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A factorization of quasiorder hypergroups

Ivan Chajda, Šárka Hošková

Abstract. The contribution is devoted to the question of the interchange of the construc-
tion of a quasiorder hypergroup from a quasiordered set and the factorization.
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Classification: 20N20, 18A40

A concept of hypergroups was formalized by [1], [2], [9], [12], [14] as follows.
Let H be a non-void set and “◦” a mapping of H ×H into P∗(H) (the set of all
non-void subsets of H). The pair (H, ◦) is called a hypergroupoid . For A,B ∈ H
we denote A ◦B =

⋃
{a ◦ b; a ∈ A, b ∈ B}.

A hypergroupoid (H, ◦) is called a hypergroup if “◦” is associative, i.e.
(a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ H , and the so-called reproduction axiom,
i.e. a ◦M =M =M ◦ a for any a ∈ H , is satisfied.

Let R be a binary relation on a non-void set A. The pair A = (A,R) is called
a relational system. A relational system A is called transitive if R is transitive
and A is called a quasiordered set whenever R is a quasiorder on A, i.e. R is a
reflexive and transitive relation.

The following fact is well-known. Let A = (A,R) be a relational system.
Denote UR(a) = {x ∈ A; 〈a, x〉 ∈ R} and, for M ⊆ A, UR(M) = {x ∈ A;
〈a, x〉 ∈ R for all a ∈ M}. Let A = (A,≤) be a quasiordered set. Define for
a, b ∈ A

(1) a ◦ b = U≤(a) ∪ U≤(b).

Then (A, ◦) is a hypergroup which is called a quasiorder hypergroup (see e.g. [9]).

The concept of congruence on a hypergroup (H, ◦) was defined by several au-
thors. It was shown in [9, p. 151] that the definitions are equivalent. Let θ be an
equivalence on a set A and M ⊆ A. Denote

θ(M) = {x ∈ A; 〈a, x〉 ∈ θ for some a ∈M}.
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Definition 1 ([9]). Let (H, ◦) be a hypergroup and θ be an equivalence on H .
We call θ a congruence on (H, ◦) if for each a, b, c, d ∈ H we have:

〈a, b〉 ∈ θ and 〈c, d〉 ∈ θ imply θ(a ◦ c) = θ(b ◦ d).

The motivation of our paper is the following: Let (H,≤) be a quasiordered
set and H = (H, ◦) be a hypergroup, where “◦” is defined by (1) (i.e. it is the
induced quasiorder hypergroup). From now on, a quasiorder will be denoted by
the symbol “≤”. Let θ be a congruence on (H, ◦).

I. Does there exist an equivalence ψ on (H,≤) such that (H/ψ,≤/ψ) is a qua-
siordered set and H/θ = (H, ◦)/θ is isomorphic to the quasiorder hypergroup
induced by (H/ψ,≤/ψ)?

It can be visualized by the following diagram:

(D1)

(H,≤)
ψ ?

//

��

(H/ψ,≤/ψ)

��

H = (H, ◦) // H/θ = (H, ◦)/θ

II. Suppose thatH = (H, ◦) be a quasiorder hypergroup induced by a quasiordered
set (H,≤) and let ψ be an equivalence on (H, ◦) such that (H/ψ,≤/ψ) is a
quasiordered set again. Under what conditions on ψ does there exist a con-
gruence θ on H such that H/θ is isomorphic to the quasiorder hypergroup
induced by (H/ψ,≤/ψ)?

It can be visualized by the following diagram:

(D2)

(H,≤)
ψ

//

��

(H/ψ,≤/ψ)

��

H = (H, ◦)
θ ?

// H/θ = (H, ◦)/θ

As θ and ψ are equivalences on the same set H , we can easily simplify our
problems by considering θ = ψ, i.e. we can ask what conditions must be satis-
fied by an equivalence on a quasiordered set to be a congruence on the induced
quasiorder hypergroup and vice versa. First of all, we need several concepts and
properties of relational systems.
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Definition 2. Let A = (A,R) be a relational system and θ be an equivalence
on A. For a ∈ A denote by [a]θ the θ-class containing the element a. Define R/θ
on A/θ as follows:

〈[a]θ , [b]θ〉 ∈ R/θ if and only if there exist x ∈ [a]θ , y ∈ [b]θ with 〈x, y〉 ∈ R.

