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Comment.Math.Univ.Carolin. 47,1 (2006)1{10 1
The maximal regular ideal of some ommutative ringsEmad Abu Osba, Melvin Henriksen, Osama Alkam, F.A. SmithAbstrat. In 1950 in volume 1 of Pro. Amer. Math. So., B. Brown and N. MCoyshowed that every (not neessarily ommutative) ring R has an ideal M(R) onsistingof elements a for whih there is an x suh that axa = a, and maximal with respet tothis property. Considering only the ase when R is ommutative and has an identityelement, it is often not easy to determine when M(R) is not just the zero ideal. Wedetermine when this happens in a number of ases: Namely when at least one of a or1 − a has a von Neumann inverse, when R is a produt of loal rings (e.g., when R is

Zn or Zn[i℄), when R is a polynomial or a power series ring, and when R is the ring ofall real-valued ontinuous funtions on a topologial spae.Keywords: ommutative rings, von Neumann regular rings, von Neumann loal rings,Gelfand rings, polynomial rings, power series rings, rings of Gaussian integers (mod n),prime and maximal ideals, maximal regular ideals, pure ideals, quadrati residues, Stone-�Ceh ompati�ation, C(X), zerosets, ozerosets, P -spaesClassi�ation: 13A, 13FXX, 54G10, 10A101. IntrodutionThroughout R will denote a ommutative ring with identity element 1 unlessthe ontrary is stated expliitly, and the notation of [AHA04℄ will be followed.1.1 De�nition. An element a ∈ R is alled regular if there is a b ∈ R suh that
a = a2b. Let vr(R) = {a ∈ R : a is regular} and nvr(R) = R \ vr(R). An ideal
I of R is alled a regular ideal if I ⊂ vr(R). The element a is alled m-regular ifthe ideal generated by a is a regular ideal. Let M(R) = {a ∈ R : a is m-regular}.A ring R is alled von Neumann regular ring (VNR ring) if R = vr(R).This terminology is motivated in part by a theorem of Brown and MCoy inwhih they show that M(R) is a regular ideal. Indeed it is the largest regularideal or R. See [BM50℄. R may ontain regular elements whih are not m-regular,as one an see easily that 3 ∈ vr(Z4) \ M(Z4). (As usual, Zn denotes the ring Zof integers mod n for a positive integer n.)If S ⊂ R, then Ann(S) denotes {a ∈ R : aS = {0}}, the set of maximal idealsof R is denoted by Max(R), and their intersetion J(R) is the Jaobson radialof R. In [BM50℄, the following is also established.



2 E.Abu Osba, M.Henriksen, O.Alkam, F.A. Smith1.2 Lemma.
M(R�M(R)) = {0}.
M(R) ∩ J(R) = {0}.
M(R) ⊂ Ann(J(R)).
M(R) ∩ Ann(M(R)) = {0}.If R�J(R) is VNR-ring, then M(R) = {0} if and only if Ann(J(R)) ⊂ J(R).If R satis�es the desending hain ondition on ideals, then R = M(R) +Ann(M(R)).For eah ideal I of R, let mI = {a ∈ I : a ∈ aI} = {a ∈ R : I +Ann(a) = R}.Then mI is alled the pure part of I. An ideal I is alled a pure ideal if I = mI. Itis lear that a ∈ mM for an M ∈ Max(R), if and only if Ann(a) is not ontainedin M .The following desription of M(R) will be used frequently below.1.3 Theorem. If R is not a von Neumann regular ring, then M(R) = ⋂

{mM :
M ∈ Max(R) and M 6= mM} is the intersetion of the pure parts of thosemaximal ideals M of R that are not pure.Proof: If a /∈ M(R), then there is an x ∈ R suh that ax /∈ vr(R). So byTheorem 2.4 of [AHA04℄, there is an N ∈ Max(R) suh that ax ∈ N \ mN . Itfollows that N is not pure and a /∈

