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Regular potentials of additive

functionals in semidynamical systems

Nedra Belhaj Rhouma, Mounir Bezzarga

Abstract. We consider a semidynamical system (X,B,Φ, w). We introduce the cone A

of continuous additive functionals defined on X and the cone P of regular potentials.
We define an order relation “≤” on A and a specific order “≺” on P. We will investigate
the properties of A and P and we will establish the relationship between the two cones.
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1. Introduction

Many applications involve semidynamical systems in non locally compact infi-
nite dimensional spaces, for example semidynamical systems generated by partial
differential equations.
So starting from a semidynamical system (X,B,Φ, w) (cf. [3], [6] and [13]), we
associate the concepts of additive functionals and regular potentials with respect
to the inherent topology T 0Φ defined on (X,B,Φ, w) (cf. [3] and [12]). Note that
the space X is not assumed to be an artificial topological space (L.C.D or not)
nor a Radonian space (cf. [14]) and that the inherent topology is not in general
locally compact neither having a countable base (cf. [2]). Indeed, we assume only
that (X,B) is a separable measurable space and that the semidynamical system
(X,B,Φ, w) is transient.
The concepts used in this paper were already introduced in the case of a stan-
dard Markov Process X = (Ω,M,Mt, Xt,Θt, P

x) with state space (E, E) which
is locally compact with countable base (cf. [7]).
It is worth mentioning that there is correlation between the inherent topology T 0Φ
and the continuity of additive functionals.
In the preliminary, we will introduce preliminary material and we will establish

some results that will be used in this paper, particularly the fine topology TΦ and
the inherent topology T 0Φ which will be used extensively in the sequel.
We will give the definition of additive functionals and regular potentials defined

This paper is in final form and no version of it will be submitted for publication elsewhere.
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on (X,B,Φ, w), then we will illustrate with some examples. We show particularly
that any continuous additive functional gives rise to a regular potential on X0
(Theorem 3.1) and conversely, every regular potential is associated to a contin-
uous additive functional (Theorem 3.2). In Section 4 we will introduce an order
relation on the cone A of continuous additive functionals, then we will prove in
Theorem 4.1 that two elements A,B ∈ A are comparable if and only if their as-
sociated potentials are comparable with respect to the specific order defined on
E(Λ). Moreover we will show in Theorem 4.5 and Corollary 4.2 that the Riesz de-
composition holds in the cone of regular potentials P with respect to the natural
and specific order and holds in A (Theorem 4.6). Also, we show in Theorem 4.5
and 4.6 that for any bounded increasing family (fi)i in (P ,≺) ((Ai)i in (A,≤)
resp.) we have supifi ∈ P (supiA

i ∈ A resp.). Similarly, for a decreasing family
(fi)i in (P ,≺) we show that ∧ifi ∈ P and that for any decreasing family (Ai)i in
(A,≤) the element ∧iA

i which is the greatest lower bound in A exists.

2. Preliminary

Definition 2.1. Let (X,B) be a separable measurable space with a distinguished
point ω. A measurable map Φ : R+ ×X −→ X is called a semidynamical system
with cofinal point ω if the following conditions are fulfilled:

(S1) for any x in X , there exists an element ρ(x) in [0,∞] such that Φ(t, x) 6= ω

for all t ∈ [0, ρ(x)) and Φ(t, x) = ω for all t ≥ ρ(x),
(S2) for any s, t ∈ R+ and any x ∈ X we have

Φ(s,Φ(t, x)) = Φ(s+ t, x),

(S3) Φ(0, x) = x for all x ∈ X ,
(S4) if Φ(t, x) = Φ(t, y) for all t > 0, then x = y.

Note that ρ is called the life time of the semidynamical system (X,B,Φ, ω).
Next, we will denote by X0 = X \ {w} and by B0 the trace of the σ-algebra B
on X0. For any x ∈ X0 we denote by Γx the trajectory of x, i.e.:

Γx = {Φ(t, x); t ∈ [0, ρ(x))}

and we define the function Φx on [0, ρ(x)) by Φx(t) = Φ(t, x). So for any x, y ∈ X0
we put

x ≤
Φ

y ⇔ y ∈ Γx.

