≤ ψnρ(x, z) + s/5.

We have also ρ(z, w) < s ≤ ρ(x, z). Using this, (2.7) and (2.8) we obtain

s

ρ(x, z)
=

r + d

ρ(x, z)
≤ ψn−1

ρ(w, x)

ρ(x, z)
+ ψn +

s/5

ρ(x, z)

≤ ψn−1
ρ(x, z) + ρ(z, w)

ρ(x, z)
+ ψn +

s/5

ρ(x, z)

≤ ψn−1 · 2 + ψn +
s/5

ρ(x, z)
.

This implies
s

ρ(x, z)
≤
5

4
(2ψn−1 + ψn) <

15

4
ε.

Thus we have proved that each open ball B(z, s) with B(z, s) ⊂ B2\M satisfies
s/ρ(x, z) < 15ε/4. We have also x ∈ IntB2 according to condition (ii). We
conclude that p(x,M) < 4ε. �
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Lemma 2.16. Let B1 be a closed ball, ε ∈ (0, 1), αn, δn ∈ (0, 1) for every n ∈ N

and let (Vn)
∞
n=0 be a sequence of B-systems satisfying

(V1) V0 = {B1},
(V2) Vn+1 =

⋃
{Vn+1(C); C ∈ Vn}, where Vn+1(C) has the

P(n+ 1, δn+1, αn+1, ε)-property in C, n ∈ N0,
(V3) for every n ∈ N we have αn < (δn+1)

n+1.

Let B2 be an open set intersecting
⋂∞

n=0

⋃
Vn. Then there exist m ∈ N, B3 ∈ Vm

with B3 ⊂ B2 and a sequence (Rl)
∞
l=0 of B-systems such that for every l ∈ N0 we

have

(R1) R0 = {B3},
(R2)l Rl+1 =

⋃
{Rl+1(C); C ∈ Rl}, where Rl+1(C) has the

P(l + 1, δm+l+1, αm+l+1, ε)-property in C,
(R3)l Rl ⊂ Vm+l,
(R4) each point of

⋂∞
q=0

⋃
Rq is a point of non-4ε-porosity of the set

⋂∞
n=0

⋃
Vn.

Proof: Choose x0 ∈ B2∩
⋂∞

n=0

⋃
Vn. According to conditions (P3)1–(P3)n and

(V2) we have sup{diamV ; V ∈ Vn} ≤ 2−n diamB1 for every n ∈ N0. Thus there
exist m ∈ N and B3 ∈ Vm such that x0 ∈ B3 ⊂ B2. Put R0 = {B3}.
Now suppose that we have defined B-systems R0,R1, . . . ,Rl satisfying (R2)j

for j ∈ {0, . . . , l − 1}, (R3)j for j ∈ {0, . . . , l}, and, for every j ∈ {0, . . . , l − 1}
and for each set J intersecting each element of Vm+j+1, we have

∀C ∈ Rj ∀R ∈ Rj+1(C) ∀x ∈ R :

dist(x,Rc) > αm+j+1 diamR ⇒ Γ(x,C,R, J) < ε.

We will define Rl+1. Take C ∈ Rl. Since the B-system Vm+l+1(C) has the
P(m+ l+1, δm+l+1, αm+l+1, ε)-property in C, there exists a B-system Rl+1(C)
such that (Observation 2.9)

• Rl+1(C) ⊂ Vm+l+1(C),
• Rl+1(C) has the P(l + 1, δm+l+1, αm+l+1, ε)-property in C,
• for each set J intersecting each element of Vm+l+1(C) we have

∀R ∈ Rl+1(C) ∀x ∈ R : dist(x,Rc) > αm+l+1 diamR ⇒ Γ(x,C,R, J) < ε.

Put Rl+1 =
⋃
{Rl+1(C); C ∈ Rl}. Thus we have defined a sequence (Rl)

∞
l=0.

These B-systems satisfy (R2)l and (R3)l for every l ∈ N0. We show that the Rl’s
satisfy also condition (R4).
Observe that the set

⋂∞
n=0

⋃
Vn intersects each element of Vp, p ∈ N0. This

follows from (V2), from condition (P3)n of Vn(C), where n ∈ N, C ∈ Vn−1, and
from the completeness of the considered metric space P .
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Let x ∈
⋂∞

q=0

⋃
Rq . Denote C0 = B3 and define a tree of sequences of closed

balls

T = {∅} ∪ {(C1, C2, . . . , Cq); Ci ∈ Ri(Ci−1), x ∈ Ci, i = 1, . . . , q, q ∈ N}.

The tree T is finite splitting since Rl is point finite for every l ∈ N. The tree T is
infinite. Thus by König’s Lemma (cf. [Ke, Exercise 4.12]) there exists a sequence
(Cl)

∞
l=1 of closed balls such that x ∈ Cl ∈ Rl(Cl−1). For every l ∈ N we have:

• dist(Cl+1, C
c
l ) > diamCl+1,

• Γ(x,Cl, Cl+1,
⋂∞

n=0

⋃
Vn) < ε (since the set

⋂∞
n=0

⋃
Vn intersects each

element of Vm+l+1 and

dist(x,Cc
l+1) ≥ dist(Cl+2, C

c
l+1) > (δm+l+2)

l+2 diamCl+1

> (δm+l+2)
m+l+2 diamCl+1 > αm+l+1 diamCl+1),

• diamCl+1 ≤
1
2 diamCl.

Now Lemma 2.15 gives (R4). �

The next definition introduces a version of Foran system. It will be a crucial
tool when proving non-σ-porosity of a set in Lemma 2.22.

Definition 2.17. Let (X, τ) be a metric space and ε > 0. We say that a
nonempty system F of nonempty closed subsets of X is an ε-Foran system, if
for every F ∈ F and for every open set B intersecting F there exists F ⋆ ∈ F such
that F ⋆ ⊂ B ∩ F and each point of F ⋆ is a point of non-ε-porosity of F .

Lemma 2.18. Let (X, τ) be a complete metric space, ε ∈ (0, 1/2) and F be an
ε-Foran system. Then each F ∈ F is not σ-porous.

We need the following definition and theorem to prove Lemma 2.18.

Definition 2.19. Let (X, τ) be a metric space, M ⊂ X and ε > 0. We say that
M is ε-porous if p(x,M) ≥ ε for every x ∈M .

Theorem 2.20 (Zaj́ıček [Za1]). Let (X, τ) be a metric space, ε ∈ (0, 1/2) and
A ⊂ X . The set A is σ-porous if and only if A can be covered by countably many
ε-porous sets.

Remark 2.21. Because of purely technical reasons our definition of ε-porosity is
different from Zaj́ıček’s one in [Za1]. If a set is ε-porous in Zaj́ıček’s sense, then
it is ε-porous also in our sense. Thus we can state his theorem as above.

Proof of Lemma 2.18: It is easy to see that the notion of ε-porosity at a point
is a special case of the abstract notion of V -porosity (see [Za2, Definition 4.1]).
Lemma 4.3 from [Za2] gives that the system F contains only elements, which
cannot be covered by countably many ε-porous sets. Now Lemma 2.18 follows
from Theorem 2.20. �
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Lemma 2.22. Let ε ∈ (0, 1/8), αn, δn ∈ (0, 1) for every n ∈ N, B be a closed
ball and let (Un)

∞
n=0 be a sequence of B-systems such that

(i) U0 = {B},
(ii) Un+1 =

⋃
{Un+1(C); C ∈ Un}, where Un+1(C) has the

P(n+ 1, δn+1, αn+1, ε)-property in C, n ∈ N0,
(iii) for every n ∈ N we have αn < (δn+1)

n+1.

Then the set
⋂∞

n=0

⋃
Un is a closed non-σ-porous set.

Proof: We will define a 4ε-Foran system F . A set F is in F if and only if there
exist p ∈ N0, a closed ball B1 ∈ Up and a sequence (Vk)

∞
k=0 of B-systems such

that

• F =
⋂∞

k=0

⋃
Vk,

• V0 = {B1},
• Vk+1 =

⋃
{Vk+1(C); C ∈ Vk}, where Vk+1(C) has the

P(k + 1, δp+k+1, αp+k+1, ε)-property in C, k ∈ N0,
• Vk ⊂ Up+k for every k ∈ N0.