⋂

{mM : M ∈ Max(R) and M 6= mM}. Thus
⋂

{mM : M ∈ Max(R) and M 6= mM} ⊂ M(R).If instead a ∈ M(R) and there is an M ∈ Max(R) and an x ∈ M \ mM ,then ax ∈ mM and so as noted above, there is a b /∈ M suh that bax = 0. So
ba ∈ Ann(x) whih is ontained in M beause this maximal ideal in not pure.But M is a prime ideal, so a ∈ M . Thus M(R) ⊂ mM . Hene M(R) ⊂ ⋂

{mM :
M ∈ Max(R) and M 6= mM}. �In this artile, we determine when M(R) is not the zero ideal for a number oflasses of rings. In Setion 2, we study rings in whih at least one of a or 1 − ahas a von Neumann inverse. Setion 3 is devoted to the study of produts of loalrings (e.g., the ring Zn of integers modulo an integer n ≥ 2 and to Zn[i℄). Theompliated onditions needed to desribe when M(Zn[i℄) 6= {0} hint at why itmay be quite diÆult to desribe when the maximal regular ideal of a �nite ring isnonzero. In Setion 4, it is shown that the maximal regular ideal of a polynomialor powers series ring is the zero ideal, and in Setion 5, it is determined whenthe maximal regular ideal of the ring of all ontinuous funtions on a topologialspae is nonzero.2. Von Neumann loal and strong von Neumann loal ringsReall from [AHA04℄ that R is alled a von Neumann loal (VNL) ring if
a ∈ vr(R) or 1− a ∈ vr(R) for eah a ∈ R. It is easy to see that VNR rings andloal rings are VNL rings. R is alled a strong von Neumann loal (SVNL) ring if



The maximal regular ideal of some ommutative rings 3whenever the ideal 〈S〉 generated by a subset S of R is all of R, then some elementof S is in vr(R), or equivalently if 〈nvr(R)〉 6= R. Clearly every SVNL ring is aVNL ring, but the validity of the onverse remains an open problem. R is alleda Gelfand ring or a PM ring if eah of its proper prime ideals is ontained in aunique maximal ideal. If M is a maximal ideal of R, then OM denotes intersetionof all of the (minimal) prime ideals of R that are ontained in M .2.1 Lemma. Every VNL ring R is a Gelfand ring and if R is also redued, then
mM = OM whenever M ∈ Max(R).Proof: The �rst assertion is shown in [C84℄. (Combine in that paper Propo-sition 4.4, Theorems 3.2 and 2.4 with Proposition 1.1.) The seond assertion isshown in Proposition 3 of [H77℄. �See also [DO71℄.Next, we make use of Theorem 1.1 above.In Theorem 2.6 of [AHA04℄ it is shown that R is an SVNL ring that is not aVNR ring if and only if it has exatly one maximal ideal that fails to be pure.Combining this with Theorem 1.3 yields:2.2 Theorem. If R is an SVNL ring that is not a VNR ring, then it has a uniquemaximal N that is not pure. Moreover M(R) = mN = OM .Proof: The �rst assertion is part of Theorem 2.6 of [AHA04℄, and the seond isimmediate from Theorem 1.3 and Lemma 2.1. �Next we begin to exhibit a lass of rings whose maximal regular ideal is notthe zero ideal.2.3 Lemma. If R and S are ommutative rings with identity whose diret sum
R ⊕ S is a VNL ring, then at least one of R and S is a VNR ring.Proof: Suppose instead that there are r ∈ R and s ∈ S that are not vonNeumann regular. Then neither (r, 1 − s) nor (1, 1) − (r, 1 − s) = (1 − r, s) arevon Neumann regular in R ⊕ S, so the onlusion follows. �2.4 Theorem. If R is a VNL ring that is neither loal nor a VNR ring, then
M(R) ontains fR for some idempotent f not in {0, 1} and hene is not the zeroideal.Proof: By Theorem 4.6 of [AHA04℄, a nonloal VNL ring has an idempotent
e /∈ {0, 1}, so R = eR ⊕ (1− e)R. Thus by Lemma 2.3, exatly one of these twosummands must be a VNR ring, whih is a nonzero ideal inluded in M(R). �3. Produts of loal ringsIn this setion, it will be determined when a diret produt of loal rings hasa nonzero maximal regular ideal.