A maximal trajectory is a totally ordered subset Γ of X \ {ω} with respect to the
above order, such that there is no x0 ∈ X0 \ Γ which is minorant of Γ and such
for any x ∈ Γ, we have Γx ⊂ Γ.
In what follows, we shall suppose that (X,B,Φ, ω) is a transient semidynamical

system (cf. [3], [11]). It is proved that the map Φx is a measurable isomorphism
between [0, ρ(x)) and Γx endowed with trace measurable structures.
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Let Λ be the Lebesgue measure associated with the semidynamical system
(X,B,Φ, ω) given by Λ(A) = λ(Φ−1x (A)) for any x ∈ X0, A ∈ B0 and A ⊂ Γx,
where λ is the Lebesgue measure on R (cf. [4]). We recall (cf. [1]) that in the
same way Λ can be defined on the σ-algebra B0(Λ) which is the set of all subsets
A of X0 such that A ∩ M ∈ B0 for any countable union M of trajectories of X0.
The resolvent family V associated to (X,B,Φ, w) on (X0,B0) is given by

Vαf(x) =

∫ ρ(x)

0
e−αtf(Φ(t, x)) dt

for any B0-measurable function f .
We consider also the arrival time function Ψ : X0 × X0 −→ R+ given by

Ψ(x, y) =

{
t if Φ(t, x) = y, t ∈ [0, ρ(x)[

+∞ if not

(cf. [6, Chapter III]).
It is shown that the arrival time function Ψ is measurable if we endow X0 × X0
with the product measurable structure of the σ-algebra B0(Λ) (cf. [1], [4], [5]).
For each x ∈ X0, let us denote by

Vx = {V ⊂ X0 : ∃α ∈ ]0, ρ(x)[ such that Φ(t, x) ∈ V, ∀ t ∈ [0, α[}

and let TΦ be the topology for which Vx generates all the neighborhoods of x.
This topology is called the fine topology (see [3]).

In the sequel, we define the inherent topology T 0Φ as the set of all subsets D of
X0 satisfying the following condition (see [3], [12]):

(∀x ∈ X0, ∀ t0 ∈ [0, ρ(x)[ such that Φ(t0, x) ∈ D)

(∃ ǫ > 0, such that ∀ t ∈]t0 − ε, t0 + ε[∩[0, ρ(x)[,Φ(t, x) ∈ D).

In the next, let E be the set of excessive functions on X0 with respect to V.
By [3], we have that E is the set of all measurable functions f : X0 → R+

which are nonincreasing with respect to “≤
Φ
” and continuous with respect to TΦ.

Remark. A function f : X0 → R is TΦ-continuous (T
0
Φ -continuous resp.) if and

only if for each x ∈ X0, the function t → f(Φ(t, x)) is right continuous (continuous
resp.) on [0, ρ(x)[.

Notation. In the sequel, we will denote by F(X0,Λ) the set of all nonnegative
B0(Λ)-measurable functions on X0.

For any nonnegative B0-measurable function f on X0 and ∀α ≥ 0, the restric-
tion of Vαf on Γx depends only on the restriction of f on Γx and someone can
establish the following results (see [5]).
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Proposition 2.1. For any f ∈ F(X0,Λ) and any α ≥ 0 let

Ṽαf(x) =

∫ ρ(x)

0
e−αtf(Φ(t, x)) dt =

∫

Γx

e−αΨ(x,y)G(x, y)f(y) dΛ(y),

where

G(x, y) =

{
1 if x ≤ y,

0 if not.

Then, Ṽαf is B0(Λ)-measurable, the family Ṽ = (Ṽα)α≥0 is a resolvent of kernels

on the measurable space (X0,B0(Λ)) and Ṽ is an extension of V.

Theorem 2.1. The set E(Λ) of the Ṽ-excessive functions on (X0,B0(Λ)) is iden-
tical to the set of all positive decreasing functions on X0 with respect to the order

“≤
Φ
”, continuous with respect to the fine topology TΦ and finite at the points

x ∈ X0 which are not minimal with respect to the same order.

Thus, the following result holds.

Proposition 2.2. Any function f ∈ E(Λ) is lower semicontinuous with respect
to T 0Φ .

Proof: Since Ṽ is submarkovian on (X0,B0(Λ)), by Hunt’s approximation the-
orem (cf. [8]) there exists a sequence (fn)n ∈ F(X0,Λ) such that

sup
n

Ṽ0fn = f.

Since Ṽ0fn is T
0
Φ -continuous (cf. [3]), f is lower semicontinuous with respect to

T 0Φ . �

Next, we shall prove the following theorem which will be needed later.

Theorem 2.2. The following properties hold:

(1) every open set in TΦ is B0(Λ)-measurable,
(2) every decreasing function f with respect to “≤

Φ
” is B0(Λ)-measurable.