Observe that such an F is a closed set by Lemma 2.4(iii) and is nonempty
because of the completeness of P and property (P3)k+1 of each B-system Vk+1(C)
(C ∈ Vk, k ∈ N0).

Now take F ∈ F and an open set B2 intersecting F . There exist p ∈ N0,
a closed ball B1 and a sequence (Vk)

∞
k=0 of B-systems witnessing F ∈ F . Observe

that αp+k < (δp+k+1)
p+k+1 < (δp+k+1)

k+1 for every k ∈ N. Using Lemma 2.16
we obtain m ∈ N, B3 ∈ Vm with B3 ⊂ B2 and a sequence (Rl)

∞
l=0 of B-systems

such that

(a) R0 = {B3},
(b) Rl+1 =

⋃
{Rl+1(C); C ∈ Rl}, where Rl+1(C) has the

P(l + 1, δm+p+l+1, αm+p+l+1, ε)-property in C, l ∈ N0,
(c) Rl ⊂ Vm+l, l ∈ N0,
(d) each point of

⋂∞
l=0

⋃
Rl is a point of non-4ε-porosity of the set

⋂∞
k=0

⋃
Vk.

We put

F ⋆ =

∞⋂

l=0

⋃

Rl.

Conditions (a)–(c) give that F ⋆ ∈ F and F ⋆ ⊂ B2 ∩ F . Condition (d) implies
that each point x ∈ F ⋆ is a point of non-4ε-porosity of the set F . This shows that
F is a 4ε-Foran system. Thus each element of F is not σ-porous by Lemma 2.18.
Thus the set

⋂∞
n=0

⋃
Un is not σ-porous and we are done. �

3. Inscribing closed non-σ-porous sets into Suslin non-σ-porous sets

The main aim of this section is to prove the following theorem.
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Theorem 3.1. Let P be a topologically complete metric space and S ⊂ P be
a non-σ-porous Suslin set. Then there exists a closed non-σ-porous subset F of S.

Our theorem answers positively Zaj́ıček’s question ([Za2, Question 4.20]).
Let SeqN be the set of all finite sequences from N and let N be the set of all

infinite sequences from N, i.e. N = NN. We denote the concatenation of s ∈ SeqN

and t ∈ SeqN∪N by s∧t. If ν ∈ N , n ∈ N, then νn stands for the n-th element of
ν and the symbol ν|n means the finite sequence (ν1, ν2, . . . , νn). The symbol ν|0
denotes the empty sequence. If s ∈ SeqN and n ∈ N, then we write s∧n instead
of s∧(n). If t ∈ SeqN, then the symbol |t| denotes the length of t.
Now we introduce auxiliary set-valued mappings.

Definition 3.2. Let Y be a metric space, ω > 1, r > 0 and A ⊂ Y . Then we
define

ker(A) = A \
⋃

{G; G is an open subset of Y such that G ∩A is σ-porous};

Dω,r(A) = A \
⋃

{B(x, ωs); B(x, s) ∩A = ∅ and s ≤ r};

Nω,r(A) = ker(Dω,r(A)).

We will use the notation (Nω,r)
n = Nω,r ◦ · · · ◦Nω,r

︸ ︷︷ ︸

n-times

.

The proof of the following lemma can be found in [Za4].

Lemma 3.3 (Zaj́ıček [Za4, Lemma 3]). Let M be a subset of a metric space Y
and let for each y ∈M there exists r > 0 such that B(y, r)∩M is σ-porous. Then
M is σ-porous.

Lemma 3.4. Let Y be a metric space, ω > 1, r > 0 and A ⊂ Y .

(i) The sets ker(A), Dω,r(A) and Nω,r(A) are closed in A.
(ii) If A is a closed (Suslin, respectively) subset of Y , then ker(A), Dω,r(A)
and Nω,r(A) are closed (Suslin, respectively) subsets of Y .

(iii) If n ∈ N, then (Nω,r)
n(A) is closed in A.

(iv) The set A \ ker(A) is σ-porous and G ∩ ker(A) is non-σ-porous for every
open set G intersecting ker(A), i.e. ker(ker(A)) = ker(A).

(v) If n ∈ N and A is non-σ-porous, then there exists r⋆ > 0 such that
(Nω,r⋆)n(A) is non-σ-porous.

Proof: (i) The assertion follows immediately from the definition of ker, Dω,r

and Nω,r.
(ii), (iii) These assertions follow from (i).
(iv) The set A \ ker(A) is σ-porous by Lemma 3.3. Let G ⊂ Y be an open set

with G ∩ ker(A) 6= ∅. If G ∩A is σ-porous, then G ∩ ker(A) = ∅, a contradiction.
So G ∩A is non-σ-porous and so G ∩ ker(A) is also non-σ-porous.



The structure of the σ-ideal of σ-porous sets 53

(v) First we show that there exists r′ > 0 such that Dω,r′(A) is non-σ-porous.

The set A \
⋃∞

n=1Dω,1/n(A) is σ-porous since it contains only points of porosity

of A. Thus there exists n0 ∈ N such that Dω,1/n0(A) is non-σ-porous. Then

Nω,1/n0(A) is also non-σ-porous by (iv). Thus r
′ = 1/n0 works.

Now it is easy to find a sequence r1, r2, . . . , rn of positive real numbers such
that the set

C = Nω,rn ◦Nω,rn−1 ◦ · · · ◦Nω,r1(A)

is non-σ-porous. Put r⋆ = min{ri; i = 1, . . . , n}. We have C ⊂ (Nω,r⋆)n(A)
(since Nω,a(A) ⊂ Nω,b(A) whenever 0 < b < a) and we are done. �

Lemma 3.5. Let P be a nonempty complete metric space without isolated
points. Let A ⊂ P , m ∈ N0, ω > 1, r > 0, δ, κ, α ∈ (0, 1), 40δ < κ, 1/ω < ακ/10.
Let D ⊂ P be a set such that D ∩ (Nω,r)

j(A) is dense in (Nω,r)
j(A) for every

j ∈ {1, . . . ,m}. Let x ∈ D∩(Nω,r)
m(A) and B(x, s) ⊂ B(x, r). Then there exists

W ⊂ D with the C(m, δ, κ, α)-property in B(x, s).

Proof: Put
Pj = D ∩ (Nω,r)

m−j(A), j = 0, . . . ,m.

It is sufficient to check that the Pj ’s and B(x, s) satisfy the assumption of Lem-

ma 2.12. Clearly x ∈ P0 and P0 ⊂ P1 ⊂ · · · ⊂ Pm. If y ∈ Pj ∩ B(x, s),

j ∈ {0, . . . ,m − 1}, and B(z, d) ⊂ B(x, s) \ Pj+1, then B(z, d) ⊂ B(x, r) \ Pj+1

and B(z, d) ∩ (Nω,r)
m−j−1(A) = ∅. Since x /∈ B(z, d) we have d ≤ r. We obtain

y /∈ B(z, ωd). We estimate

d

ρ(y, z)
≤

d

ωd
=
1

ω
< ακ/10.

This gives Γ⋆(y,B(x, s), Pj+1) < ακ/10.
Using Lemma 2.12 we see that W := Sm works. �

Definition 3.6 (cf. [Ke, Definition 25.4]). Let S = {P (s); s ∈ SeqN} be a Suslin
scheme on a set X , i.e. a family of subsets of X indexed by SeqN. The Suslin
operation A applied to such a scheme produces the set

AsP (s) =
⋃

ν∈N

∞⋂

n=0

P (ν|n).

We say that a Suslin scheme S is regular if for every s ∈ SeqN and n ∈ N we have
P (s∧n) ⊂ P (s).

Setting 3.7. For the rest of this section we fix real numbers ε, κ, αn, δ ∈ (0, 1),
ωn > 1 (n ∈ N) such that 10κ < ε < 1/8, 40δ < κ and for every n ∈ N we have
αn < δn+1, 1/ωn < αnκ/10.
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Definition 3.8. Let S = {F (s); s ∈ N} be a Suslin scheme of subsets of a metric
space Y . For every t ∈ SeqN we put S(t) = AsF (t

∧s) and define a set T (S, t) by

x ∈ T (S, t)
def

⇐⇒ there exist a sequence of positive real numbers (rk)
∞
k=1 and

ν ∈ N such that x ∈ (Nω|t|+k,rk
)|t|+k(S(t∧ν|k)) for every k ∈ N.

