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On a question of E.A. Michael

Vladimir V. Filippov

Abstract. A negative answer to a question of E.A. Michael is given: A convex Gδ-subset
Y of a Hilbert space is constructed together with a l.s.c. map Y → Y having closed
convex values and no continuous selection.
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In [1] E.A. Michael has proved the following fundamental theorem: Let F :
X → B be a lower semicontinuous multivalued mapping of a paracompact space

X into a Banach space B. Let the values of F be convex and closed. Then the

mapping F has a continuous selection.

In [2] E.A. Michael has asked: Let Y be a convex Gδ-subset of a Banach

space B. Does then every lower semicontinuous mapping F : X → Y of a para-

compact space X with convex closed values in Y have a continuous selection?

V.G. Gutev proved in [3] that the answer is affirmative when X is a countably
dimensional metric space or a strongly countably dimensional paracompact space.
In [4] V.G. Gutev and V. Valov proved that the answer is affirmative for a para-
compact C-space X . See also [5].
Here we will construct an example giving a negative answer. We will con-

struct a lower semicontinuous mapping F : Y → Y of a convex Gδ-subset Y of
Hilbert space into itself with convex closed values in Y , which has no continuous
singlevalued selection.

Example. We start with the space P ([0, 1]) of all probability measures on the
segment [0, 1]. We identify a measure m ∈ P ([0, 1]) with the corresponding linear
functional C([0, 1]) → R on the space C([0, 1]) of real continuous functions on
the segment [0, 1]. So we associate with a measure m ∈ P ([0, 1]) a point of the
Tychonoff product

∏

{[−‖φ‖, ‖φ‖] : φ ∈ C([0, 1])}. Conditions defining probabil-
ity measures describe closed subset of the Tychonoff product. Then the defined
topological space P ([0, 1]) is compact. The sets

O(m0;φ1, . . . , φk; ε) = {m : m ∈ P ([0, 1]), |m(φi)− m0(φi)| < ε, i = 1, . . . , k},

where φ1, . . . , φk ∈ C([0, 1]) and ε > 0, give us a base at a point m0 ∈ P ([0, 1]).
There exists a countable dense subset W of the space of continuous functions on
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[0, 1]. The mapping which associates with a measure m the sequence {m(w) : w ∈
W} maps P ([0, 1]) into a countable product of segments, which can be considered
as the Hilbert cube embedded in a Hilbert space. This mapping keeps the convex
structure. So we may consider P ([0, 1]) as a subset of a Banach space. Denote by
ρ an arbitrary metric on P ([0, 1]).
There exists a proper convexGδ-subset Y of the space P ([0, 1]) of all probability

measures on the segment [0, 1] which contains all Dirac measures, see [6]. The
set Y may be constructed as follows. Let λ denote the Lebesgue measure. Let
us denote by Ak, k = 1, 2, . . . , the set of all points m ∈ P ([0, 1]), satisfying the

condition: There exists a point n ∈ P ([0, 1]), such that ρ(n, λ) ≥ 2−k and the

segment [m, n] contains λ. It is easy to show that the sets Ak are closed, the set
Y = P ([0, 1]) \

⋃

{Ak : k = 1, 2, . . . } is convex, contains all Dirac measures and
does not contain the measure λ.
The mappingH0 : P ([0, 1])→ [0, 1] which associates with a measure its support

is lower semicontinuous. So the mappingH1 : P ([0, 1])→ Y which associates with
a measure m the set of all Dirac measures whose supports lie in H0(m) is lower
semicontinuous. So the mapping H2 : P ([0, 1]) → Y which associates with a
measure m the convex hull of H1(m) is lower semicontinuous. So the mapping
H3 : P ([0, 1]) → Y which associates with a measure m the closure of H2(m) is
lower semicontinuous. The values of the mapping H3 are convex and closed in Y

(H3(m) = [H2(m)]Y = [H2(m)]P ([0,1]) ∩ Y , where [H2(m)]Y denotes the closure

of H2(m) in Y and [H2(m)]P ([0,1]) denotes the closure of H2(m) in P ([0, 1])).

Denote by ∆(a0, . . . , an) the set of all measures whose supports lie in the
finite set {a0, . . . , an}. It is homeomorphic to an n-dimensional simplex. The
mappings H2 and H3 associate with a point p of the simplex the minimal face
which contains p. So for every selection h and for every point p of the boundary
β of the simplex ∆(a0, . . . , an), the segment connecting the points p and h(p)
lies in β. So the identity mapping i : β → β and h

∣

∣

β
: β → β are homotopic.

So the degree of the mapping h
∣

∣

β
is equal to 1. So the mapping h

∣

∣

∆(a0,...,an)
is

surjective. See [7].
So the image I of a selection h must contain the set of all measures with finite

supports. This set is dense in P ([0, 1]). But I is compact, so I = P ([0, 1]). On
the other hand I ⊂ Y , a contradiction.
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gestions.
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