Proof: (1) Let O ∈ TΦ. Using a result in [3], Γx ∈ TΦ, we get that O ∩ Γx ∈ TΦ
which means that Φ−1x (O ∩ Γx) is an open set with respect to the fine trace
topology on [0, ρ(x)[. Thus, it is measurable with respect to trace Borel σ-algebra.
Using the fact that Φx is a measurable isomorphism, we get that O ∩ Γx ∈ B0
and therefore O ∈ B0(Λ).

(2) The function g defined by g(t) := foΦx(t) is decreasing on [0, ρ(x)[ which
is measurable with respect to trace Borel σ-algebra on [0, ρ(x)[. Using the fact
that Φx is a measurable isomorphism, we get that f = goΦ−1x is B0-measurable
and then f is B0(Λ)-measurable. �

In the sequel, the extension Ṽ will be denoted simply by V.
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3. Regular potentials

In this section, let (X,B,Φ, ω) be a fixed data transient semidynamical system
and denote by ρ the life time associated defined on X and taking values in [0,∞].

Definition 3.1. A family A = {At, t ∈ [0, ρ[} of functions defined from X to
[0,+∞] is called an additive functional of (X,B,Φ, ω) provided the following
conditions are satisfied:

(A1) for each x ∈ X0, the mapping : t → At(x) is nondecreasing, right continuous
and satisfies A0(x) = 0 for all x ∈ X ,

(A2) for each t ≥ 0, the mapping x → At(x) is measurable with respect to B0(Λ),
(A3) for each x ∈ X0, t, s ≥ 0,

At+s(x) = At(x) +As(Φ(t, x)),

(A4) At(w) = 0, ∀ t ≥ 0.

If the mapping t → At is continuous, then A is said to be a continuous additive
functional .

In the sequel, we assume that the map t → At(x) is continuous.

Notation. We will denote by A the set of all continuous additive functionals
on X .

Remark 3.1. Since the map t → At is increasing, we denote

At(x) = lim
t→ρ(x)

At(x)

for all t ≥ ρ(x). Thus, we can set A∞(x) = Aρ(x)(x) = limt→ρ(x)At(x).
For any measurable function f defined on X0, we set

lim
t→∞

f(Φ(t, x)) = lim
t→ρ(x)

f(Φ(t, x))

when it exists.

Definition 3.2. Let A be in A. Then, we define

R(x) = inf{t : At(x) > 0}

provided the set in braces is not empty and R(x) =∞ if it is empty and

ϕA(x) = 1[0,ρ(x)[(R(x))e
−R(x).

It is obvious that R(x) = sup{t : At(x) = 0}.
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Proposition 3.1. ϕA(x) = e−R(x).

Proof: Suppose that ρ(x) ≤ R(x) < ∞. By (A4), we have

At(Φ(R(x), x)) = 0

for t ≥ ρ(x). Hence for each t ≥ 0, we have

At+R(x)(x) = AR(x)(x) +At(Φ(R(x), x)) = AR(x)(x).

On the other hand, by the definition of R, we have that At(x) = 0 for every
t < R(x), which gives us that At(x) = 0, ∀ t ≥ 0. Hence R(x) =∞. �

Definition 3.3. Let A be an additive functional. Then, we define

suppA = {x ∈ X : ϕA(x) = 1}.

Proposition 3.2. If A is a continuous additive functional, then

suppA = {x ∈ X : As(x) > 0, ∀ s > 0}.

Definition 3.4. We say that a real valued map f defined on X0 is a Liapunov
(strict Liapunov resp.) function if f is decreasing (strictly decreasing resp.) and
continuous on each trajectory Γ ⊂ X with respect to T 0Φ .

Definition 3.5. We say that a real valued map f defined on X0 is a regular
potential if f is a Liapunov function such that limt→∞ f(Φ(t, x)) = 0 for every
x ∈ X0. We will denote by P the set of regular potentials.

Definition 3.6. We say that a function f is a potential if f ∈ E(Λ) and
limt→∞ f(Φ(t, x)) = 0 for every x ∈ X0.

Proposition 3.3. Let f ∈ F(X0,Λ). Then, the potential of f defined by

V0(f)(x) =

∫ ρ(x)

0
f(Φ(t, x)) dt

is a Liapunov function when the integral is finite.

Proof: For the proof see Theorem 8 in [3]. �
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Theorem 3.1. Let A ∈ A. If A∞ < ∞, then the function A∞ is a regular

potential. Moreover it is a strict Liapunov function on suppA and we have that

suppA is the set of strict monotony of A∞.