Setting 3.9. Let P and S be as in Theorem 3.1. For the rest of this section we
fix a regular Suslin scheme S = {F (s); s ∈ SeqN} of closed subsets of P such
that AsF (s) = S. We denote S(t) = AsF (t

∧s) and we will write T (t) instead of
T (S, t).

We need the following lemmas.

Lemma 3.10. If t ∈ SeqN and x ∈ T (t), then there exists µ ∈ N and r > 0

such that µ||t| = t, x ∈ (Nω|t|+1,r)
|t|+1(S(µ|(|t| + 1))) and x ∈ T (µ|(|t|+ 1)).

Proof: Let (rk)
∞
k=1 and ν ∈ N witness that x ∈ T (t). Then r := r1 and µ := t

∧ν
work. �

Lemma 3.11. Let t ∈ SeqN and A ⊂ S(t) be a set closed in S(t) with A =
ker(A). Then T (t) ∩A is dense in A.

Proof: If A = ∅, then there is nothing to prove. Assume that A 6= ∅. First
we prove that T (t) ∩ A 6= ∅. Let τ be an equivalent complete metric on P . Put
P0 = A and assume that we have defined sets P0, P1, . . . , Pk, positive real numbers
r1, . . . , rk and natural numbers j1, . . . , jk such that

(i)k Pl ⊂ (Nω|t|+l,rl
)|t|+l(Pl−1 ∩ S(t

∧(j1, . . . , jl))), l = 1, . . . , k,

(ii)k diamτ Pl < 1/l, l = 1, . . . , k,
(iii)k ker(Pl) = Pl 6= ∅, l = 0, . . . , k.

Since

S(t∧(j1, . . . , jk)) =
∞⋃

j=1

S(t∧(j1, . . . , jk, j)),

we have that

Pk ⊂
∞⋃

j=1

S(t∧(j1, . . . , jk, j)).

Thus there exists jk+1 ∈ N such that the set Pk ∩ S(t∧(j1, . . . , jk, jk+1)) is non-
σ-porous. According to Lemma 3.4(v) there exists rk+1 > 0 such that the set

Q := (Nω|t|+k+1,rk+1)
|t|+k+1(Pk ∩ S(t∧(j1, . . . , jk, jk+1)))

is non-σ-porous. Choose an open ball B such that the set Q∩B is non-σ-porous
and diamτ B < 1/(k + 1). Put Pk+1 := Q ∩ B. The set Pk+1 clearly satisfies
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(i)k+1 and (ii)k+1. Property (iii)k+1 is implied by Lemma 3.4(iv). Thus we have
defined sequences (Pk)

∞
k=0, (rk)

∞
k=1 and (jk)

∞
k=1 such that (i)k–(iii)k are satisfied

for every k ∈ N0. Put ν = (j1, j2, . . . ) ∈ N .
We have

Pk+1 ⊂ Pk ⊂ S(t∧ν|k) ⊂ S(t∧ν|k) ⊂ F (t∧ν|k) and also lim
k→∞

diamτ Pk = 0.

Thus there exists x ∈
⋂∞

k=0 Pk. We have x ∈
⋂∞

k=0 F (t
∧ν|k) ⊂ S(t∧ν|l) for every

l ∈ N0. Using (i)k and Lemma 3.4(iii) we obtain

Pk ∩ S(t∧ν|k) ⊂ (Nω|t|+k,rk
)|t|+k(S(t∧ν|k))

and so x ∈ (Nω|t|+k,rk
)|t|+k(S(t∧ν|k)) for every k ∈ N. This means that x ∈ T (t).

Since x ∈ P0 ∩ S(t) = A we conclude T (t) ∩A 6= ∅.
Now assume that G is an open set intersecting A. We find an open set H such

that H ∩ A 6= ∅ and H ⊂ G. Put Ã = ker(A ∩ H). We have that Ã is closed

in S(t) and ker(Ã) = Ã 6= ∅. According to the previous considerations we have
T (t) ∩ Ã 6= ∅. Thus T (t) ∩A ∩G 6= ∅ and we are done. �

Proof of Theorem 3.1: First we suppose that P is moreover a complete metric
space without isolated points.
We will work with finite sequences of closed balls in P and we will employ the

following notation. Let H be a finite sequence of closed balls with n elements. If
k ∈ N, k ≤ n, then Hk stands for the k-th element of H and H |k = (H1, . . . , Hk).
If B is a closed ball in P , then the concatenation of H and the sequence (B) is
denoted by H∧B.
We will define systems U⋆

n, n ∈ N0, of closed balls in P , sets Hn, n ∈ N, of finite
sequences of closed balls in P and mappings ϕ :

⋃∞
n=1Hn → N , r :

⋃∞
n=1Hn →

(0,+∞) such that

(i) U⋆
0 = {B(z, d)}, H1 = {(B(z, d))}, where z ∈ P and d > 0,

(ii) U⋆
n =

⋃
{U⋆

n(H); H ∈ Hn}, where U⋆
n(H) is a B-system with the

P(n, δ, αn, ε)-property in Hn, Hn+1 = {H∧B; H ∈ Hn, B ∈ U⋆
n(H)},

n ∈ N,

and for every n ∈ N and H ∈ Hn the following conditions are satisfied

(iii) c(Hn) ∈ (Nωn,r(H))
n(S(ϕ(H)|n)),

(iv) c(Hn) ∈ T (ϕ(H)|n),
(v) Hn ⊂ B(c(Hn), r(H)),

(vi) ∀ H̃ ∈ Hn+1 : H = H̃ |n ⇒ ϕ(H)|n = ϕ(H̃)|n.

Construction of U⋆
n’s, Hn’s, ϕ and r. The set S (= S(∅)) is non-σ-porous and

therefore we have ker(ker(S)) = ker(S) 6= ∅ (Lemma 3.4(iv)). Using Lemma 3.4(i)
we have that ker(S) is closed in S. Thus Lemma 3.11 implies that T (∅) is



56 M.Zelený, J. Pelant

nonempty. Choose z ∈ T (∅). Using Lemma 3.10 we find µ ∈ N and d ∈ (0,+∞)
such that z ∈ Nω1,d(S(µ|1)) and z ∈ T (µ|1). Put U⋆

0 = {B(z, d)} and H1 =

{(B(z, d))}. We define ϕ(B(z, d)) = µ and r(B(z, d)) = d.
Let n ∈ N. Suppose that U⋆

n−1, Hn are defined and that ϕ, r are defined

on
⋃n

j=1Hj . Take H = (H1, . . . , Hn) ∈ Hn. We apply Lemma 3.5 for A :=

S(ϕ(H)|n), m := n, ω := ωn, r := r(H), δ := δ, κ := κ, α := αn, D :=
T (ϕ(H)|n) and B(x, s) = Hn. For every j ∈ {1, . . . , n} we have that T (ϕ(H)|n)∩
(Nωn,r(H))

j(S(ϕ(H)|n)) is dense in (Nωn,r(H))
j(S(ϕ(H)|n)) by Lemmas 3.4(iii),

3.4(iv) and 3.11. This, conditions (iii), (iv) and (v) show that all assumptions
of Lemma 3.5 are satisfied. Thus there exists a set W ⊂ T (ϕ(H)|n) with the
C(n, δ, κ, αn)-property in Hn.
Using Lemma 3.10 we find, for each y ∈ W , ψy ∈ N and sy ∈ (0,+∞) such

that

• y ∈ (Nωn+1,sy)n+1(S(ψy |(n+ 1))),
• y ∈ T (ψy|(n+ 1)),
• ψy |n = ϕ(H)|n.

By Lemma 2.14 there exists a B-system U⋆
n(H) such that

• U⋆
n(H) has the P(n, δ, αn, ε)-property in Hn,

• c(U⋆
n(H)) =W ,

• if V ∈ U⋆
n(H) and c(V ) = y ∈W , then V ⊂ B(y, sy).

