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On rings close to regular and p-injectivity

Roger Yue Chi Ming

Dedicated to Professor Robert Wisbauer on his 65th birthday.

Abstract. The following results are proved for a ring A: (1) If A is a fully right idem-
potent ring having a classical left quotient ring Q which is right quasi-duo, then Q is
a strongly regular ring; (2) A has a classical left quotient ring Q which is a finite di-
rect sum of division rings iff A is a left TC-ring having a reduced maximal right ideal
and satisfying the maximum condition on left annihilators; (3) Let A have the following
properties: (a) each maximal left ideal of A is either a two-sided ideal of A or an injective
left A-module; (b) for every maximal left ideal M of A which is a two-sided ideal, A/MA

is flat. Then, A is either strongly regular or left self-injective regular with non-zero socle;
(4) A is strongly regular iff A is a semi-prime left or right quasi-duo ring such that for
every essential left ideal L of A which is a two-sided ideal, A/LA is flat; (5) A prime ring
containing a reduced minimal left ideal must be a division ring; (6) A commutative ring
is quasi-Frobenius iff it is a YJ-injective ring with maximum condition on annihilators.

Keywords: strongly regular, p-injective, YJ-injective, biregular, von Neumann regular
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Introduction

Strongly regular rings, introduced in [1], have drawn the attention of various
authors. K.-R. Goodearl’s classic [11] has motivated numerous papers in the
area of von Neumann regular rings. This paper is mainly motivated by [20].
Following [9], we write “A is VNR” if A is a von Neumann regular ring. It
is well-known that A is VNR iff every left (right) A-module is flat (M. Harada
(1956); M. Auslander (1957)). This result remains true if we replace “flat” by
“p-injective” ([30]) or “YJ-injective” ([38]).
Recall that a right A-module M is (a) p-injective if, for every principal right

ideal P of A, any right A-homomorphism of P intoM extends to one of A intoM ;
(b) YJ-injective if, for every o 6= b ∈ A, there exists a positive integer n such that
bn 6= o and any right A-homomorphism of bnA into M extends to one of A into
M ([22], [34], [38]). As an analogy to the study of flat modules over rings which
are not VNR, many authors have considered p-injectivity and YJ-injectivity over
rings not necessarily VNR ([3], [4], [9], [12], [14], [16], [17], [21]–[24]). A theorem
of I. Kaplansky asserts that a commutative ring A is VNR iff A is a V -ring (i.e.
every simple A-module is injective). (This remains true if “injective” is replaced
by “YJ-injective”.)
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Throughout, A denotes an associative ring with identity and A-modules are
unital. J , Y , Z denote respectively the Jacobson radical, the right singular ideal
and the left singular ideal of A. An ideal of A will always mean a two-sided
ideal of A. A is called left (resp. right) quasi-duo if every maximal left (resp.
right) ideal of A is an ideal of A (S.H. Brown (1973)). A left (right) ideal of A
is called reduced if it contains no non-zero nilpotent element. We say that A is
a left p-injective (resp. YJ-injective) ring if AA is p-injective (resp. YJ-injective).
P -injectivity and YJ-injectivity on the right side of A are similarly defined. We
know that if A is a right YJ-injective ring, then Y = J [34, Proposition 1] (this
extends the well-known result for right self-injective rings and is at the origin of
our notation). Also, A is strongly regular iff A is a reduced right p-injective ring
iff A is a reduced right YJ-injective ring (cf. [27] and [34]). As usual, A is called
fully idempotent (resp. (a) fully right idempotent; (b) fully left idempotent) if
every ideal (resp. (a) right ideal; (b) left ideal) of A is idempotent.
Recall that

(a) A is VNR if, for every a ∈ A, a ∈ aAa;
(b) A is strongly regular if, for every a ∈ A, a ∈ a2A;
(c) Given a left A-module M , any subset S of elements of M , write lA(S) =

{a ∈ A \ aS = 0} and rA(S) = {a ∈ A \ Sa = 0} respectively for the
left and right annihilators of S in A. In case of no possible confusion,
simply write l(S) and r(S). A left ideal I of A is called a left annihilator
if I = l(U) for some subset U of A;

(d) Given a left submodule N of a left A-module M ,
(i) N is essential in M if N ∩ Q 6= o for any non-zero submodule Q
of M ;

(ii) N is a complement submodule of M if N has no proper essential
extension in M ;

(e) For any left A-module M , Z(M) = {y ∈ M \ lA(y) is essential in AA}
is the singular submodule of M . Right singular submodules are similarly
defined. AM is called singular (resp. non-singular) if Z(M) = M (resp.
Z(M) = 0). Thus in our notations, Z = Z(AA) and Y = Z(AA). A is
called a left (resp. right) non-singular ring if Z = 0 (resp. Y = 0);

(f) Quasi-Frobenius rings (introduced by T. Nakayama (1939)) are left and
right Artinian, left and right self-injective rings. For results on quasi-
Frobenius rings, consult [8], [9], [19], [21], [23].