4 E.Abu Osba, M.Henriksen, O.Alkam, F.A. SmithIt is an exerise to show that a loal VNR ring is a �eld. Moreover, if M isthe unique maximal ideal of R, and a = am ∈ mM for some m ∈ M , then a = 0sine 1− m in invertible. Beause eah element of M(R) is in mM , we onludefrom Theorem 1.3 that:3.1 Lemma. If R is a loal ring, then R is a �eld or M(R) = {0}.3.2 Lemma. If R = ∏

i∈I Ri is the diret produt of rings Ri with identity, then(1) (ri)i∈I ∈ vr(R) if and only if ri ∈ vr(Ri) for eah i ∈ I, and(2) (ri)i∈I ∈ M(R) if and only if ri ∈ M(Ri) for eah i ∈ I.Proof: (1) (ri)i∈I ∈ vr(R) if and only if there exists (xi)i∈I ∈ R suh that(ri)i∈I = ((ri)i∈I )2 (xi)i∈I = (r2i xi)i∈I if and only if ri = r2i xi for eah i ∈ I ifand only if ri ∈ vr(Ri) for eah i ∈ I.(2) Suppose that (ri)i∈I ∈ M(R). Pik rk ∈ Rk and let x ∈ Rk.De�ne xi = {

x i=k0 i6=k
.Now, (ri)i∈I(xi)i∈I ∈ vr(R), so there exists (yi)i∈I ∈ R suh that (ri)i∈I(xi)i∈I= ((ri)i∈I(xi)i∈I)2(yi)i∈I = ((rixi)2yi)i∈I . In partiular rkx = (rkx)2yk. Thus

rk ∈ M(Rk). Conversely, suppose that ri ∈ M(Ri) for eah i ∈ I. Let (xi)i∈I ∈ R.Then rixi ∈ vr(Ri) for eah i ∈ I, whih implies that there exists yi ∈ Ri suhthat rixi = (rixi)2yi for eah i ∈ I. Hene (ri)i∈I(xi)i∈I = ((rixi)2yi)i∈I =((ri)i∈I (xi)i∈I)2(yi)i∈I whih implies that (ri)i∈I ∈ M(R). �It follows that:3.3 Theorem. If R = ∏

i∈I Ri is the diret produt of rings Ri with identity,then M(R) = ∏

i∈I M(Ri).Beause a loal VNR ring is a �eld and if R is a �eld, then R = M(R), itfollows that:3.4 Corollary. If R = ∏

i∈I Ri is the diret produt of loal rings Ri withidentity, then M(R) 6= {0} if and only if Rj is a �eld for at least one j ∈ I.In Chapter VI of [M74℄, it is shown that every �nite ommutative ring withidentity element is a diret produt of loal rings. Hene we have3.5 Theorem. If R is �nite, then M(R) 6= {0} if and only if R is a diretprodut of loal rings at least one of whih is a �eld.Muh more is said about �nite loal rings in [M74℄. If R is suh a ring thenits unique maximal ideal M is nilpotent and M(R) = {0} by Lemma 3.1. Indeed,every element of R is either nilpotent or invertible.Next, some examples are onsidered.It is well known that if n > 1 is in Z, then Zn is loal if and only if n = pk forsome prime p and positive integer k, and is a �eld if and only if k = 1.