Proof: Let x, y ∈ X such that x ≤ y. Then, there exists t ≥ 0 such that
y = Φ(t, x). Since

As+t(x) = At(x) +As(Φ(t, x)),

by letting s → ∞, we get

(3.1) A∞(x) = At(x) +A∞(Φ(t, x)).

Hence, we get that
A∞(y) = A∞(Φ(t, x)) ≤ A∞(x)

and
A∞(Φ(t, x)) < A∞(x)

if and only if x ∈ suppA. Hence, A∞ is decreasing on X0 and strictly decreasing
on suppA. Moreover, by (A1) and (3.1), we get

lim
t→0

A∞(Φ(t, x)) = A∞(x)

which yields that A∞ is right continuous with respect to T
0
Φ . Now, let us consider

x0 ∈ X0 not minimal and let y < x0, then there exists t0 ∈ [0, ρ(y)[ such that
x0 = Φ(t0, y). Thus, from (3.1), we get that for every 0 ≤ t < t0

(3.2) A∞(Φ(t, y))− A∞(Φ(t0 − t,Φ(t, y))) = At0−t(Φ(t, y)),

i.e.,

(3.3) A∞(Φ(t, y))− A∞(Φ(t0, y)) = At0−t(Φ(t, y)).

On the other hand, by (A3) in Definition 3.1, we have

At0−t(Φ(t, y)) = At0(y)− At(y).

Since the map t → At is continuous, we get that

(3.4) lim
t→t0

At0−t(Φ(t, y)) = 0.

Hence using (3.3) we obtain that

lim
t→t−

0

A∞(Φ(t, y))− A∞(Φ(t0, y)) = 0

which implies that A∞ is left continuous with respect to T
0
Φ .

Again using (3.1), we obtain limt→∞ A∞(Φ(t, x)) = 0. Hence A∞ is a regular
potential which is a strict Liapunov function on suppA. �
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Example 3.1. Let f > 0 be a measurable function defined on X0 and set

At(x) =

∫ t

0
f(Φ(s, x)) ds.

If
∫ ρ(x)
0 f(Φ(s, x)) ds < ∞ for each x, then the function

A∞(x) =

∫ ∞

0
f(Φ(s, x)) ds

is a regular potential which is a strict Liapunov function.

Definition 3.7. For every f ∈ F(X0,Λ) we define the potential of f relative

to A by

UA(f)(x) =

∫ ρ(x)

0
f(Φ(t, x)) dAt(x)

when the integral is finite. When f = 1 we write uA.

Proposition 3.4. Let f ∈ F(X0,Λ) and let A be a continuous additive func-
tional. Then, UA(f) is a regular potential if UA(f) < ∞.

Proof: Let us denote Bt(x) =
∫ t
0 f(Φ(s, x)) dAs(x). We shall prove that (Bt)t≥0

is a continuous additive functional. First, we shall prove the property (A3).
Indeed, let t, s ≥ 0.

Bt+s(x) =

∫ t+s

0
f(Φ(u, x)) dAu(x)

=

∫ t

0
f(Φ(u, x)) dAu(x) +

∫ t+s

t
f(Φ(u, x)) dAu(x)

= Bt(x) +

∫ s

0
f(Φ(u+ t, x)) dAu+t(x)

= Bt(x) +

∫ s

0
f(Φ(u,Φ(t, x))) dAu(Φ(t, x))

= Bt(x) +Bs(Φ(t, x)).

Next, we claim that for every x ∈ X0 the map t → Bt(x) is continuous.
Let t, t0 ≥ 0, then

Bt(x)− Bt0(x) =

∫ t0

t
f(Φ(u, x)) dAu(x).

The result follows by using the continuity of A and the fact that UA(f) < ∞.
Now, we see that UA(f) = B∞ and the proof is achieved by using Theorem 3.1.

�



Regular potentials of additives functionals . . . 563

Corollary 3.1. Let A be a continuous additive function and set

uA(x) =

∫ ρ(x)

0
1 dAt

the potential of A. If uA < ∞, then, uA is a regular potential which is a strict
Liapunov function on suppA.

Proof: We see that uA = A∞ and hence by Theorem 3.1 it is a Liapunov
function which is strict on suppA. �

Theorem 3.2. If f is a regular potential, then there exists an unique continuous

additive functional A such that f = A∞.