As usual, a ring Q is a classical left quotient ring of A if (i) A ⊆ Q; (ii) every
non-zero-divisor of A is invertible in Q; (iii) every element of Q is of the form
q = c−1a, c, a ∈ A, c being a non-zero-divisor.

Proposition 1. Let A be a fully right idempotent ring having a classical left
quotient ring Q which is right quasi-duo. Then Q is a strongly regular ring.

Proof: Suppose there exists q ∈ Q such that qQ + rQ(q) 6= Q. If q = b−1a,
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b, a ∈ A, b being a non-zero-divisor, then rA(a)Q ⊆ rQ(q) which implies that
qQ+ rA(a)Q 6= Q. Let M be a maximal right ideal of Q containing qQ+ rA(a)Q.
Since A is fully right idempotent, then a = ad, d ∈ AaA which implies that
1 − d ∈ rA(a) ⊆ M . Now, d ∈ AaA = Abb−1aA ⊆ AqQ ⊆ M (in as much as M
is an ideal of Q) which yields 1 ∈ M , contradicting M 6= Q. This proves that for
each s ∈ Q, sQ+ rQ(s) = Q. Then s = s2p for some p ∈ Q which implies that Q
is strongly regular. �

Recall that A is a left TC-ring if every non-zero complement left ideal of A
contains a non-zero ideal of A ([36]). We know that

(1) if A contains a reduced maximal right ideal, then A is a reduced ring ([36,
Lemma 2]);

(2) if A is semi-prime left TC, then any complement left ideal of A is a left
annihilator ([36, Proposition 1]);

(3) if A has a classical left quotient ring Q, then A is reduced iff Q is reduced
([35, Proposition 1.5]).

Combining [10, Theorem 2.38] with the above three results, we get the following
special case of Goldie’s theorem:

Theorem 2. The following conditions are equivalent:

(1) A has a classical left quotient ring Q which is a finite direct sum of division
rings;

(2) A is a semi-prime, left TC-ring satisfying the maximum condition on left
annihilators;

(3) A is a left TC-ring having a reduced maximal right ideal and satisfying
the maximum condition on left annihilators.

P. Menal–P. Vamos (1989) proved that any ring can be embedded in an FP-
injective ring (this is not true if “FP-injective” is replaced by “self-injective”) [9,
p. 308]. Recall that a left A-module M is FP-injective if, for every finitely pre-
sented left A-module F , Ext1A(F, M) = 0; AM is p-injective if Ext1A(A/Ay , M) = o
for every y ∈ A. Left FP-injective rings are consequently left p-injective. There-
fore, any ring may be embedded in a p-injective or YJ-injective ring. This en-
hances the attention paid to p-injective or YJ-injective rings (cf. [12], [16], [17],
[9, p. 125]). We know that the following result follows from [9, Theorem 6.4]: If
A is commutative, then every factor ring of A is FP-injective iff every factor ring
of A is p-injective. We proceed to give a sufficient condition for a ring to be left
p-injective.

Proposition 3. Let A be a left TC-ring containing a finitely generated p-injective
maximal left ideal M . Then A is left p-injective.

Proof: Let o 6= b ∈ M . If g : Ab → M is the natural injection, since AM
is p-injective, there exists y ∈ M such that b = g(b) = by ∈ bM . This implies
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that AA/M is flat ([5, p. 458]). Since AM is finitely generated, then A/M is
a finitely related flat left A-module which implies that AA/M is projective ([5,
p. 459]). Therefore AA = AM ⊕ AU , where U is a minimal left ideal of A. Let
M = Ae, e = e2 ∈ A, U = Au, u = 1 − e. Since A is left TC, U contains
a non-zero ideal of A and hence U must be an ideal of A. First suppose that
M is not an ideal of A. Then MU 6= o (otherwise, MU = o, U = Au, yields
MAu = Au = o, contradicting u 6= o!). Let Mv 6= o for some v ∈ U . If
p : M → Av is the map defined by p(m) = mv for all m ∈ M , then p is an
epimorphism since Mv = U = Av and therefore AM/ kerp ≈ AU and since AU
is projective, AM ≈ A ker p ⊕ AM/ kerp which implies that AU is p-injective.
Therefore A =M ⊕ U is a left p-injective ring. Now, suppose that M is an ideal
of A. Then eA ⊆ Ae implies that eA(1− e) ⊆ Ae(1− e) = o while uA ⊆ U = Au
implies that uA(1−u) ⊆ Au(1−u) = o. Therefore ea = eae and ua = uau for each
a ∈ A, which yields ua = (1 − e)au = au − eau = au (because eau = eaeu = o).
Therefore AA =MA ⊕UA and A/MA is projective. By [32, Lemma 1], AA/M is
injective. Finally, AA = AM ⊕ AU is p-injective which completes the proof. �

If A contains a reduced finitely generated left ideal I which is YJ-injective,
then AI is a direct summand of AA. If I is also a maximal left ideal of A, then
A is a reduced ring ([36, Lemma 2]). The next remark then holds.

Remark 1. A is strongly regular with non-zero socle iff A contains a reduced
finitely generated p-injective maximal left ideal iff A contains a reduced finitely
generated YJ-injective maximal left ideal.

The proof of Proposition 3 yields

Theorem 4. If A is left TC-ring containing an injective maximal left ideal, then
A is a left self-injective ring.

Rings containing an injective maximal left ideal need not be self-injective as
shown by the following example, which will also motivate the next two proposi-
tions.

Example. If A denotes the 2× 2 upper triangular matrix ring over a field, then
every simple one-sided module is either injective or projective and A contains an
injective maximal left ideal. Every maximal one-sided ideal of A is either injective
or an ideal of A.

This example shows that a ring whose essential left ideals are idempotent two-
sided ideals needs not be VNR (indeed not even semi-prime or left YJ-injective).
But we know that if every essential left ideal of A is an ideal of A and A is a fully
idempotent ring, then A must be VNR (cf. [37, Theorem 6]). We now prove a
nice result which guarantees the von Neumann regularity of certain rings.

Proposition 5. Let A be a ring such that every maximal left ideal is either an
ideal of A or an injective left A-module. Assume that, for each maximal left ideal
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M of A which is an ideal of A, A/MA is flat. Then A is either strongly regular
or left self-injective regular with non-zero socle.

Proof: First suppose that every maximal left ideal of A is an ideal of A. Let
o 6= b ∈ A. If Ab + l(b) 6= A, let M be a maximal left ideal of A containing
Ab + l(b). Then A/MA is flat by hypothesis. Since b ∈ M , then b = db for some
d ∈ M ([5, p. 458]). Then 1 − d ∈ l(b) ⊆ M implies that 1 ∈ M , contradicting
M 6= A. Therefore Ab + l(b) = A for all b ∈ A. Then, 1 = ub+ t, u ∈ A, t ∈ l(b)
which yields b = ub2. This proves that A strongly regular. Now suppose that
there exists a maximal left ideal N of A which is not an ideal of A. Then, by
hypothesis, AN is injective which implies that AA = AN ⊕ AU , where U is a
minimal left ideal of A. The proof of Proposition 3 then shows that A is left self-
injective. It remains to prove that the left singular ideal Z of A is zero. Suppose
the contrary: there exists o 6= z ∈ Z such that z2 = o ([33, Lemma 7]). Let K
be a maximal left ideal of A containing l(z). Then AK is not injective (because
l(z) is an essential left ideal of A) which implies that K must be an ideal of A.
Then A/KA is flat by hypothesis. Now z ∈ l(z) ⊆ K implies that z = wz for
some w ∈ K ([5, p. 458]). Therefore 1 − w ∈ l(z) ⊆ K implies that 1 ∈ K, a
contradiction! This proves that Z = o and since A is left self-injective, then A is
VNR with non-zero socle. �

Recall that A is biregular if, for every a ∈ A, AaA is generated by a central
idempotent. Biregular rings generalize strongly regular rings and simple rings.
We give two new characteristic properties of biregular rings.

Proposition 6. The following conditions are equivalent:

(1) A is biregular;
(2) for any a, b ∈ A such that T = AaA + AbA 6= A, there exists a non-zero
element c ∈ A such that T is the left and right annihilator of AcA and
T ∩ AcA = o;

(3) for any finite number of elements b1, . . . , bn ∈ A,
∑n

i=1AbiA = l(u) = r(u)
for some element u ∈ A and Z ∩ Y ∩ J = o.