The maximal regular ideal of some ommutative rings 53.6 Corollary. If n = ∏s
i=1 pki

i is the prime power deomposition of the positiveinteger n, then Zn is the diret produt of the loal rings Z
p

ki

i

and M(R) 6= {0}if and only if kj = 1 for at least one j ∈ {1, . . . , s}.3.7 De�nition. If i2 = −1 and Z[i℄ = {a+ ib : a, b ∈ Z} is the ring of Gaussianintegers, then for any integer n > 1, Zn[i℄ = Z[i℄/nZ[i℄ = {a + ib : a, b ∈ Zn}denotes the ring of Gaussian integers mod n.3.8 Lemma. (a) If an element a+ ib of Zn[i℄ is nilpotent [resp. idempotent℄then a2 + b2 is nilpotent [resp. idempotent℄ in Zn.(b) a + ib is a unit in Zn[i℄ if and only if a2 + b2 is a unit of Zn.() (a+ ib)2 = a+ ib is a nontrivial idempotent if and only if a2− b2 = a and2ab = b in Zn and neither a nor b is zero in Zn.Proof: (a) If a + ib is nilpotent, then so is (a − ib)(a + ib) = a2 + b2 beauseomplex onjugation is an automorphism of Zn[i℄. The proof for idempotents issimilar.(b) follows beause (a− ib)(a+ ib) = a2+ b2 and any divisor of a unit is a unit.() is an exerise. �As in Corollary 3.6, if n = ∏s
i=1 pki is the prime power deomposition of thepositive integer n, then Zn[i℄ is the diret produt of the rings Z

p
ki

i

[i℄. So byTheorem 3.3, M(Zn[i℄) = ∏s
i=1 M(Z

p
ki

i

[i℄) 6= {0} if and only if at least one of theideals in this latter produt is nonzero. This motivates the question:(∗) If p and k are positive integers and p is prime, when is M(Zpk [i℄) 6= {0}?While it is true that Zn is a loal ring whenever n is a power of a prime, thisis not the ase for Zn[i℄ as will be shown next. Reall that if a ring R is �nite,then R is loal if and only if its only idempotents are 0 and 1 (whih are alledtrivial idempotents).3.9 Theorem. If m = pk for some prime p and positive integer k, then Zm[i℄ isloal if and only if p = 2 or p ≡ −1(mod 4).Proof: We will show that if a+ ib is a nontrivial idempotent of Zm[i℄, then(i) 2a ≡ 1(mod pk), and(ii) there is a c suh that c2 ≡ −1(mod pk).To see (i), reall from Lemma 3.8 that if a + ib is an nontrivial idempotent,then a2− b2 = a and 2ab = b in Zm and neither a nor b is 0(mod pk). This latterequation says b(2a − 1) ≡ 0(mod pk). By Lemma 3.8, a2 + b2 is an idempotentin Zm and hene is ongruent to 0, so if p | b, then p | a. It follows that p2 | bbeause 2ab = b. A routine indution yields pk | b and hene that b ≡ 0(mod pk);ontrary to the assumption that a+ ib is a nontrivial idempotent. Hene p is nota divisor of b, i.e. b is a unit in Zm, but b(2a− 1) ≡ 0(mod pk). So (i) holds.