Proof: Let A be an additive functional such that f = A∞. Then we get by
(3.1) that At(x) = f(x)− f(Φ(t, x)) which implies that A is unique if it exists.
Next, set At(x) = f(x) − f(Φ(t, x)). Note that the continuity of A follows from
the continuity of f with respect to T 0Φ . The properties (A2) and (A4) are obvious.
It is easy to check that A0(x) = 0, f(x) = A∞(x) and that for every t ≥ 0 and
for every x ∈ X we have At(x) ≥ 0.
The property (A1) holds since for t ≥ s we have

At(x)− As(x) = −f(Φ(t, x)) + f(Φ(s, x)) ≥ 0.

Finally, we shall prove (A3). Indeed, for every s, t ≥ 0 we have

As+t(x) = f(x)− f(Φ(t+ s, x))

= f(x)− f(Φ(t,Φ(s, x)))

= f(x)− f(Φ(s, x)) + (f(Φ(s, x)) − f(Φ(t,Φ(s, x))))

= As(x) +At(Φ(s, x)).
�

Remark 3.2. Note that this result is not unique in its formulation. In fact,
such result was given for a special class of potentials (see [10]). Moreover, in our
case we formulate the result for regular potentials with respect to the inherent
topology and we proved the continuity of the additive functionals associated.

Definition 3.8. We say that a function h is harmonic if

h(Φ(t, x)) = h(x)

for every t ≥ 0.
We denote by H the set of all harmonic functions on X0.
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Theorem 3.3. If h ∈ H, then h is constant on every connected component of

X0 with respect to T
0
Φ .

Proof: Let C be a connected component of X0 and let x, y ∈ C. Then there
exists z ∈ C such that x ≤

Φ
z and y ≤

Φ
z, i.e., there exist s, t ≥ 0 such that

z = Φ(s, x) and z = Φ(t, y). Thus

h(x) = h(z) = h(y).

�

Theorem 3.4. For each s ∈ E(Λ), there exist h ∈ H, h ≥ 0 and a potential p
such that s = h+ p.

Proof: Let x ∈ X0 and let Cx be a connected component of X0 such that
x ∈ Cx. Since s is decreasing on Γx and s ≥ 0, we have limt→∞ s(Φ(t, x)) = lx.
So, for any z ∈ Γx we have

lim
t→∞

s(Φ(t, z)) = lim
t→∞

s(Φ(t+Ψ(x, z), x)) = lx.

Now, let y,∈ Cx, then there exists z ∈ Γx such that y ≤
Φ

z. It follows that

lx = ly = lz = h.

We set then h(x) := limt→∞ s(Φ(t, x)). The proof is achieved by setting p = s−h.
�

4. Specific order for additive functionals

Let A be the cone of all continuous additive functionals on X . Under the usual
pointwise definitions of A+ B and αA for α ≥ 0 the set A becomes a cone.

Definition 4.1. We define an order relation “≤” in A as follows:
A ≤ B provided there exists C ∈ A such that A+ C = B.

Definition 4.2. We define a specific order relation “≺” on E(Λ) as follows:
For every u, v ∈ E(Λ),

u ≺ v

if and only if there exists s ∈ E(Λ) such that u+ s = v.

Theorem 4.1. Let A,B ∈ A be such that uA and uB are finite. Then

A ≤ B ⇔ uA ≺ uB.
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Proof: Suppose that A ≤ B. Then, there exists C ∈ A such that A + C = B
which implies that

uA + uC = uB.

Since by Corollary 3.1 uC ∈ E(Λ), we get that uA ≺ uB.
Conversely, assume that uA ≺ uB. Thus, there exists s ∈ E(Λ) such that uA+s =
uB. Note that he relationship s = uB−uA implies that s is continuous with respect
to T 0Φ . On the other hand, by Corollary 3.1

lim
t→∞

uA(Φ(t, x)) = lim
t→∞

uB(Φ(t, x)) = 0

which gives us that limt→∞ s(Φ(t, x)) = 0.
Consequently, s is a regular potential and by Theorem 3.2, there exists an unique
additive functional C satisfying s = C∞ = uC. Since

uA+C = uA + uC = uB,

the uniqueness gives us A+ C = B. �

Definition 4.3. Let f ∈ F(X0,Λ) and let A be a continuous additive functional
such that UAf < ∞. We write fA for the family of random variables

(fA)t =

∫ t

0
f(Φ(s, .)) dAs.

By Proposition 3.4 fA is a continuous additive functional.