Take Hn+1 ∈ U⋆
n(H). Denote y = c(Hn+1) and define

ϕ(H1, H2, . . . , Hn+1) = ψ
y, r(H1, H2, . . . , Hn+1) = s

y .

Finally we put

U⋆
n =

⋃

{U⋆
n(H); H ∈ Hn},

Hn+1 = {H∧B; H ∈ Hn, B ∈ U⋆
n(H)}.

It is not difficult to see that the U⋆
n’s, Hn’s, ϕ and r satisfy (i)–(vi).

Put F =
⋂∞

n=0

⋃
U⋆

n. Take n ∈ N0 and C ∈ U⋆
n. Each B-system is point

finite and so there exist only finitely many sequences (H1, . . . , Hn+1) ∈ Hn+1

with Hn+1 = C. Using this, Lemma 2.4(i) and Lemma 2.4(iv) we easily obtain
by induction that U⋆

n is a B-system for every n ∈ N0. Thus
⋃
U⋆

n is closed by
Lemma 2.4(iii) and this implies that F is closed.
We define a sequence (Un)

∞
n=0 of B-systems as follows:

• U0 = U⋆
0 ,

• Un+1 =
⋃
{Un+1(C); C ∈ Un}, where Un+1(C) = U⋆

n+1(H1, . . . , Hn+1)
for some (H1, . . . , Hn+1) ∈ Hn+1 with Hn+1 = C, n ∈ N0.
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Using (ii) we have that Un+1(C), where n ∈ N0 and C ∈ Un, has the P(n +
1, δ, αn+1, ε)-property in C. Using Lemma 2.22 we obtain that

⋂∞
n=0

⋃
Un is

non-σ-porous. Thus F is non-σ-porous since
⋂∞

n=0

⋃
Un ⊂ F .

It remains to show that F ⊂ S. Choose x ∈ F . Define a tree T by

T = {∅} ∪ {(H1, . . . , Hk) ∈
∞⋃

n=1

Hn; k ∈ N, x ∈ Hk}.

The infinite tree T is finite splitting. So by König’s Lemma there exists a sequence
of closed balls (Hn)

∞
n=1 such that for every n ∈ N we have (H1, . . . , Hn) ∈ Hn and

x ∈ Hn. Using condition (vi) we find ν ∈ N such that ν|n = ϕ(H1, . . . , Hn)|n for
every n ∈ N. Since U⋆

n(H1, . . . , Hn) has the P(n, δ, αn, ε)-property in Hn for every

n ∈ N, we have diamHn+1 ≤ 1
2 diamHn. This implies limn→∞ diamHn = 0.

Thus we have limn→∞ c(Hn) = x. Condition (iii) and the regularity of the Suslin
scheme S give c(Hn) ∈ S(ν|n) ⊂ F (ν|n) ⊂ F (ν|k) for every n, k ∈ N, n ≥ k.
Thus we have x ∈ F (ν|k) for every k ∈ N and therefore x ∈ S. Hence F ⊂ S.

Now assume that P is an arbitrary complete metric space. We may and do
assume that S = ker(S) 6= ∅. If S contains an isolated point x of the space P ,
then we put F = {x} and we are done. Suppose that S contains no isolated point
of the space P . Since ker(S) = S we have that S has no isolated point. Define

P ⋆ = S and S⋆ =

∞⋂

k=1

∞⋃

n=1

Dk,1/n(S).

Due to Lemma 3.4(ii) and due to the well-known fact that a countable union
(intersection, respectively) of Suslin sets is Suslin (see [R, p. 16]), we have that
the set S⋆ is Suslin. It is easy to see that S⋆ contains exactly those points of
S, which are points of non-porosity of S. Thus each point of S⋆ is a point of
non-porosity of P ⋆. The set S \ S⋆ is porous and therefore S⋆ is non-σ-porous in
the space P . This gives that S⋆ is non-σ-porous in the space P ⋆. The space P ⋆

is complete and has no isolated point. Thus we find a closed set F ⊂ S⋆, which
is not σ-porous in the space P ⋆. Lemma 2.1 gives that F is non-σ-porous also in
the space P .
Finally suppose that P is a topologically complete metric space and S ⊂ P is

a Suslin non-σ-porous set. Let P̃ be a completion of P . The set S is Suslin in P̃
since P is Gδ in P̃ . Each point of P is a point of non-porosity of P in P̃ since P
is dense in P̃ . Thus the set S is a non-σ-porous Suslin subset of the space P̃ by
Lemma 2.1. We find a set F ⊂ S, which is a closed non-σ-porous subset of the
space P̃ . Such a set is clearly a closed non-σ-porous subset of P . This finishes
the proof of Theorem 3.1. �
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Remark 3.12. If P is a locally compact metric space, then F in Theorem 3.1
can be clearly found compact. This is impossible in general. For example, each
compact subset of the space NN (with the usual product metric) is porous. The
same is true for each infinite-dimensional Banach space.

Remark 3.13. Solecki ([So]) proved the following interesting theorem.

Let A be an analytic subset of a Polish space X and F be a family of closed
subsets of X . If A cannot be covered by countably many elements of F , then
there exists a Gδ subset H of A with the same property.

We cannot use this result directly to show that each non-σ-porous analytic
subset of a separable complete metric space contains a Gδ non-σ-porous subset,
since there exists a porous Gδ subset of (say) R which cannot be covered by
countably many closed σ-porous sets (see Lemma 6.12).

4. Analytic subsets of a hyperspace and σ-porosity

Let (E, ρ) be a compact metric space. The set K(E) of all compact subsets of
E is equipped with the Vietoris topology. The Hausdorff metric on K(E) (where
the distance of a nonempty compact set and the empty set is equal to diamE+1)
is compatible with the Vietoris topology.
If D ⊂ E, then we denote

K(D) = {K ∈ K(E); K ⊂ D},

Kω(D) = {K ∈ K(E); K is a countable subset of D}.

We say that S ⊂ K(E) is hereditary if for every L ∈ K(E), K ∈ S, L ⊂ K we
have L ∈ S. If S ⊂ K(E), then herS denotes the hereditary closure of S, i.e.

herS = {K ∈ K(E); there exists L ∈ S with K ⊂ L}.

Let us summarize several well-known facts, which will be useful for us in the
following. Proofs are easy and, therefore, they will be omitted.

Lemma 4.1. Let E be a compact metric space.

(i) Let F ⊂ K(E) be a closed set. Then herF is also a closed subset of K(E).
(ii) Let K,K1,K2, · · · ∈ K(E) \ {∅} be such that limn→∞ sup{dist(y,K); y ∈

Kn} = 0. Then K ∪
⋃∞

n=1Kn ∈ K(E).
(iii) Let ϕ be a continuous mapping of E into E. Then the mapping Φ of

K(E) into K(E) defined by

Φ : K 7→ ϕ[K]

is continuous.
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(iv) The space K(E) is compact.
(v) The mapping (K,L) 7→ K ∩ L from K(E) ×K(E) to K(E) is Borel.
(vi) Let G ⊂ E be an open set. Then the mapping K 7→ K ∩G from K(E) to

K(E) is Borel.
(vii) The set {(K,L) ∈ K(E) ×K(E); K ⊂ L} is closed in K(E)×K(E).

Lemma 4.2. Let E be a compact metric space. Let A ⊂ K(E) be a set such
that A = AsF (s), where {F (s); s ∈ SeqN} is a regular Suslin scheme of closed
subsets of K(E). Then we have herA = As herF (s).

Proof: Let K ∈ herA. Then there exist K̃ ∈ A and ν ∈ N such that K ⊂ K̃
and K̃ ∈ F (ν|n) for every n ∈ N0. Thus we have K ∈ herF (ν|n) for every n ∈ N0
and so K ∈ As herF (s).
Now suppose that K ∈ As herF (s). It means that there exist ν ∈ N and a

sequence (Kn)
∞
n=0 of compact sets such that K ⊂ Kn, Kn ∈ F (ν|n). The space

K(E) is compact and therefore there exists a converging subsequence (Knj )
∞
j=1

of the sequence (Kn)
∞
n=0. We have L := limj→∞Knj ∈ F (ν|n) for every n ∈ N0

since the F (ν|n)’s are closed and F (ν|(n+ 1)) ⊂ F (ν|n). This gives that L ∈ A.
It is easy to see that K ⊂ L. These two facts imply K ∈ herA. �

Lemma 4.3. Let E be a compact metric space. LetD ⊂ E andK ∈ Kω(D)\{∅}.
Let Pn ⊂ K(E) be a hereditary subset for every n ∈ N and Kω(D) ⊂

⋃∞
n=1 Pn.