The system A/θ = (A/θ,R/θ) is called a quotient system of A by θ.

The following statement is almost trivial:

Lemma 1. Let A = (A,R) be a relational system and θ be an equivalence on A.
If R is reflexive or symmetric, then also R/θ has the same property.

Unfortunately, a similar statement fails for transitive relational systems, see
the following:

Example 1. Let A = {a, b, c, d} and (A,≤) be a quasiordered set visualized in
Figure 1 below.

a b

dc

Figure 1

Let θ be an equivalence on A defined by the partition {a}, {b, c}, {d}. Then we
have on A/θ the following:

[a]θ ≤/θ [b]θ since a ≤ c and c ∈ [b]θ,

[b]θ ≤/θ [d]θ since b ≤ d,

but [a]θ ≤/θ [d]θ does not hold, i.e. “≤/θ ” is not transitive.

This example motivates us to introduce the following concept:

Definition 3. Let A = (A,R) be a relational system and θ be an equivalence
on A. We say that θ is compatible (with A ) if either θ = A×A or it satisfies the
following condition:

(c) for each x, y, z ∈ A with 〈x, y〉 ∈ θ and 〈y, z〉 ∈ R there exists q ∈ A such that
〈x, q〉 ∈ R and 〈q, z〉 ∈ θ.
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Theorem 1. Let A = (A,≤) be a quasiordered set and θ be a compatible equiv-
alence on A. Then A/θ = (A/θ,≤/θ) is a quasiordered set.

Proof: By Lemma 1 “≤/θ” is reflexive on A/θ. Suppose [a]θ ≤/θ [b]θ and

[b]θ ≤/θ [c]θ . Then there are x ∈ [a]θ , y, y
′ ∈ [b]θ and z ∈ [c]θ such that x ≤ y,

y′ ≤ z. By (c) of Definition 3 there exists q ∈ [c]θ such that y ≤ q. Due to
transitivity of “≤”, x ≤ q, thus [a]θ ≤/θ [c]θ , thus “≤/θ” is also transitive. �

Definition 4. Let A = (A,R), B = (B,Q) be relational systems. Then a
mapping f :A→ B is called:

(a) monotonous if 〈a, b〉 ∈ R implies 〈f(a), f(b)〉 ∈ Q;
(b) strong homomorphism if it is monotonous and for each a, b ∈ A with

〈f(a), f(b)〉 ∈ Q there exist c, d ∈ A such that 〈c, d〉 ∈ R and f(c) = f(a),
f(d) = f(b);

(c) U -morphism if it is surjective and for each x ∈ A we have

f(UR(x)) = UQ(f(x)).

Lemma 2. Let A = (A,R), B = (B,Q) be relational systems and a mapping
f :A→ B be a U -morphism. Then f is a strong homomorphism.

Proof: Suppose that a, b ∈ A, 〈a, b〉 ∈ R. Then b ∈ UR(a) and since f is a
U -morphism, f(b) ∈ f(UR(a)) = UQ(f(a)), which gives 〈f(a), f(b)〉 ∈ Q. Thus f
is monotonous.
Suppose now that 〈f(a), f(b)〉 ∈ Q. Then f(b) ∈ UQ(f(a)) = f(UR(a)), thus

there exists c ∈ UR(a) with f(c) = f(b). But c ∈ UR(a) implies 〈a, c〉 ∈ R. Hence,
f is a strong homomorphism. �

Theorem 2. Let A = (A,R), B = (B,Q) be relational systems and f :A → B
a surjective mapping. The following are equivalent:

(a) f is a U -morphism;
(b) f is monotonous and for each x, y ∈ A with 〈f(x), f(y)〉 ∈ Q there exists

z ∈ A such that 〈x, z〉 ∈ R and f(y) = f(z).