We recall the following result, namely the Lebesgue differentiation theorem.

Theorem 4.2. Let µ be a Radon measure on R+ and let λ be the Lebesgue

measure on R+ such that µ is absolutely continuous with respect to λ. Then the

family of functions (ϕh)h>0, given by

ϕh(t) =
µ([t, t+ h])

λ([t, t+ h])

converges λ-a.e. to a Borel function w such that

µ([a, b]) =

∫ b

a
w(t) dλ(t).

The less conventional forms assert that the same result is true if λ is replaced
by any Radon measure on R+ not charging points and not vanishing on non-empty
open intervals.
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Proposition 4.1. Let A,B ∈ A be such that Bt ≤ At for all t ≥ 0. Then there
exists 0 ≤ f ≤ 1 such that B = fA.

Proof: For each n ∈ N∗, the family of functions

Cn = {Cn
t = At +

t

n
, t ≥ 0}

defines a strict continuous additive functional.
Let 0 ≤ a < b < ∞. Then

∫ b

a
dBt(x) = Bb(x)− Ba(x)

= Bb−a(Φ(a, x))

≤ Ab−a(Φ(a, x))

≤ Cn
b−a(Φ(a, x))

= Cn
b (x)− Cn

a (x)

=

∫ b

a
dCn

t (x)

which implies that
dBt ≤ dCn

t , ∀n ∈ N
∗.

Hence, for every x ∈ X0 and for every n ∈ N∗, there exists a Borel function
defined on R+ by

ϕn
x(t) = lim infm→∞

B 1

m

(Φ(t, x))

Cn
1

m

(Φ(t, x))

with Bt(x) =
∫ t
0 ϕn

x(s) dCn
s (x).

Since Bt ≤ Cn
t , we get that ϕn

x(t) ∈ [0, 1], ∀ t ≥ 0.
Let us denote

fn(x) = ϕn
x(0) = lim infm→∞

B 1

m

(x)

A 1

m

(x) + 1
nm

, x ∈ X0.

Then by (A2), fn is a B0(Λ)-measurable function on X0. On the other hand,
using the additivity of A and B, we get ϕn

Φ(s,x)(t) = ϕn
x(s+ t) which implies that

Bt(x) =

∫ t

0
fn(Φ(s, x)) dAs(x) +

1

n

∫ t

0
fn(Φ(s, x)) dx, ∀x ∈ X0, ∀ t ≥ 0.

Since (fn)n is nondecreasing and is dominated by 1, we conclude that (fn)n
converges on X0 to a B0(Λ)-measurable function f . By the Lebesgue dominated

convergence theorem, we deduce that Bt(x) =
∫ t
0 f(Φ(s, x)) dAs(x), i.e., B = fA.

�
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Corollary 4.1. Let A,B ∈ A. Then, B ≤ A if and only if there exists a B0(Λ)-
measurable function f on X0 such that 0 ≤ f ≤ 1 and B = fA.

Proposition 4.2. Let A ∈ A be such that uA < ∞ and let f ∈ E(Λ) be such
that

(1) f ≤ uA,

(2) f(x)− f(Φ(t, x)) ≤ At(x) for all t ≥ 0, x ∈ X0.

Then f is a regular potential on X0.

Proof: Since f ∈ E(Λ), it is continuous with respect to TΦ and decreasing.
Moreover, by (1) we get that limt→∞ f(Φ(t, x)) = 0. Now, we should show that
it is continuous with respect to T 0Φ . So, let y < x and t0 be such that x = Φ(t0, y).
Then, for every t ∈ [0, t0],

0 ≤ f(Φ(t, y))− f(Φ(t0, y)) = f(Φ(t, y))− f(Φ(t0 − t,Φ(t, y))) ≤ At0−t(Φ(t, y)).

Now, using (3.4) we get

lim
t→t0

f(Φ(t, y)) = f(Φ(t0, y)).

�

Theorem 4.3. Let A ∈ A be such that uA < ∞ and let f ∈ E(Λ). Then, the
following assertions are equivalent:

(1) there exists a B0(Λ)-measurable function 0 ≤ g ≤ 1 such that f = UA(g),
(2) f ≤ uA and f(x)− f(Φ(t, x)) ≤ At(x), ∀ t ≥ 0, ∀x ∈ X0.

Proof: We start to prove (1) ⇒ (2).