Then there exists an open set G such that K ⊂ G and Kω(D∩G) ⊂ Pm for some
m ∈ N.

Proof: Put Gk = {x ∈ E; dist(x,K) < 1/k} for every k ∈ N. Suppose to the
contrary that the assertion of the lemma does not hold. Then for every k ∈ N

there exists a nonempty set Kk ∈ Kω(D ∩Gk) \ Pk. Put L = K ∪
⋃∞

k=1Kk. We
have L ∈ Kω(D) according to Lemma 4.1(ii). We also have that L /∈ Pk for every
k ∈ N since Pk is a hereditary subset of K(E), Kk /∈ Pk and Kk ⊂ L for every
k ∈ N. This contradiction proves our lemma. �

Setting 4.4. For the rest of this section, let the real numbers ε, κ, αn, δ ∈ (0, 1),
ωn > 1 (n ∈ N) be the same as in Setting 3.7.

Definition 4.5. Let E be a metric space. Let W ⊂ E. We define Q(W ) by

x ∈ Q(W )
def

⇐⇒ there exists a sequence of positive real numbers (rk)
∞
k=1

such that x ∈ (Nωk,rk
)k(W ) for every k ∈ N.

Lemma 4.6. Let E be a nonempty compact metric space without isolated points.
Let W and D be nonempty subsets of E such that

(a) D ⊂ Q(W ),
(b) D ∩ (Nωk,r)

m(W ) is dense in (Nωk,r)
m(W ) whenever k,m ∈ N, r > 0.
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Let A be an analytic subset of K(E) containing Kω(D). Then there exists K ∈ A,
which is not σ-porous.

Proof: For every x ∈ Q(W ) we fix a sequence (rk(x))
∞
k=1 of positive real numbers

such that

x ∈ (Nωk,rk(x))
k(W ) for every k ∈ N.

We may also assume that A is hereditary (Lemma 4.1(i) and Lemma 4.2). Thus
there exists a regular Suslin scheme {F (s); s ∈ SeqN} consisting of closed
hereditary subsets of K(E) such that A = AsF (s). For t ∈ SeqN we define
A(t) = AsF (t

∧s). We have that A(t) is hereditary and A(t) =
⋃∞

j=1A(t
∧j) for

every t ∈ SeqN.
Choose a closed ball B0 with c(B0) ∈ D such that diamB0 < r1(c(B0)). We

define ν = (ν1, ν2, . . . ) ∈ N , a sequence of B-systems (Vn)
∞
n=0 and a sequence of

open sets (Gn)
∞
n=0 such that V0 = {B0} and for every n ∈ N0 we have

• Vn+1 =
⋃
{Vn+1(C); C ∈ Vn}, where Vn+1(C) has the

P(n+ 1, δ, αn+1, ε)-property in C,
•

⋃
Vn ⊂ Gn,

• Kω(D ∩Gn) ⊂ A(ν|n),
• ∀C ∈ Vn : diamC < rn+1(c(C)),
• Vn is countable,
• c(Vn) ⊂ D.

We put V0 = {B0} and G0 = E. Now suppose that we have defined Vn,
Gn and ν1, . . . , νn. Take C ∈ Vn. We have that diamC < rn+1(c(C)) and
c(C) ∈ D ∩ (Nωn+1,rn+1(c(C)))

n+1(W ). Using Observation 2.8, Lemma 3.5 and

assumption (b) of Lemma 4.6, there exists a countable set S(C) ⊂ D with the
C(n+ 1, δ, κ, αn+1)-property in C. Put

S =
⋃

{S(C); C ∈ Vn}.

The set S is a countable union of countable sets and S is closed by Lemma 2.4(ii).
Thus S ∈ Kω(D). We have also S ⊂ Gn and, therefore,

S ∈ Kω(D ∩Gn) ⊂ A(ν1, . . . , νn) =

∞⋃

j=1

A(ν1, . . . , νn, j).

According to Lemma 4.3 there exist νn+1 ∈ N and an open setH such that S ⊂ H
and Kω(D ∩H) ⊂ A(ν1, . . . , νn, νn+1). For every x ∈ S there exists an open ball
Bx ⊂ H centered at x such that diamBx < rn+2(x). Put

Gn+1 =
⋃

{Bx; x ∈ S}.
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For every C ∈ Vn there exists a B-system Vn+1(C) with the P(n+1, δ, αn+1, ε)-
property in C such that c(Vn+1(C)) = S(C) and for every V ∈ Vn+1(C) we
have V ⊂ Bc(V ) (Lemma 2.14). The system Vn+1(C) is countable since S(C) is

countable and Vn+1(C) is point finite. Put

Vn+1 =
⋃

{Vn+1(C);C ∈ Vn}.

The system Vn+1 is countable since Vn and each Vn+1(C), C ∈ Vn, are countable.
Thus we have defined the desired Vn’s, Gn’s and ν = (ν1, ν2, . . . ) ∈ N . Put

K =

∞⋂

n=0

⋃

Vn.

The set K is a closed (hence compact) non-σ-porous subset of E by Lemma 2.22.
We have that c(Vk) is closed by Lemma 2.4(ii). Property (P3)n of Vn(C), where
n ∈ N, C ∈ Vn−1, gives that the compact sets c(Vk), k ∈ N, converge to K in the
space K(E). We have also

c(Vk) ∈ A(ν|k) ⊂ A(ν|n) ⊂ F (ν|n) for every k, n ∈ N0, k ≥ n.

This implies K ∈
⋂∞

n=0 F (ν|n) ⊂ A and we are done. �

Lemma 4.7. Let E be a compact metric space. Let W ⊂ E be an analytic
set with ker(W ) = W 6= ∅. Then there exists a nonempty set D ⊂ E satisfying
(a)–(b) in Lemma 4.6.

Proof: Let S = {F (s); s ∈ SeqN} be a regular Suslin scheme consisting of
closed sets such that W = AsF (s). Put D = T (S, ∅) (see Definition 3.8). By
the definition we have D ⊂ Q(W ). Lemma 3.11 shows that D 6= ∅ and D ∩
(Nωk,r)

m(W ) is dense in (Nωk,r)
m(W ) whenever k,m ∈ N, r > 0. �

Theorem 4.8. Let E be a nonempty compact metric space, D ⊂ E be a dense
subset of E and A be an analytic subset of K(E) containing Kω(D). Then there
exists K ∈ A, which is not σ-porous.

Proof: Suppose that E has an isolated point x. Then x ∈ D and {x} ∈ A. The
set {x} is clearly non-σ-porous. So we may assume that E has no isolated point.
Each σ-porous subset of a metric space is a set of the first category. Using the
Baire Category Theorem we obtain that each nonempty open subset of a complete
metric space is non-σ-porous. Thus we have Q(E) = E and (Nω,r)

m(E) = E for
every ω > 1, m ∈ N and r > 0. Putting W := E we see that the set D satisfies
the assumptions of Lemma 4.6 and we are done. �
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Theorem 4.9. Let E be a nonempty compact metric space, K0 be a non-σ-
porous compact subset of E and A be an analytic subset of K(E) containing
Kω(K0). Then there exists K ∈ A, which is not σ-porous.

Proof: First assume that E has no isolated point. PutK1 = ker(K0). According
to Lemma 4.7 there exists a nonempty D ⊂ K1 satisfying (a)–(b) of Lemma 4.6,
where W is replaced by K1. Thus there exists K ∈ A, which is not σ-porous.
Suppose that E is an arbitrary compact metric space. If K1(= ker(K0)) has an

isolated point x, then we put K = {x}. Such a set is non-σ-porous. Now suppose
that K1 has no isolated point. We put

S⋆ =
∞⋂

k=1

∞⋃

n=1

Dk,1/n(K1).

The set S⋆ has the following properties:

• S⋆ is Borel (Lemma 3.4(ii)),
• S⋆ contains exactly points of non-porosity of K1,
• S⋆ is not σ-porous.

