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Baireness of Ck(X) for ordered XMihael Granado, Gary GruenhageAbstrat. We show that if X is a subspae of a linearly ordered spae, then Ck(X) is aBaire spae if and only if Ck(X) is Choquet i� X has the Moving O� Property.Keywords: Baire, linearly ordered spae, ompat-open topology, Choquet, Moving O�PropertyClassi�ation: Primary 54F05; Seondary 54C35, 54E521. IntrodutionLet Ck(X) denote the spae of ontinuous real-valued funtions on X endowedwith the ompat-open topology. G. Gruenhage and D. Ma [GM℄ de�ned theMoving O� Property (MOP), and showed that, for loally ompat spaes X ,

Ck(X) is Baire if and only if X has MOP. This result holds more generally forthe lass of q-spaes, whih inludes all loally ompat and all �rst-ountablespaes.It is an open question whether the Gruenhage-Ma result holds for all ompletelyregular X . We provide some evidene of an aÆrmative answer to the questionby showing that it holds whenever X is a GO-spae (i.e., a subspae of a linearlyordered spae).It is also an unsolved problem to �nd any internal property P of topologialspaes suh that X has P i� Ck(X) is Baire. A key to our result that P=MOPworks for GO-spaes is to �rst obtain a strutural result whih haraterizes whena GO-spae has the MOP. We then use this result to obtain our main theorem.In the �nal setion, we apply our results to some speial ases.All spaes are assumed to be ompletely regular.2. De�nitions and bakground resultsReall that a olletion J of subsets of a spae X is disrete if every point of Xhas a neighborhood meeting at most one member of J . We say J has a disreteopen expansion if for every J ∈ J , there is an open superset UJ of J suh that
{UJ : J ∈ J } is a disrete olletion.The seond author aknowledges support from National Siene Foundation grant DMS-0405216.



104 M.Granado, G.GruenhageA olletion K of nonempty ompat subsets of a spae X is said to be amoving o� olletion if for eah ompat subset M of X there exists a K ∈ Kwith M ∩K = ∅. A spae X is said to have the Moving O� Property (MOP) ifevery moving o� olletion K in X ontains an in�nite subolletion K′ whih hasa disrete open expansion.A spae X is said to have the Weak Moving O� Property (WMOP) if ev-ery moving o� olletion in X ontains an in�nite disrete subolletion. Thisproperty, whih we mention here primarily for ompleteness, was onsidered byA. Bouziad [B℄. The WMOP is equivalent to the MOP in loally ompat or nor-mal spaes; in partiular, the onepts oinide in the lass of GO-spaes. Whilethe WMOP seems more elegant than the MOP, it annot serve to haraterizeBaireness of Ck(X). Example 4.8 of [G2℄ gives a ompletely regular spae X withthe WMOP but not the MOP, hene by the next theorem, Ck(X) is not Baire.Theorem 2.1 ([GM℄). If Ck(X) is Baire, then X has the MOP.We will also make use of the following results.Theorem 2.2 ([GM℄). Suppose X has the MOP. Then:(a) if X has a ountable loal base at p, then X is loally ompat at p;(b) if X is ountably ompat, then X is ompat.Theorem 2.3 ([G1℄). If a spae X is paraompat and loally ompat, then Xhas the MOP.Let X be a nonempty topologial spae. The Choquet game GX of X isde�ned as follows: Players Empty (E) and Nonempty (NE) take turns in hoosingnonempty open subsets of X . Player E starts by hoosing U0 ⊂ X and NEresponds with V0 ⊂ U0. In the nth round, n ≥ 1, E and NE hoose in turnnon-empty open sets Un and Vn, with Vn ⊂ Un ⊂ Vn−1. We say that E wins thegame if ⋂
n Un = ∅; otherwise NE wins.It is well-known that a spae X is a Baire spae i� E has no winning strategy inthe Choquet game. If NE has a winning strategy, then X is said to be a Choquetspae1. Choquet spaes are also alled weakly α-favorable spaes .Ma [Ma℄ proved the following haraterization of Choquetness of Ck(X) forloally ompat X :Theorem 2.4. Suppose X is loally ompat. Then Ck(X) is Choquet i� X isparaompat.We will use the following haraterization of paraompatness in GO-spaes([EL℄):1We are following the terminology of Kehris [Ke℄.