Indeed, we have f(x) =
∫ ρ(x)
0 g(Φ(t, x)) dAt(x) ≤

∫ ρ(x)
0 dAt(x) = uA(x). Now,

using the fact that t+ ρ(Φ(t, x)) = ρ(x) we get

(uA − f)(Φ(t, x)) =

∫ ρ(Φ(t,x))

0
(1 − g)(Φ(t+ s, x)) dAs(Φ(t, x))

=

∫ t+ρ(Φ(t,x))

t
(1− g)(Φ(u, x)) dAu−t(Φ(t, x))

=

∫ t+ρ(Φ(t,x))

t
(1− g)(Φ(u, x)) dAu(x)

≤

∫ ρ(x)

0
(1 − g)(Φ(u, x)) dAu(x)

= (uA − f)(x).

Hence, uA−f is decreasing. Using Proposition 4.2 and Corollary 3.1, we get that
uA − f it is continuous with respect to T 0Φ and limt→∞(uA − f)(Φ(t, x)) = 0.
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Hence, it is a regular potential. Since uA is a regular potential, the relationship
f + (uA − f) = uA and Theorem 3.2 imply the existence of continuous additive
functionals B and C such that f = uB, uA − f = uC and B + C = A.
Consequently

f(x)− f(Φ(t, x)) = Bt(x) ≤ At(x)

∀ t ≥ 0, ∀x ∈ X0.
Conversely, we shall show that (2) ⇒ (1). Under condition (2) and using Propo-
sition 4.2, f is a regular potential, thus by Theorem 3.2 there exists a continuous
additive functional B such that

f(x)− f(Φ(t, x)) = Bt(x)

for each t ≥ 0, x ∈ X0.
Using Proposition 4.1, we get the existence of a B0(Λ) measurable function g on
X0, 0 ≤ g ≤ 1 such that

f(x)− f(Φ(t, x)) = Bt(x) =

∫ t

0
g(Φ(s, x)) dAs(x).

Now since f(Φ(t, x))→ 0 as t → ∞, we obtain

f(x) =

∫ ρ(x)

0
g(Φ(t, x)) dAt(x).

�

Next, we recall the following result from [9].

Proposition 4.3. The set E(Λ) is an H-cone of functions on X0 with respect to

the pointwise algebraic operations and order relation in the sense of [8].

Proposition 4.4 (cf. Proposition 2.1.6 in [8]).

(1) Let F ⊂ E(Λ) be specifically increasing and dominated in E(Λ). Then

gF = ∨F

where gF (∨F resp.) is the least upper bound for the specific order
(natural order resp.) in E(Λ).

(2) Let F ⊂ E(Λ) be specifically decreasing. Then, we have

fF = ∧F

where fF (∧F resp.) is the greatest lower bound for the specific order
(natural order resp.) in E(Λ).
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Theorem 4.4. (1) Let (fi)i∈I be a family of elements of E(Λ) which is increas-
ing to a function f . Then f ∈ E(Λ).

(2) Let (fi)i∈I be a family of elements of E(Λ). Then, f = infi∈I fi is super-

median. Moreover, if f̂ = supα≥0 αVαf is the excessive regularization of

f , then f̂ = ∧i∈Ifi.

Proof: (1) By Proposition 2.2, f = supi∈I fi is lower semicontinuous with re-

spect to T 0Φ and decreasing which yields that it is continuous with respect to TΦ.
Thus, f ∈ E(Λ).
(2) Since f = infi∈I fi is decreasing, by Theorem 2.2 it is B0(Λ)-measurable

and therefore λVλf is well defined. Since

λVλ(inf
i∈I

fi) ≤ λVλ(fj) ≤ fj , ∀ j,

we get that

λVλ(inf
i∈I

fi) ≤ inf
i∈I

fi

which yields that f is supermedian. On the other hand, the fact that ̂infi∈I fi ≤

f̂j = fj gives us that

(4.1) f̂ ≤ ∧
i∈I

fi.

Now, let t ∈ E(Λ) be such that t ≤ fi, ∀ i. Thus, t ≤ infi∈I fi and therefore

(4.2) t = t̂ ≤ f̂ .

Now combining (4.1) and (4.2), we get that ∧i∈Ifi = f̂ . �

Theorem 4.5. (1) Let (ui)i∈I be a specifically increasing family dominated

in P , then supi ui ∈ P and supi ui = giui.

(2) Let (ui)i∈I be a specifically decreasing family in P , then ∧iui ∈ P and
∧iui = fiui.

(3) The Riesz decomposition holds in P . i.e. if u, v1, v2 ∈ P are such that
u ≤ v1 + v2, then there exist u1, u2 ∈ P satisfying

u = u1 + u2, u1 ≤ v1, u2 ≤ v2.