According to Theorem 3.1 there exists a closed non-σ-porous set K2 ⊂ S⋆. The
space K1 has no isolated point, the set K2 is not σ-porous in the space K1, the
set A ∩ K(K2) is analytic and contains Kω(K2). According to the first part of
this proof we have that there exists K ∈ A, K ⊂ K2, which is not σ-porous in the
space K1. Using Lemma 2.1 for P := E, T := K1, A := S⋆, C := K we obtain
that K is non-σ-porous in the space E. �

5. Applications

5.1 Measure, meagerness, capacity and σ-porosity. Each σ-porous subset
of a metric space P is meager. This follows directly from the definition of σ-
porosity. It is not hard to see (using the Lebesgue Density Theorem) that each
σ-porous subset of Rn is a Lebesgue null set. The following theorem is stated in
Dolzhenko’s paper ([Do]), where the notion of σ-porosity was introduced.

Theorem 5.1. There exists a closed non-σ-porous subset of Rn with null n-
dimensional Lebesgue measure.

The first published proof can be found in [Za1]. We prove a more general theo-
rem using our result from the preceding section and Zaj́ıček’s theorem from [Za3].

Theorem 5.2. Let P be a nonempty separable topologically complete metric
space without isolated points. Then there exists a nowhere dense closed non-σ-
porous subset of P with Hausdorff dimension zero.

Proof: According to [Za3, Theorem 3] there exists a nowhere dense Gδ non-σ-
porous set H ⊂ P of Hausdorff dimension zero. Using Theorem 3.1 we find a
closed nowhere dense non-σ-porous set F ⊂ H . �
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Remark 5.3. Theorem 5.2 can be proved directly using Lemma 2.22 constructing
an appropriate sequence of B-systems.
Now we will deal with capacities. Following [Ke, Definition 30.1] we define the

notion of capacity as follows.

Definition 5.4. Let X be a Hausdorff topological space. A capacity on X is
a mapping γ : Pow(X)→ [0,∞] such that:

(i) A ⊂ B ⇒ γ(A) ≤ γ(B);
(ii) A1 ⊂ A2 ⊂ · · · ⇒ limn→∞ γ(An) = γ(

⋃
An);

(iii) for any compact K ⊂ X we have γ(K) <∞;
(iv) for any compact K ⊂ X with γ(K) < r there exists an open set U ⊃ K

with γ(U) < r.

If E is a compact metric space and γ is a capacity on E, then the set

{K ∈ K(E); γ(K) = 0}

is a Gδ subset of K(E) (see [Ke, Exercise 30.15]). This fact and Theorem 4.8 give
the following result.

Theorem 5.5. Let E be a compact metric space and γ be a capacity on E such
that there exists a set D dense in E with γ(D) = 0. Then there exists a compact
non-σ-porous set K ⊂ E with γ(K) = 0.

5.2 Trigonometric series and σ-porosity. This section deals with U-sets and
N-sets. We start with the definition of U-set. The symbol T stands for the interval
[0, 2π], where the endpoints are identified.

Definition 5.6. We say that a set P ⊂ T is a set of uniqueness (or U-set) if
every trigonometric series

∑

n∈Z cne
inx converging to zero in T\P has necessarily

all coefficients equal to zero.

Definition 5.7. We denote

U = {K ∈ K(T); K is a set of uniqueness}.

It is not difficult to prove that each measurable set of uniqueness has zero
Lebesgue measure. The question, whether each Borel set of uniqueness is neces-
sarily meager, had been open for a long time and was positively solved by Debs
and Saint-Raymond.

Theorem 5.8 (Debs, Saint-Raymond [DSR]). If P ⊂ T is a set of uniqueness
with the Baire property, then P is meager.

The following question was posed in [Za2] and in [BKR]: Is each Borel set of
uniqueness σ-porous? The following theorem answers this question negatively.
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Theorem 5.9. There exists a closed set of uniqueness, which is not σ-porous.

We cannot use Theorem 4.8 directly since U is a non-analytic subset of K(T)
(Solovay, Kaufman ([Ka])). The proof of this can be found also in the monograph
[KL, p. 123], which is devoted to sets of uniqueness. Following [KL] we introduce
several notions, which enable us to prove Theorem 5.9.
The space of all functions defined on T with absolutely convergent Fourier

series is denoted by A(T). The space A(T) with the usual norm can be identified
with ℓ1(Z). The space ℓ∞(Z) with the sup-norm is denoted by PM — the space
of pseudomeasures . The space c0(Z) with the sup-norm is denoted by PF — the
space of pseudofunctions . So the dual of PF is A(T) and the dual of A(T) is PM .
Let f ∈ A(T), S ∈ PM . Then we define

〈f, S〉 =
∑

n∈Z

f̂(n)S(−n),

where

f̂(n) =
1

2π

∫ 2π

0
f(x)e−inx dx, n ∈ Z.

Let S ∈ PF and K ∈ K(T). We say that K supports S if for any open interval
I, I ∩K = ∅, and ϕ ∈ C∞(T) with suppϕ ⊂ I we have 〈ϕ, S〉 = 0. (Recall that
C∞(T) ⊂ A(T).)
We will use the following theorems.

Theorem 5.10 (Piatetski-Shapiro [PS], see [KL, p. 174]). Let K ∈ K(T). Then
K is a set of uniqueness if and only if

A(T) = {f ∈ A(T); supp f ∩K = ∅}
w⋆

.

We define a proper subclass of U as follows

K ∈ U ′ def

⇐⇒ A(T) = {f ∈ A(T); supp f ∩K = ∅}
w⋆−sequential

.

Theorem 5.11 (Kechris, Louveau [KL, p. 129]). The set U ′ is a Gδσ subset
of K(T).

Theorem 5.12 (Loomis [Lo], see [KL, p. 185]). Each closed countable subset of
T belongs to U ′.

Proof of Theorem 5.9: Theorems 5.10–5.12 give that U ′ is an analytic subset
of K(T) with Kω(T) ⊂ U ′ ⊂ U . The application of Theorem 4.8 to U ′ finishes
the proof. �

Remark 5.13. Note that all explicit examples (known to the authors) of sets of

uniqueness (H(n)-sets, Meyer sets, countable sets, symmetric homogeneous sets
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satisfying Salem-Zygmund conditions, see [KL, p. 90]) are σ-porous. Moreover,

this fact is obvious for all these classes except H(n)-sets, n > 1. The proof of

σ-porosity of H(n)-sets is non-trivial and is due to Šleich ([Šl], see also [Za5]).
At the end of this section we focus on so-called N-sets. Here we have the

definition.

Definition 5.14. A set P ⊂ T is an N-set if, for some sequence (an)
∞
n=1 of posi-

tive numbers with
∑∞

n=1 an =∞, the series
∑∞

n=1 an sinnt converges absolutely
on P .

Konjagin (see [Za2]) proved the following result concerning N-sets.

Theorem 5.15 (Konjagin). The set K = {x ∈ T;
∑∞

n=1 | sin(n!x)|/n ≤ 1} is
a closed non-σ-porous N-set.

This answers in negative the question, whether each N-set is σ-porous.
Using results due to Bjőrk and Kaufman we obtain the following theorem (see

[LP] and [BKL]).

Theorem 5.16 ([BKL]). The set {K ∈ K(T); K is an N-set} is a Gδ subset of
K(T).

Using this, the next theorem and Theorem 4.8 we obtain an alternative proof
of the existence of a closed non-σ-porous N-set.

Theorem 5.17 ([Ba]). Each countable set is an N-set.

5.3 Linearly independent non-σ-porous set.
In this section we show that there exists a compact non-σ-porous subset of R,

which is linearly independent in the vector space R over the field of rational num-
bers. We use this to answer Laczkovich’s question concerning analytic subgroups
of R.

Theorem 5.18. There exists a compact non-σ-porous subset of R, which is
linearly independent in the vector space R over Q.

Proof: We define

A = {K ∈ K([0, 1]); K is linearly independent}.