Baireness of Ck(X) for ordered X 105Theorem 2.5. Let X be a GO-spae. Then X is not paraompat if and onlyfor some regular unountable ardinal κ, there exists a losed subspae T of Xwhih is homeomorphi to a stationary subset S of κ; furthermore, when suh Tand S exist, one may assume that there is a homeomorphism h : S → T that iseither order-preserving or order-reversing.We follow Kunen [Ku℄ for set-theoreti terminology. A subset A of an orderedset X is o�nal (resp., oinitial) in X if for every x ∈ X , there is a ∈ A with x ≤ a(resp., a ≤ x). A ardinal κ is regular if there is no o�nal subset A of κ with
|A| < κ. A subset C of an unountable regular ardinal κ is losed unbounded(.u.b.) in κ if it is o�nal in κ and losed in the order topology, and a subset S of
κ is stationary in κ if S∩C 6= ∅ whenever C is .u.b. in κ. The main set-theoretifat that we will use about stationary sets is the so-alled Pressing Down Lemma:Theorem 2.6. Let S be a stationary subset of a regular unountable ardinal κ.Suppose f : S → κ is suh that f(α) < α for every α ∈ S, α > 0. Then there issome β ∈ κ and a stationary (hene unbounded) subset T of S suh that f(α) = βfor every α ∈ T .We also use the more elementary fat that for any stationary set S, the set S′of limit points in S is stationary as well.3. Charaterization of the MOP for ordered spaesLet X be a GO-spae. Then there exists a ompat ordered spae X∗ ontain-ing X as a dense subspae ([L℄). Elements of X∗\X are alled gaps in X . For
A ⊂ X , we will denote by supA and inf A the obvious elements of X∗ (whihmay or may not be in X).A subset C of X is alled onvex in X , if for all a, b ∈ C, {x ∈ X : a < x <
b} ⊆ C.Let X be a GO spae, and let p ∈ X . Then X is said to be left �rst-ountable(resp., left loally ompat) at p if p is a point of �rst-ountability (resp., loalompatness) in (←, p℄. The terms right �rst-ountable and right loally ompatare de�ned analogously.De�ne an equivalene relation on a GO-spae X by a ∼ b i� [a, b℄ or [b, a℄ isompat, and let J be the olletion of equivalene lasses. Note that J is apairwise-disjoint olletion of onvex subsets of X . It is also easy to see that eah
J ∈ J is a loally ompat subspae of X . The following theorem is the mainresult of this setion.Theorem 3.1. Let X be a GO-spae. Then X has the MOP i� the followingtwo properties hold:(I) every J ∈ J is σ-ompat;(II) for any point p ∈ X , if X is left �rst-ountable at p, then X is left loallyompat at p, and if X is right �rst-ountable at p, then X is right loallyompat at p.



106 M.Granado, G.GruenhageProof: We �rst show the reverse diretion. Assume (I) and (II) hold; we willshow that X has the MOP.Claim. If K is a ompat subset of X, then J (K) = {J ∈ J : J ∩K 6= ∅} is�nite.To see this, suppose by way of ontradition that there is a ompat set Kand a ountably in�nite J ′ ⊂ J suh that, for every J ∈ J ′, J ∩K 6= ∅. Thenthere is a point p in K suh that every neighborhood of p meets in�nitely many
J ∈ J ′. W.l.o.g., eah J ∈ J ′ falls to the left of p. It follows that X is left�rst-ountable at p, hene by (II), is left loally ompat at p. But then somepoint y < p is in the same equivalene lass as p, yet [y, p℄ meets in�nitely manydistint equivalene lasses; this is a ontradition whih proves the laim.Let K be a moving o� olletion of ompat sets. Eah J ∈ J is σ-ompatand loally ompat, so we an write J = ⋃

n∈ω Jn, where eah Jn is ompatand every ompat subset of J is ontained in some Jn.Now hoose K0 ∈ K. If Ki ∈ K has been hosen for eah i < n, hoose Kn ∈ Kdisjoint from (⋃