Proof: (1) Let v ∈ P be such that ui ≺ v for all i ∈ I. Then there exists vi ∈
E(Λ) such that ui+vi = v. It is obvious that supi ui is lower semicontinuous with
respect to T 0Φ and decreasing on each trajectory. Since supi ui+ infi vi = v, using



570 N.B.Rhouma, M.Bezzarga

(1) and (2) in Theorem 4.4, we get that înfi vi = infi vi = ∧ivi and supi ui ∈ E(Λ)
which implies that

sup
i

ui + ∧
i
vi = v.

By Proposition 2.2, we get that ∧ivi is lower semicontinuous with respect to T
0
Φ .

Hence, we get that supi ui = v−∧ivi is continuous. In addition, since supi ui ≤ v

we have that
lim

t→∞
sup

i
ui(Φ(t, x)) = 0.

Thus supi ui ∈ P .

(2) Set u = ∧iui. It is obvious that u is upper semicontinuous with respect to
T 0Φ and decreasing on each trajectory. On the other hand, by (2) in Theorem 4.4

and (2) in Proposition 4.4, we have u = ∧iui = înfi ui ∈ E(Λ). Since u ≺ ui,
there exists vi ∈ E(Λ) such that u = ui − vi. By Proposition 2.2 again, vi is
lower semicontinuous with respect to T 0Φ and thus we get that u is continuous

with respect to T 0Φ which yields that u ∈ P .

(3) Let u, v1, v2 ∈ P such that u ≤ v1 + v2. Then, by [8] there exist u1, u2 ∈
E(Λ) such that

u = u1 + u2, u1 ≤ v1, u2 ≤ v2.

By Proposition 2.2, u1, u2 are lower semicontinuous with respect to T 0Φ . Since
u1 = u− u2 and u is continuous, we conclude that u1 and u2 are continuous with
respect to T 0Φ . Now, using the fact that u1 ≤ v1, u2 ≤ v2 and u1 = u − u2, we
get that u1, u2 ∈ P . �

Next, we set
AΦ = {A ∈ A : uA < ∞}.

Theorem 4.6. The following assertions hold.

(1) Let (Ai)i∈I be an increasing family in AΦ and upper bounded. Then

A = supi A
i ∈ AΦ.

(2) Let (Ai)i∈I be a decreasing family in AΦ. Then A = ∧iA
i, the greatest

lower bound in AΦ, exists.

(3) The Riesz decomposition holds in AΦ.

Proof: (1) By Theorem 4.1, the family (uAi)i is specifically increasing and
specifically upper bounded, hence by (1) in Theorem 4.5 supi uAi ∈ P . Moreover,
by Theorem 3.2 we can find A ∈ AΦ such that supi uAi = uA = A∞. Since by
(3.1) we have

uAi(x) = Ai
t(x) + uAi(Φ(t, x))

we get
uA(x) = sup

i
Ai

t(x) + uA(Φ(t, x))
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which yields that
sup

i
Ai

t(x) = At(x).

(2) By Theorem 4.1, the family (uAi)i is specifically decreasing, hence by (2) in
Theorem 4.5 the function ∧iuAi ∈ P and ∧iuAi = fiuAi . Thus, by Theorem 3.2
there exists A ∈ AΦ such that ∧iuAi = uA = A∞. Hence, it holds by Theorem 4.1
that

(4.3) A ≤ Ai, ∀ i.

Now, let B ∈ AΦ be such that B ≤ Ai for all i ∈ I. It follows that uB ≺ uAi for
all i ∈ I and therefore uB ≺ uA which implies that

(4.4) B ≤ A.

Finally, combining (4.3) and (4.4), we get that A = ∧iA
i.

(3) Let A,B, C ∈ A be such that A ≤ B+ C. Thus, there exists 0 ≤ f ≤ 1 such
that A = f(B + C). Hence fB ≤ B and fC ≤ C. �

Corollary 4.2. The Riesz decomposition in P is valid for the specific order.

Proof: Let u, v, w ∈ P be such that u ≺ v + w. Thus, there exist A,B, C ∈ A

such that u = uA, v = uB, w = uC. Hence, by Theorem 4.6, there exist A1,A2
such that A1 ≤ B, A2 ≤ C and A = A1 + A2. It follows that uA = uA1 + uA2
and uA1 ≺ uB, uA2 ≺ uC . �
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