6 E.Abu Osba, M.Henriksen, O.Alkam, F.A. SmithThis shows that there are no nontrivial idempotents in Z2k [i℄. So this ring is lo-al and is never a �eld beause it ontains the nonzero nilpotent ideal (1+i)Z2k [i℄.Thus M(Z2k ) = {0} for all k.Assume next that p is odd and note that by (i) and its proof (2b)2 = 4(a2−a) ≡(2a)2 − 2(2a) = (pk + 1)2 − 2(pk + 1) ≡ −1(mod pk). So c = 2b is the solutionof the equation in (ii). Thus Zm[i℄ has a nontrivial idempotent exatly when theequation in (ii) has a solution in whih ase 12 + i c2 is suh an idempotent.It is noted in Chapter 5 of [L58℄ that for p odd, the ongruene c2 ≡ −1(mod pk)has a solution, i.e. −1 is a quadrati residue mod pk, when p is odd if and only ifit has one for k = 1. It is shown that −1 is a quadrati residue mod p if and onlyif p ≡ 1(mod 4). This ompletes the proof of the theorem. �For a more thorough disussion of the topi of the last paragraph, see Se-tion 5.8 of [L58℄.3.10 Corollary. If p is an odd prime, then Zp[i℄ is a VNR ring.Proof: If p ≡ −1(mod 4), then Zp[i℄ is a �eld beause by Theorem 7.2 of [L58℄,the ongruene a2 + b2 ≡ 0(mod p) has no solution.Assume next that p ≡ 1(mod 4). It follows by Theorem 3.9 that Zp[i℄ is notloal, thus Zp[i℄ (whih has p2 elements) is produt of exatly two loal rings,eah isomorphi to Zp. Hene Zp[i℄ is isomorphi to Zp × Zp a produt of twoVNR rings. �3.11 Corollary. If m = pk for some odd prime p and positive integer k, then
M(Zm[i℄) 6= {0} if and only if k = 1.Proof: As noted in the proof of Theorem 3.9, M(Z2k [i℄) = {0} for all k. By thelast orollary, if p is an odd prime and k = 1, then M(Zm[i℄) 6= {0}.Now if k > 1 and p ≡ −1(mod 4) or if p = 2, then by Theorem 3.9, Zm[i℄ is aloal ring whih is not a �eld. So M(Zm[i℄) = {0} by Lemma 3.1.If k > 1, p ≡ 1(mod 4), and a+ib is a nonunit of Zm[i℄, then a2+b2 ≡ 0(mod p).If p | a, or p | b, then p divides the other, so p | (a+ ib). Thus a+ ib is a nonzeronilpotent element of Zm[i℄ sine k > 1. If, instead p fails to divide a or b, then itis easy to verify that p(a + ib) is a nonzero nilpotent in Zm[i℄. Thus no nonzerononunit of R an be m-regular, and the existene of the nonzero nilpotent ideal
pR shows that no unit of Zm[i℄ an be m-regular. Hene M(Zm[i℄) = {0} and theproof is omplete. �In summary we have using Theorem 3.3 and the above:3.12 Corollary. If n = ∏s

i=1 pki

i is the prime power deomposition of the posi-tive integer n, then M(Zn[i℄) 6= {0} if and only if pj is an odd prime and kj = 1for at least one j ∈ {1, . . . , s}.



The maximal regular ideal of some ommutative rings 74. Polynomial and power series ringsFor eah ring R, we write the polynomial ring as R[x℄ = {
∑n

i=0 aix
i : ai ∈

R} and the power series ring by R[[x℄℄ = {
∑∞

i=0 aix
i : ai ∈ R} where ad-dition is oeÆientwise, and in eah ase (∑ aix

i)(∑ bjx
j) = ∑

ckxk, where
ck = ∑

i+j=k aibj . The oeÆient of xk in c(x) = ∑

ckxk is denoted by ck. Bothof these rings are ommutative and have an identity. The next lemma is wellknown. See the �rst set of exerises in [AM69℄ and Setion 1 of [B81℄.4.1 Lemma. (a) u(x) is invertible in R[x℄ if and only if u0 is invertible andthe oeÆient of eah nonzero power of x is nilpotent.(b) u(x) is invertible in R[[x℄℄ if and only if u0 is invertible in R.Note that if e2 = e is an idempotent, then (1− 2e)2 = 1, so:4.2 Lemma. If e is an idempotent, then (1− 2e) is a unit of R.We ombine these two lemmas to obtain:4.3 Lemma. If a(x) is an idempotent in R[x℄ or R[[x℄℄, then a(x) = a0 ∈ R.Proof: If a(x) = ∑∞
i=0 aix

i and a(x) = (a(x))2, then ∑

i+j=n aiaj = an for
n = 0, 1, 2, . . . . If n = 0, then a0 = a20, so (1− 2a0) is a unit by the last lemma.Equating oeÆients of x yields a1(1 − 2a0) = 0, whih implies that a1 = 0.Doing the same with the oeÆients of x2 yields a2(1− 2a0) = −a1a1 = 0, whihimplies that a2 = 0. Proeeding indutively, if a1 = a2 = · · · = an−1 = 0, then
an(1 − 2a0) = −