i<n

Ki) ∪⋃
{Ji : i ≤ n, J ∈

⋃

i<n

J (Ki)}.We show that {Ki}i∈ω is a disrete subolletion of K. Suppose p is a limitpoint. W.l.o.g., p is a limit from the left. In the same way as in the proof of theClaim, there is y < p suh that [y, p℄ is ompat. Then [y, p℄ ⊂ J for some J ∈ J ,and [y, p℄∩Kn 6= ∅ for some n. So J ∈ J (Kn), and [y, p℄ ⊂ Jm for some m. Thenif l > max{m, n}, by the onstrution Kl∩Jm = ∅. Thus [y, p℄ meets only �nitelymany Ki, a ontradition. This ompletes the proof of the reverse diretion.Now we prove the forward diretion. Suppose X has the MOP. Then so doesany losed subset of X , in partiular, losed intervals. By Theorem 2.2(a), pointsof �rst-ountability must be points of loal ompatness. It follows that left (resp.,right) �rst-ountable implies left (resp., right) ompat at any point, so (II) holds.To see that (I) holds, let J be a ∼ equivalene lass, and suppose J is not σ-ompat. Then J either has no ountable o�nal subset or no ountable oinitialsubset. Suppose w.l.o.g. that J has no ountable o�nal subset. Then sup J /∈ J ,hene sup J /∈ X , so J is losed (on the right) in X . Let κ be the minimal ardinalof a o�nal subset of J . Note that κ is regular. Sine [a, b℄ is ompat for every
a, b ∈ J , one sees that supA ∈ J for any subset of J of ardinality less than κ.It follows that one may onstrut by indution a ontinuous inreasing mapping
f : κ→ J with sup J = sup ran(f). But then ran(f) is a losed in X opy of theordinal spae κ. Sine κ is ountably ompat but not ompat, this ontraditsTheorem 2.2(b) and ompletes the proof of the theorem. �4. Baireness of Ck(X) for ordered XIn this setion, we use the haraterization of the MOP for GO-spaes obtained



Baireness of Ck(X) for ordered X 107in the last setion to prove the following theorem:Theorem 4.1. Let X be GO-spae. The following are equivalent:(a) Ck(X) is Baire;(b) X has the MOP;() Ck(X) is Choquet.For the proof of the above result and for results in the next setion, it will behandy to have the following lemma.Lemma 4.2. Suppose X is a GO-spae, p ∈ X , and that S is a o�nal subsetof (←, p) whih is homeomorphi to a stationary subset of a regular unountableardinal. Suppose also that X is left loally ompat at every point of S, andthat p is a limit point of S. Then X is left loally ompat at p.Proof: Let S′ be the set of limit points of S inside S. Then for eah α in
S′, there is some βα ∈ S with βα < α suh that the losed interval [βα, α℄ isompat. Sine S′ is stationary, by the Pressing Down Lemma there is β ∈ Sand an unbounded subset T of S′ suh that [β, α℄ is ompat for every β ∈ T . Itfollows that [β, p℄ is ompat, and the lemma is proved. �Proof of Theorem 4.1: By Theorem 2.1, (a) implies (b) is true for anyspae X . That () implies (a) is immediate from the de�nitions. It remainsto prove (b) implies (). To this end, suppose X has the MOP.We need to de�ne a winning strategy for NE in the Choquet game on Ck(X).W.l.o.g., we may assume both players restrit their hoies to basi open sets ofthe form

B(f, K, ǫ) = {g ∈ C(X) : ∀x ∈ K(|f(x)− g(x)| < ǫ)}where f ∈ C(X), K is ompat, and ǫ > 0. Some ideas in the proof below aresimilar to those in Theorem 8.3 of [MN℄. Indeed, it is possible to prove in ourase that II has a winning strategy in the game �2(X) de�ned in [MN℄, and quotetheir Theorem 8.3 to onlude that Ck(X) is Choquet. However, there is a gapin their proof of Theorem 8.3; although that gap an be �xed, we hoose here togive instead a diret proof of (b) implies ().As in the proof of Theorem 3.1, any ompat set K meets only a �nite olletion
J (K) of members of J , the family of ∼ equivalene lasses. And sine eahmember J of J is σ-ompat and loally ompat , we an write J = ⋃

n∈ω Jn,where J0, J1, . . . is an inreasing sequene of ompat subsets of J suh that everyompat subset of J is ontained in Jn for some n.Now suppose B(fn, Kn, ǫn) is E's move in the nth round. Let NE respond with
B(fn, Ln, ǫ′n), where

Ln = Ln−1 ∪Kn ∪
⋃
{Jn : J ∈ J (Ln−1 ∪Kn)},



108 M.Granado, G.Gruenhageand ǫ′n = min{ǫn/2, 1/2n}.Note that by indution, the Ln's are inreasing, and Ln ⊃
⋃

i≤n Ki. Also, if
m < n < l, then fl ∈ B(fn, Ln, ǫ′n), so |fl(x) − fn(x)| < 1/2n for all x in Ln,hene for all x ∈ Lm. It follows that, for eah �xed m, {fn ↾ Lm : n ∈ ω} isa Cauhy sequene in the topology of uniform onvergene, hene onverges to aunique gm : Lm → R. Note that gn ↾ Lm = gm for n ≥ m; thus if L = ⋃

n∈ω Ln,then g = ⋃
n∈ω gn is a funtion from L to R.We plan to show that L is losed in X and that g is ontinuous on L. Tothis end, we will show that if L′0 = L0 and L′