Proof: (a)⇒(b). By Lemma 2 we have that f is monotonous. Suppose that
〈f(x), f(y)〉 ∈ Q. Then f(y) ∈ UQ(f(x)) = f(UR(x)), thus there is z ∈ UR(x)
(i.e. 〈x, z〉 ∈ R) such that f(z) = f(y).
(b)⇒(a). Let f :A→ B be a surjective and monotonous mapping. Then clearly

f(UR(x)) ⊆ UQ(f(x)).

Let z ∈ UQ(f(x)). Then z = f(w) for some w ∈ A, where 〈f(x), f(w)〉 ∈ Q. By
(b) there exists c ∈ A such that 〈x, c〉 ∈ R and f(c) = f(w) = z. Thus c ∈ UR(x)
proving the converse inclusion, i.e. f is a U -morphism. �
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Theorem 3. Let A = (A,R) be a relational system and θ be a compatible
equivalence onA. Then the canonical mapping hθ :A 7→ A/θ given by hθ(a) = [a]θ
is a U -morphism.

Proof: Let θ be a compatible equivalence on A = (A,R). Suppose 〈a, b〉 ∈ R,
a, b ∈ A. Thus [a]θ R/θ [b]θ and hence hθ is monotonous. Of course, hθ is
surjective. We only need to verify (b) of Theorem 2. Suppose [x]θ R/θ [y]θ . Then
there exist a ∈ [x]θ , b ∈ [y]θ with 〈a, b〉 ∈ R. By Definition 3, there exists q ∈ A
such that 〈x, q〉 ∈ R and 〈q, b〉 ∈ θ, i.e. [q]θ = [b]θ. Hence, (b) of Theorem 2 is
satisfied. �

Theorem 4. Let A = (A,R), B = (B,Q) be relational systems and f :A → B
a U -morphism. Then the induced equivalence

〈a, b〉 ∈ θf iff f(a) = f(b)

is compatible with A.

Proof: Suppose 〈x, y〉 ∈ θf and 〈y, z〉 ∈ R. Then f(x) = f(y) and by Lemma 2

we have 〈f(y), f(z)〉 ∈ Q. Further, by Theorem 2 there exists u ∈ A such that
〈x, u〉 ∈ R and f(u) = f(z), i.e. 〈u, z〉 ∈ θf . Hence, condition (c) of Definition 3
is satisfied for q = u, i.e. θf is compatible with A. �

We can finish our treatment concerning the problems in the introduction:

Corollary 1. Let (H,≤) be a quasiordered set and H = (H, ◦) the induced
quasiorder hypergroup. Let θ be a congruence on H. Then θ is a compatible
equivalence on (H,≤) and H/θ is isomorphic to the quasiorder hypergroup in-
duced by the quasiordered set (H/θ,≤/θ).

Proof: By Lemma 1 the relation “≤/θ” is reflexive; later on we will verify that
it is also transitive.
First we will prove that the canonical mapping hθ : (H,≤) 7→ (H/θ,≤/θ) is a

U -morphism.
For x ≤ y we have [x]θ ≤/θ [y]θ, thus [U≤(x)]θ ⊆ U≤/θ([x]θ).

Let [z]θ ∈ U
≤/θ([x]θ). Then [x]θ≤/θ[z]θ , which implies that there exist x1, z1 ∈

H such that 〈x, x1〉 ∈ θ, 〈z, z1〉 ∈ θ, x1 ≤ z1. Therefore, as θ is a congruence
on H,

〈a, b〉 ∈ θ ⇒ [a ◦ a]θ = [b ◦ b]θ ⇔ [U≤(a)]θ = [U≤(b)]θ .

Thus [U≤(x)]θ = [U≤(x1)]θ , [U≤(z)]θ = [U≤(z1)]θ . Further

U≤(z1) ⊆ U≤(x1) ⇒ [U≤(z1)]θ ⊆ [U≤(x1)]θ ⇒ [U≤(z)]θ ⊆ [U≤(x)]θ .
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As [z]θ ∈ [U≤(z)]θ , we get [z]θ ∈ [U≤(x)]θ and U≤/θ([x]θ) ⊆ [U≤(x)]θ .