∑

i+j=n aiaj = 0. Thus an = 0 for eah n ≥ 1 and hene
a(x) = a0 ∈ R. �We now haraterize von Neumann regular elements in R[x℄ and R[[x℄℄. In theproof of the next theorem, we need the fat that if a is a von Neumann regularelement of a ommutative ring, then there is unit u suh that a2u = a, and henethat au is an idempotent. See, for example [AHA04℄.4.4 Theorem. Let a(x) = ∑n

i=0 aix
i. Then a(x) is von Neumann regular in

R[x℄ if and only if a(x) is a produt of a von Neumann regular element in R anda unit in R[x℄.Proof: If a(x) ∈ vr(R[x℄), then there exists a unit u(x) = ∑m
i=0 uix

i ∈ R[x℄suh that a(x) = (a(x))2u(x). Hene by Lemmas 4.1 and 4.3, we have(iii) a(x)u(x) = a0u0 = (a0u0)2 and(iv) ∑

i+j=k aiuj = 0 for k = 1, 2, 3, . . . , n.By Lemma 4.1, uj is nilpotent if j ≥ 1 and by the equation in (iv) for
k = 1, a1 = −u−10 a0u1, whih implies that a1 is nilpotent. Similarly, a2 =
−u−10 (a0u2+a1u1), whih implies that a2 is nilpotent. Proeeding indutively, if
a1, a2, . . . , an−1 are nilpotents, then an = −u−10 ∑

i+j=n aiuj . So ak is nilpotent



8 E.Abu Osba, M.Henriksen, O.Alkam, F.A. Smithfor eah k ≥ 1, while a0 ∈ vr(R) and a(x) = a(x)a(x)u(x) = a(x)a0u0. Let
v(x) = u0+a1u20x+a2u20x2+ · · · and note that it is a unit of R[x℄ by Lemma 4.1.Then:

a(x) = n
∑

i=0 aia0u0xi = a20u0 + a1a0u0x + a2a0u0x2 + · · ·= a20u0 + a1a20u20x + a2a20u20x2 + · · · = a20v(x)is the produt of an element of vr(R) and a unit of R[x℄.The onverse is lear. �A similar argument will establish:4.5 Theorem. If a(x) = ∑∞
i=0 aix

i, then a(x) is von Neumann regular in R[[x℄℄if and only if a(x) is a produt of a von Neumann regular element in R and aunit in R[[x℄℄.By the last two theorems, xa(x) ∈ vr(R[x℄) implies a(x) = 0, so we onludethis setion with:4.6 Corollary. For eah ring R, M(R[x℄) = {0} and M(R[[x℄℄) = {0}.5. The ring C(X)All topologial spaes X are assumed to be Tyhono� spaes, βX the Stone-�Ceh ompati�ation of X and C(X) will denote the algebra of ontinuous real-valued funtions under the usual pointwise operations. For eah f ∈ C(X), wedenote the zeroset of f by Z(f) = {x ∈ X : f(x) = 0}, and the ozerosetoz(f) = X − Z(f). A point p ∈ X suh that for every f ∈ C(X), f(p) = 0implies p ∈ intZ(f) is alled a P -point , and X is alled a P -spae if eah of itspoints is a P -point. If x ∈ βX , let Mx = {f ∈ C(X) : x ∈ lβX Z(f)} and
Ox = {f ∈ C(X) : x ∈ intβX [lβX Z(f)℄}. The notation and terminology of[GJ76℄ is used. In this setion we will haraterize m-regular elements in C(X),we will �nd for what spaes X , M(C(X)) ontains non zero elements.Reall from Setion 2 that R is a VNL ring if for eah a ∈ R, one of a or 1− ais von Neumann regular.The next proposition is established in [AHA04℄ and in [GJ76℄.5.1 Proposition. (a) C(X) is a VNR ring if and only if X is a P -spae if andonly if every Gδ-set of X is open.(b) C(X) is VNL ring if and only if at most one point of X is not a P -point(in whih ase X is said to be essentially a P -spae).The next simple lemma will be used below.