n = Ln\Ln−1 for n ≥ 1, then
{L′

n}n∈ω is a loally �nite olletion. Suppose by way of ontradition that everyneighborhood of a point p meets L′
n for in�nitely many n. W.l.o.g., p is a limitfrom the left of the L′

n's.Claim. X is left loally ompat at p. If p is not a limit point from the left of L′
nfor any n, then (←, p) has ountable o�nality, so X must be left �rst-ountableat p and hene by Theorem 3.1, X is left loally ompat at p; thus the laimholds in this ase. Now assume p is a limit point from the left of L′

n for some�xed n. If there is a ountable subset of L′
n o�nal in (←, p), then again X is left�rst-ountable at p and the laim holds as before. So suppose the o�nality of

L′
n ∩ (←, p) is unountable. Then for some unountable regular ardinal κ, thereis a ontinuous inreasing funtion θ : κ → L′

n ∩ (←, p) whose range is o�nalin L′
n ∩ (←, p). Let S be the subset of κ onsisting of the limits of ountableo�nality in κ. Then S is stationary in κ, and X is left �rst-ountable, heneleft loally ompat, at eah point of θ(S). Now the laim follows by applyingLemma 4.2 to θ(S).From the laim, we easily get a ontradition. Let y < p suh that [y, p℄ isompat. Then [y, p℄ ⊂ Ji some J ∈ J and i ∈ ω. Sine p is a limit from the leftof {L′
n}n∈ω, we have that Lm ∩ [y, p℄ 6= ∅ for in�nitely many m, and it followsfrom the onstrution that for suÆiently large n, Ln ⊃ Ji. This is easily seen tobe a ontradition to the assumption that p is a limit from the left of the L′

n's.Now, sine we have shown that {L′
n}n∈ω is a loally �nite olletion of losedsets, we have that L = ⋃

n∈ω L′
n is losed in X , and furthermore, sine g ↾ L′

n isontinuous for eah n, we also have that g is ontinuous on L. Hene g extends to aontinuous g∗ : X → R and it is straightforward to show that g∗ ∈ B(fm, Km, ǫm)for every m ∈ ω. This ompletes the proof. �5. AppliationsIn this setion, we apply our main result to get further results in some speialases.Lemma 5.1. Let κ be a regular unountable ardinal.(a) Suppose S is a stationary o-stationary subset of κ. Then there is a .u.b.
C in κ suh that S is not loally ompat at any point of C ∩ S;



Baireness of Ck(X) for ordered X 109(b) If N is a non-stationary subset of κ, then κ\N does not have the MOP.Proof: For (a), let D = S ∩ κ\S, and let C be the set of non-isolated points ofthe subspae D. Then C is .u.b., and it is easy to hek that no point of C ∩ Sis a point of loal ompatness in S.For (b), onsider a .u.b. C ⊂ κ\N . Then C is ountably ompat but notompat, hene annot have the MOP �We now get the following haraterizations for GO-spaes whih are loallyompat or �rst-ountable:Theorem 5.2. Let X be a loally ompat GO-spae. Then the following areequivalent:(a) X has the MOP;(b) X is paraompat;() Ck(X) is Baire;(d) Ck(X) is Choquet.Proof: By Theorem 2.4, Ck(X) is Choquet i� X is paraompat, and by Theo-rem 2.1, Baireness of Ck(X) implies X has the MOP.Thus it remains to show that for a loally ompat GO-spae X , if X hasthe MOP, then X is paraompat. Suppose X is not paraompat. Then Xontains a losed subset S homeomorphi to a stationary subset of a regularunountable ardinal κ. Sine S is loally ompat, by Lemma 5.1(a), S annotbe o-stationary, hene must ontain a opy of a lub C in κ. But by 5.1(b), Cdoes not have the MOP, ontradition. �Corollary 5.3. Let X be a �rst-ountable GO-spae. Then the following areequivalent:(a) X has the MOP;(b) X is paraompat and loally ompat;() Ck(X) is Baire;(d) Ck(X) is Choquet.Proof: Reall that �rst-ountable implies loally ompat for spaes having theMOP. Hene this orollary is an immediate onsequene of the previous theorem.
�Now we apply our results to obtain a haraterization for GO-spaes with awell-order, or, equivalently, subspaes of an ordinal. For a spae X , we denoteby LC(X) the points of loal ompatness. Note that LC(X) is an open loallyompat subspae of X .For X a subset of an ordinal, we say a point x ∈ X has ountable o�nalityrelative to X if there is a ountable subset of X whih is o�nal in X ∩ (←, x).