It is easy to construct a countable independent set D ⊂ [0, 1], which is dense
in [0, 1]. Then we have Kω(D) ⊂ A. Now we show that A is a Borel subset of
K([0, 1]).
Let Seq’Q be the set of all nonempty finite sequences s of rational numbers

such that at least one member of s is non-zero. For s ∈ Seq’Q we define a mapping
Ls : R

|s| → R by
Ls(x1, . . . , x|s|) = s1x1 + · · ·+ s|s|x|s|.
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(The symbol |s| stands for the length of s.) For m,n ∈ N we denote

D(n,m) = {(x1, . . . , xn) ∈ Rn; dist(xi, xj) ≥ 1/m, i, j = 1, . . . , n, i 6= j}.

Define mappings Cn and Pn
m of K([0, 1]) to K([0, 1]

n) by

Cn : K 7→ K × · · · ×K
︸ ︷︷ ︸

n times

, Pn
m : K 7→ Cn(K) ∩D(n,m).

It is clear that the mapping Cn is continuous and therefore the mapping Pn
m is

Borel by Lemma 4.1(v). We obtain that the mapping Tm
s : K([0, 1])→ K([−|s1|−

· · · − |s|s||, |s1|+ · · ·+ |s|s||]), s ∈ Seq’Q, m ∈ N, defined by

Tm
s : K 7→ Ls[P

|s|
m (K)]

is Borel. (We have used Lemma 4.1(iii).) It is easy to check that

A =
⋂

s∈Seq’Q

∞⋂

m=1

{K ∈ K([0, 1]); 0 /∈ Tm
s (K)}.

The set A is Borel since the set {K ∈ K([0, 1]); 0 /∈ Tm
s (K)} is Borel for every

m ∈ N and s ∈ Seq’Q. Thus A satisfies the assumptions of Theorem 4.8 and we
are done. �

Now we turn our attention to analytic subgroups of the reals. Let G be an
additive proper subgroup of R. It is well-known that if G is analytic, then G is a
meager null set. Laczkovich ([La]) proved the following improvement.

Theorem 5.19 (Laczkovich [La]). Every analytic proper subgroup of R can be
covered by an Fσ null set.

Laczkovich posed (in a private communication) the following question: Is ev-
ery proper analytic subgroup of the reals necessarily σ-porous? We answer this
question negatively.

Theorem 5.20. There exists an analytic proper subgroup of R, which is not
σ-porous.

Proof: According to Theorem 5.18, there exists a compact non-σ-porous set
K ⊂ [0, 1], which is linearly independent. We choose a proper subset F ⊂ K with
the same properties. Let G be a linear envelope of F (in R over Q). The set G is
a vector subspace of the vector space R over Q, hence G is an additive subgroup.
The group G is proper since K \G 6= ∅. The set G is non-σ-porous since F ⊂ G.
Finally, G is analytic (in fact Fσ) since

G =
⋃

{s1F + · · ·+ skF ; k ∈ N, (s1, . . . , sk) ∈ Qk}.
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�

Remark 5.21. M. Chleb́ık observed that Laczkovich’s question can be answered
using Konjagin’s result on N-sets (Theorem 5.15). Indeed, the set

K = {x ∈ R;
∞∑

n=1

| sin(n!x)|/n <∞}

is a non-σ-porous Fσ set forming a proper subgroup of R.

6. The complexity of the σ-ideal of closed σ-porous sets

Let us recall the definition of σ-ideal of compact sets.

Definition 6.1. Let E be a compact metric space. A set I ⊂ K(E) is called
σ-ideal if the following conditions are satisfied:

• if K, L ∈ K(E), K ∈ I, L ⊂ K, then L ∈ I,
• if K, K1, K2, · · · ∈ K(E), Kn ∈ I for all n ∈ N and K =

⋃∞
n=1Kn, then

K ∈ I.

The theory of σ-ideals of compact sets was developed by Kechris, Louveau and
Woodin in [KLW]. Obtained results were applied in the theory of trigonometric
series (see [DSR], [KL]). In this section we investigate the descriptive properties
of the following σ-ideal of compact sets

Iσ-p(E) = {K ∈ K(E); K is a σ-porous subset of E},

where E is a given compact metric space (with a fixed metric ρ).
We start with basic definitions.

Definition 6.2. Let E be a compact metric space and let I ⊂ K(E) be a σ-ideal.
We say that

• I is calibrated if for every F ∈ K(E) and every sequence (Fn)
∞
n=1 of sets

in I with K(F \
⋃∞

n=1 Fn) ⊂ I we have F ∈ I;
• I has the covering property if every analytic set A ⊂ E with K(A) ⊂ I
can be covered by countably many elements from I;

• I has a Borel basis if there exists a Borel set B ⊂ I such that for every
K ∈ I there exist compact sets Kn ∈ B, n ∈ N, with K ⊂

⋃∞
n=1Kn;

• I is thin if E contains no uncountable family of pairwise disjoint closed
sets which are not in I;

• I is locally non-Borel if, for every F ∈ K(E) \ I, the set I ∩ K(F ) is not
Borel.
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Definition 6.3. A subset P of a Polish space X is called Π1
1
-complete if it is Π1

1

and for any Polish space Y and any Π1
1
subset Q of Y , there is a Borel mapping

f : Y → X such that Q = f−1(P ).

It is easy to see that no Π1
1
-complete set is analytic. We will use the following

theorems.

Theorem 6.4 (Kechris, Louveau, Woodin [KLW]). Let E be a compact metric
space. Then every Π1

1
σ-ideal I ⊂ K(E) is either Π1

1
-complete or it is Gδ.

This theorem says that Π1
1
σ-ideals can be separated into two groups: simple

σ-ideals (Gδ) and complicated ones (Π
1
1
-complete).

Theorem 6.5 (Debs, Saint-Raymond [DSR]). Let E be a compact metric space
and I ⊂ K(E) be a Π1

1
σ-ideal such that I is locally non-Borel, calibrated and

has a Borel basis. Then I has the covering property.

This theorem can be used to show that a certain σ-ideal has no Borel basis. It is
sufficient to show that the σ-ideal considered is Π1

1
, locally non-Borel, calibrated

and does not satisfy the covering property. We will use this method, too.

Theorem 6.6 ([Ze1]). Let E be a compact metric space and let I ⊂ K(E) be
a calibrated thin Π1

1
σ-ideal. Then I is Gδ.

Let E be a compact metric space. For every n ∈ N we define an auxiliary
mapping gn : K(E)→ K(E) by

gn(K) = K \
⋃

{B(x, 4r); B(x, r) ∩K = ∅, r < 1/n}.

The following observation is easy to see.

Observation 6.7. Suppose that E is a compact metric space and K ∈ K(E).
Then the set K \

⋃∞
n=1 gn(K) is porous and gn(K) ⊂ gm(K) whenever n,m ∈ N,

n ≤ m.

Lemma 6.8. Let E be a compact metric space. The mapping gn : K(E)→ K(E)
is Borel for every n ∈ N.

Proof: Fix n ∈ N. According to Lemma 4.1(iv), K(E) is separable and so it is
sufficient to show that the sets

X = {K ∈ K(E); gn(K) ⊂ G}, Y = {K ∈ K(E); gn(K) ∩G 6= ∅}

are Borel, whenever G ⊂ E is open. Fix an open set G ⊂ E and suppose that we
have L ∈ K(E) with gn(L) ⊂ G. Since L is compact there exists a finite system
D of open balls from the space E such that

• B ∩ L = ∅ whenever B ∈ D,
• each ball of D has its radius less than 1/n,
• L ⊂ G ∪

⋃
{B(x, 4r); B(x, r) ∈ D}.
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This gives that the open set

{K ∈K(E); K ⊂G ∪
⋃

{B(x, 4r); B(x, r) ∈ D} and B∩K = ∅ whenever B ∈D}

is a subset of X and contains L. The set X is open and therefore Borel.
To prove borelness of Y we write G =

⋃∞
j=1 Fj , where Fj ’s are closed. Then

K(E) \ Y = {K ∈ K(E); gn(K) ∩G = ∅}

=

∞⋂

j=1

{K ∈ K(E); gn(K) ∩ Fj = ∅}

=

∞⋂

j=1

{K ∈ K(E); gn(K) ⊂ E \ Fj}.