The maximal regular ideal of some ommutative rings 95.2 Lemma. If f ∈ vr(C(X)), then Z(f) is lopen.Proof: As is noted just above Theorem 4.4, there is a unit u in C(X) suh that
f = f(fu) and fu is idempotent. Beause the zeroset of an idempotent is lopen,the onlusion follows. �Thus we obtain:5.3 Theorem. A funtion f is in M(C(X)) \ {0} if and only if oz(f) is anonempty lopen P -spae.Proof: Suppose that f ∈ M(C(X)) \ {0}, then f ∈ vr(C(X)) and so oz(f)is a nonempty lopen set by Lemma 5.2. Let G = ⋂∞

n=1 Gn be a Gδ-set of Xontained in oz(f) and suppose x ∈ G. For eah n there exists gn ∈ C(X) suhthat gn(x) = 0 and gn(X \Gn) = 1. Let g = ∑∞
n=1(|gn| /2n), then g ∈ C(X) and

Z(g) = G ⊂ oz(f). Sine fg ∈ vr(C(X)), its zeroset is lopen by Lemma 5.2. So,beause Z(fg) = Z(f)∪Z(g), Z(f)∩Z(g) = ∅, and Z(f) is lopen, it follows that
Z(g) and hene oz(g) is lopen. Thus, by Proposition 5.1, oz(f) is a P -spae.Suppose onversely that oz(f) is a nonempty lopen P -spae. Then C(X) isthe diret produt of C(oz(f)) and C(Z(f)), so f ∈ M(C(X)) \ {0}. �5.4 Corollary. M(C(X)) 6= {0} if and only if X ontains a nonempty lopen
P -spae.By making use of Theorem 1.3, we an desribe M(C(X)) more preisely.If Y is a subset of X , we let OY = ⋂

y∈Y Oy . Let P (X) be the set of all
P -points in X , then it is lear that OX−P (X) = ⋂

y/∈P (X)Oy ⊆ vr(C(X)) and so,
OX−P (X) ⊆ M(C(X)). For eah x ∈ βX , mMx = Ox, using this together withTheorem 1.3 above we onlude that:5.5 Corollary. M(C(X)) = OX−P (X) for any spae X .We onlude with an interesting example.5.6 Example. Let X1 = (0, 1) with its usual topology and X2 = N with itsdisrete topology. Let X = X1 ⊕

X2 and de�ne f(x) = { 0 x∈X11 x∈X2 , then f ∈

M(C(X)) \ {0}, while C(X) is not a VNR ring.Referenes[AHA04℄ Abu Osba E., Henriksen M., Alkam O., Combining loal and von Neumann regularrings, Comm. Algebra 32 (2004), 2639{2653.[AM69℄ Atiyah M., Madonald J., Introdution to Commutative Algebra, Addison-Wesley,Reading, Mass., 1969.[B81℄ Brewer J., Power Series Over Commutative Rings, Marel Dekker, New York, 1981.[BM50℄ Brown B., MCoy N., The maximal regular ideal of a ring, Pro. Amer. Math. So. 1(1950), 165{171.[C84℄ Contessa M., On ertain lasses of PM rings, Comm. Algebra 12 (1984), 1447{1469.



10 E.Abu Osba, M.Henriksen, O.Alkam, F.A. Smith[DO71℄ DeMaro G., Orsatti A.,Commutative rings in whih every maximal ideal is ontainedin a unique maximal ideal, Pro. Amer. Math. So. 30 (1971), 459{466.[GJ76℄ Gillman L., Jerison M., Rings of Continuous Funtions, Springer, New York, 1976.[H77℄ Henriksen M., Some suÆient onditions for the Jaobson radial of a ommutativering with identity to ontain a prime ideal, Portugaliae Math. 36 (1977), 257{269.[L58℄ Leveque W., Topis in Number Theory, Addison-Wesley, Reading, Mass., 1958.[M74℄ MDonald B.R., Finite Rings with Identity, Marel Dekker, New York, 1974.
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