110 M.Granado, G.GruenhageTheorem 5.4. Let X be a subspae of an ordinal. Then X has the MOP i�LC(X) is paraompat and ontains all points of ountable o�nality relativeto X .Proof: We �rst prove the forward diretion. Suppose X has the MOP. ThatLC(X) ontains all points of ountable o�nality relative to X is immediate fromTheorem 3.1. Suppose LC(X) is not paraompat. Then there is a losed subset
Y of LC(X) suh that Y is homeomorphi to a stationary subset S of a regularunountable ardinal κ. Sine X is well-ordered, we may assume that there is anorder-preserving homeomorphism h : S → Y . By Lemma 5.1, sine eah point of
Y is a point of loal ompatness, S annot be o-stationary, i.e., S ontains some.u.b. C in κ. Sine h(C) annot have the MOP, h(C) annot be losed in X . Itfollows that p = sup(h(C)) = sup(Y ) is a point of X\LC(X) and is a limit pointof h(C). But sine eah point of Y is a point of loal ompatness, by Lemma 4.2,
p ∈ LC(X), whih is a ontradition.For the reverse diretion, suppose LC(X) is paraompat and ontains allpoints of ountable o�nality relative to X . Then ondition (II) of Theorem 3.1holds, so we need to show (I) holds. Let J be a ∼ equivalene lass. Then
J ⊂ LC(X). Note that J is σ-ompat i� J has a ountable o�nal subset. Sup-pose J has no ountable o�nal subset. Then p = supJ /∈ J and there is a opy Kof a regular unountable ardinal in J suh that sup(K) = sup(J). Sine LC(X)is paraompat, K annot be losed in LC(X) by Theorem 2.5 , so p ∈ LC(X)and hene p ∈ J by Lemma 4.2, whih is a ontradition. �Examples.(a) A subspae X of the spae ω1 of ountable ordinals has the MOP i� Xis loally ompat and non-stationary.(b) Let Y be the set of ordinals in ω2 of unountable o�nality. Then Y hasthe MOP.() Let Y ∗ be Y above but with the reverse ordering, and let X be the linearlyordered spae onsisting of the ordinal spae ω1+1 followed a opy of Y ∗.Then X has the MOP, but LC(X) is not paraompat.Proof: To see (a), note that in this situation we have LC(X) = X , and reallthat a subset X of ω1 is paraompat i� X is non-stationary. To see (b), note thatLC(Y ) is the set of isolated points of Y , hene LC(Y ) is paraompat. Finally, for(), note that the ∼ equivalene lasses onsist of ω1 + 1 and singletons y ∈ Y ∗.Thus X satis�es ondition (I) of Theorem 3.1. It is easy to see that X also satis�esondition (II), so X has the MOP. But LC(X) ontains the spae ω1 of ountableordinals as a relatively losed subspae, hene LC(X) is not paraompat. �It follows from the last example that the haraterization of the MOP in well-ordered GO-spaes given by Theorem 5.4 does not hold for general GO-spaes.



Baireness of Ck(X) for ordered X 111Referenes[B℄ Bouziad A., Coinidene of the upper Kuratowski topology with the o-ompat topologyon ompat sets, and the Prohorov property, Topology Appl. 120 (2002), 283{299.[EL℄ Engelking R., Lutzer D., Paraompatness in ordered spaes, Fund. Math. 94 (1977),49{58.[G1℄ Gruenhage G., Games, overing properties and Eberlein ompats, Topology Appl. 23(1986), 291{297.[G2℄ Gruenhage G., The story of a topologial game, Roky Mountain J. Math., to appear.[GM℄ Gruenhage G., Ma D.K., Baireness of Ck(X) for loally ompat X, Topology Appl. 80(1997), 131{139.[Ke℄ Kehris A.S., Classial Desriptive Set Theory, Springer, New York, 1995.[Ku℄ Kunen K., Set Theory, North-Holland, Amsterdam, 1980.[L℄ Lutzer D.J., On generalized ordered spaes, Dissertationes Math. 89 (1971).[Ma℄ Ma D.K., The Cantor tree, the γ-property, and Baire funtion spaes, Pro. Amer. Math.So. 119 (1993), 903{913.[MN℄ MCoy R.A., Ntantu I., Completeness properties of funtion spaes, Topology Appl. 22(1986), 191{206.
Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849,

USAE-mail : granamf�auburn.edugaryg�auburn.edu(Reeived May 26, 2005, revised Deember 12, 2005)


		webmaster@dml.cz
	2012-04-30T23:26:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