This implies that K(E) \ Y is Gδ and therefore Y is Borel. �

Lemma 6.9. Let E be a compact metric space, K ∈ K(E) and ker(K) = K 6= ∅.
Let B be an open basis of E. If B1 is an open set with K ∩ B1 6= ∅, then
there exist l0 ∈ N and B2 ∈ B such that for every l ∈ N, l ≥ l0, we have

gl(K ∩B1) ⊃ gl(K) ∩B2 6= ∅.

Proof: Let B1 be an open set with K ∩ B1 6= ∅. Using Observation 6.7 we
find x ∈ E and l0 ∈ N such that x ∈ gl0(K ∩B1) and B(x, 6/l0) ⊂ B1. Find
B2 ∈ B with x ∈ B2 and diamB2 < 1/l0. Fix l ∈ N, l ≥ l0, and take y ∈
gl(K) ∩ B2. Suppose that y /∈ gl(K ∩B1). We have y ∈ K ∩ B2 ⊂ K ∩B1
and therefore there exists an open ball B(z, s) such that s < 1/l, y ∈ B(z, 4s)

and B(z, s) ∩ K ∩B1 = ∅. Since l ≥ l0 we have B(z, s) ⊂ B(x, 6/l0) ⊂ B1.

This implies B(z, s) ∩K = ∅ and therefore y /∈ gl(K), a contradiction. Thus we

have gl(K) ∩ B2 ⊂ gl(K ∩B1). Then we have gl(K) ∩B2 ⊂ gl(K ∩B1) since
gl(K ∩B1) is closed. The set gl(K) ∩B2 is nonempty since it contains x. �

Lemma 6.10. Let E be a compact metric space. Then Iσ-p(E) is Π
1
1
in K(E).

Proof: The set K(E) \ {∅} is closed in K(E). Put W = (K(E) \ {∅})N. The
space W with the usual product topology is a compact metrizable space. Fix a
countable open basis B of the space E. We define a set S ⊂ W by

F ∈ S
def

⇐⇒ F ∈ W and ∀B1 ∈ B ∀m ∈ N : (F(m) ∩B1 6= ∅ ⇒

∃B2 ∈ B ∃l ∈ N ∃k ∈ N : gl(F(m) ∩B1) ⊃ F(k) ∩B2 6= ∅).

Using (vi) and (vii) of Lemma 4.1 and Lemma 6.8 it is not difficult to verify that
S is a Borel subset of W. We need the following claim.
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Claim. The set K ∈ K(E) is in K(E)\Iσ-p(E) if and only if there exists F ∈ S

such that for some n0 ∈ N we have F(n0) ⊂ K.

Proof of Claim: If K ∈ K(E) \ Iσ-p(E), then we define K∅ = ker(K) and
Ks∧n = ker(gn(Ks)), s ∈ SeqN, n ∈ N. If B is an open set with Ks∩B 6= ∅, then
there exists n ∈ N such that Ks∧n ∩ B 6= ∅ (Lemma 3.4(iv), Observation 6.7).
Thus the set A := {s ∈ SeqN; Ks 6= ∅} is an infinite countable subset of SeqN

and there exists a bijection ϕ of N onto A. We define F ∈ M by F(n) = Kϕ(n),
n ∈ N.
We show that F ∈ S. Let B1 ∈ B, m ∈ N and F(m) ∩ B1 6= ∅. Then

according to Lemma 6.9 there exist B2 ∈ B and l0 ∈ N such that gl(F(m) ∩B1) ⊃

gl(F(m)) ∩B2 6= ∅ for every l ≥ l0. Using Observation 6.7 we find l1 ≥ l0
such that gl1(F(m)) ∩ B2 is not σ-porous. Then we find k ∈ N with F(k) =

ker(gl1(F(m))) and we have gl1(F(m) ∩B1) ⊃ F(k) ∩B2 6= ∅. Thus F ∈ S. For
some n0 ∈ N we have F(n0) = K∅ ⊂ K.
Let F ∈ S, K ∈ K(E) and F(n0) ⊂ K for some n0 ∈ N. Then the set

H = {F(m) ∩G; m ∈ N, G ∈ B, F(m) ∩G 6= ∅}

forms a 1/3-Foran system. Indeed, take m ∈ N, G ∈ B with F(m) ∩ G 6= ∅ and

an open set B such that F(m) ∩G ∩ B 6= ∅. Then there exists B1 ∈ B with
B1 ⊂ G ∩ B and B1 ∩ F(m) 6= ∅. According to the definition of S there exist

B2 ∈ B and l, k ∈ N such that gl(F(m) ∩B1) ⊃ F(k) ∩B2 6= ∅. This implies

that each point x ∈ F(k) ∩B2 is a point of non-1/3-porosity of F(m) ∩B1 (in

fact p(x,F(m) ∩B1) ≤ 1/4). Hence x is also a point of non-1/3-porosity of the

set F(m) ∩G. We have also F(k) ∩B2 ⊂ F(m) ∩B1 ⊂ F (m) ∩G ∩ B. Thus
H is a 1/3-Foran system and each element of H is non-σ-porous by Lemma 2.18.
Therefore the set F(n0) is non-σ-porous. This implies that K is not σ-porous
and Claim is proved. �

Denote

A = {(K,F) ∈ K(E) × M;F ∈ S,F(n0) ⊂ K for some n0 ∈ N}.

Since S is Borel it is not difficult to verify that A is Borel in K(E) × M. Claim
implies that K(E) \ Iσ-p(E) = π(A), where π is the projection of K(E)×M onto
K(E). This gives that K(E) \ Iσ-p(E) is analytic in K(E) and therefore Iσ-p(E)

is Π1
1
in K(E). �

The following lemma follows from Theorem 4.9.

Lemma 6.11. Let E be a nonempty compact metric space with no isolated point.
Then Iσ-p(E) is locally non-Borel.

The following lemma seems to be well-known. The proof is included since we
do not know any explicit reference.
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Lemma 6.12. Let P be a nonempty separable complete metric space with no
isolated point. Then there exists a Gδ porous set H which cannot be covered by
countably many closed σ-porous sets.

Proof: According to [Za3, Theorem 2] (or Theorem 5.2) there exists a nowhere
dense closed set K, such that ker(K) = K 6= ∅. For every n ∈ N we define

Hn =
⋃

{B(x, 2r); B(x, r) ∩K = ∅ and r < 1/n}.

Each point of H := K ∩
⋂∞

n=1Hn is a point of porosity of K. Therefore H is
porous. Since K is nowhere dense, the set Hn ∩K is dense in K for every n ∈ N

and so H is a dense Gδ subset of K. Assume that H can be covered by countably
many closed σ-porous sets. According to the Baire Category Theorem at least one
σ-porous set contains a portion of K. This is a contradiction, since each portion
of K is not σ-porous. �

The following theorem summarize the main descriptive properties of the σ-ideal
Iσ-p(E).

Theorem 6.13. Let E be a nonempty compact metric space with no isolated
point. Then Iσ-p(E) is a Π

1
1
-complete non-thin σ-ideal with no Borel basis.

Proof: Theorem 6.4, Lemma 6.10 and Lemma 6.11 give that Iσ-p(E) is Π
1
1
-

complete.
Theorem 3.1 easily implies that Iσ-p(E) is calibrated. Lemma 6.12 shows that

Iσ-p(E) does not satisfy the covering property. Now Theorem 6.5 and Lemma 6.11
imply that Iσ-p(E) has no Borel basis.
Non-thinness of Iσ-p(E) follows from Theorem 6.6. �

Remark 6.14. (i) Π1
1
-completeness of Iσ-p(E) was firstly proved by Debs and

Preiss ([De]), but the proof was not published.
(ii) If a σ-ideal I ⊂ K(E) is Π1

1
and is not thin, then there exists a family

of cardinality of the continuum of pairwise disjoint elements from K(E) \ I (see
[KLW]). This is also the case of σ-ideal Iσ-p(E). This result was firstly proved by
Reclaw ([Re]).
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72 M.Zelený, J. Pelant

[Do] Dolzhenko E.P., Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR Ser.
Mat. 31 (1967), 3–14 (in Russian).

[DSR] Debs G., Saint-Raymond J., Ensembles boréliens d’unicité au sens large, Ann. Inst.
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