Together we have obtained that [U≤(x)]θ = U≤/θ([x]θ) and the canonical map-

ping hθ: a→ [a]θ is a U -morphism.

In Theorem 4 let us put f = hθ , A = H , B = H/θ, R =≤ and Q = ≤/θ.
Then the induced equivalence θh

θ
is compatible with (H,≤). But θh

θ
= θ. Now

Theorem 1 implies that “≤/θ” is a quasiorder on H/θ.

Due to the fact that hθ is U -morphism we get

(2)
[a ◦ b]θ = [U≤(a) ∪ U≤(b)]θ = [U≤(a)]θ ∪ [U≤(b)]θ

= U≤/θ([a]θ) ∪ U≤/θ([b]θ).

The operations “◦θ” (for the definition of a hyperoperation induced by the con-
gruence θ on the quotient hypergroup H/θ see [9, p. 153]) and “⋆” (compare (1)),
where

[a]θ ◦θ [b]θ = [a ◦ b]θ,

[a]θ ⋆ [b]θ = U≤/θ([a]θ) ∪ U≤/θ([b]θ),

are the same due to (2). Thus Diagram (D1) (with θ = ψ) commutes. �

Corollary 2. Let ψ be a compatible equivalence on a quasiordered set (H,≤).
Then ψ is a congruence on the quasiorder hypergroup H induced by (H,≤) and
H/ψ is isomorphic to the quasiorder hypergroup induced by (H/ψ,≤/ψ).

Proof: As ψ is compatible, by Theorem 1 we get that “≤/ψ” is the quasiorder
and by Theorem 3 we have [U≤(x)]ψ = U≤/ψ([x]ψ). If 〈a, c〉 ∈ ψ, 〈b, d〉 ∈ ψ, then

[a]ψ = [c]ψ, [b]ψ = [d]ψ, which implies

[U≤(a)]ψ = U≤/ψ([a]ψ) = U≤/ψ([c]ψ) = [U≤(c)]ψ.

Analogously [U≤(b)]ψ = [U≤(d)]ψ .

Then

[a ◦ b]ψ = [U≤(a) ∪ U≤(b)]ψ = [U≤(a)]ψ ∪ [U≤(b)]ψ

= [U≤(c)]ψ ∪ [U≤(d)]ψ = [U≤(c) ∪ U≤(d)]ψ = [c ◦ d]ψ,

which means that ψ is the congruence on (H, ◦). The commutativity of Dia-
gram (D2) can be verified in the same way as in Corollary 1.

�
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Example 2. Consider the quasiordered set (H,≤), where H = {a, b, c, d} is
depicted in Figure 2, and the equivalence θ determined by the partition {a, b},
{c, d}. It is easy to verify that θ does not satisfy condition (c) of Definition 3.

a c

db

Figure 2

Although (H/θ,≤/θ) is still a quasiordered set (see Figure 3), θ is not a congruence
on H induced by (H,≤) (as [d ◦ d]θ 6= [d ◦ c]θ , see Table 1):

◦ a b c d

a {a, b, d} {a, b, d} H {a, b, d}
b {a, b, d} {b} {b, c, d} {b, d}
c H {b, c, d} {b, c, d} {b, c, d}
d {a, b, d} {b, d} {b, c, d} {d}

Table 1

{a, b} {c, d}

Figure 3

Example 3. Let (H,≤) be the quasiordered set in Figure 4(a):

a b

c

{a, b}

{c}

(a) (b)

Figure 4
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Then (H,≤) induces the quasiorder hypergroupH = (H,≤) given by Table 2:

◦ a b c

a H H H
b H H H
c H H {c}

Table 2

The equivalence θ given by the partition {a, b}, {c} is clearly a congruence
on H and a compatible equivalence on (H,≤). The quotient quasiordered set
(H/θ,≤/θ) is visualized in Figure 4(b) and H/θ is determined by Table 3:

◦θ {a, b} {c}

{a, b} H/θ H/θ
{c} H/θ {c}

Table 3
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