Proof: Assume (1). Let a, b ∈ A such that T = AaA+AbA 6= A. If either a = b
or one of a, b is zero, then T is generated by a central non-trivial idempotent
and T is therefore the left and right annihilator of AuA, where u is a non-trivial
idempotent. In that case, (1) implies (2). Now assume that a 6= o, b 6= o,
a 6= b. Then, AaA = Ae, where e is a non-trivial central idempotent. Then
T = Ae + AbA = Ae + Ab(1 − e)A = Ae + As, where As = Ab(1 − e)A, s
being a central idempotent. If w = (1 − e)s, then ws = w, w2 = w, Aw =
A(1 − e)s ⊆ As = As2 = Ab(1 − e)As = Ab(1 − e)sA ⊆ A(1 − e)s = Aw which
yields Aw = As. Since e(e + w) = e, w(e + w) = w, then Ae ⊆ A(e + w) and
Aw ⊆ A(e + w) imply that Ae + Aw ⊆ A(e+ w), whence A(e + w) = Ae+ Aw.
Then T = Ae + Aw = A(e + w) = A(e + w)A, where e + w is a non-trivial
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central idempotent and hence T is the left and right annihilator of AcA, where
c = 1− e−w is also a non-trivial central idempotent and T ∩AcA = o. Thus (1)
implies (2). Similarly, (1) implies (3).
Assume (2). Let o 6= a ∈ A such that AaA 6= A. By hypothesis, there exists

a non-zero element c of A such that AaA = l(AcA) and AaA ∩ AcA = o. Now
suppose that I = AaA + AcA 6= A. By hypothesis, I = l(AdA) = r(AdA),
where d is a non-zero element of A and I ∩ AdA = o. Therefore AcA · AdA = o
which implies that AdA ⊆ r(AcA) = AaA ⊆ I, whence AdA = AdA ∩ I = o, a
contradiction! This proves that AaA+AcA = A and since AaA ∩AcA = o, then
A = AaA ⊕ AcA which shows that A must be semi-prime and AaA is therefore
generated by a central idempotent, proving that (2) implies (1).
Assume (3). Suppose there exists a non-zero ideal T of A such that T 2 = o.

If o 6= t ∈ T , then l(AtA) is an essential right ideal of A and r(AtA) is an
essential left ideal of A. By hypothesis, AtA = l(u) = r(u), u ∈ A. Then
AtA = l(AuA) = r(AuA) and r(AtA) = r(l(AuA)) = AuA which implies that
AuA is an essential left ideal of A. Similarly, AuA is an essential right ideal of
A. Now AuA = l(s) = r(s), s ∈ A, which implies that AuA = l(AsA) = r(AsA),
whence AsA ⊆ Z ∩ Y . Suppose that AsA 6= o. Since AuA is essential in AA,
then N = AsA ∩ AuA is a non-zero left ideal of A and N2 ⊆ AuAsA = o which
implies that N ⊆ J , the Jacobson radical of A. We get N ⊆ Z ∩ Y ∩ J = o,
a contradiction! We have proved that A is a semi-prime ring. Now for any a ∈ A,
AaA = l(AvA) = r(AvA), v ∈ A. Since A is semi-prime, r(AaA) = l(AaA) =
l(r(AvA)) = AvA. Now AaA+AvA = AaA+ r(AaA) is an essential left ideal of
A and AaA + r(AaA) = l(w) = r(w), w ∈ A. Since AaAw = o and l(AaA)w =
r(AaA)w = o, w ∈ r(l(AaA)) = AaA. Therefore (AwA)2 ⊆ AaA · AwA = o
and since A is semi-prime, w = o. Therefore AaA + r(AaA) = A and since
AaA∩ r(AaA) = o (A being semi-prime), then A = AaA⊕ r(AaA) which implies
that AaA is generated by a central idempotent. Thus (3) implies (1). �

Lemma 7. The following conditions are equivalent:

(1) A is fully left idempotent;
(2) A is a semi-prime ring such that for every essential left ideal L of A which
is an ideal of A, A/LA is flat.

Proof: Assume (1). Then A is obviously semi-prime. Let L be an essential left
ideal of A which is an ideal of A. For any o 6= t ∈ L, t ∈ (At)2 implies that t = dt
for some d ∈ AtA ⊆ L. Therefore t ∈ Lt for every t ∈ L which implies that A/LA
is flat ([5, p. 458]). Thus (1) implies (2).
Assume (2). For any a ∈ A, set I = AaA+ l(AaA). There exists a complement

left ideal K of A such that L = I ⊕ K is an essential left ideal of A. Now
AaAK ⊆ K∩AaA ⊆ K∩I = o implies that K ⊆ r(AaA). Since A is semi-prime,
r(AaA) = l(AaA). Then K ⊆ I which yields K = K ∩ I = o, whence I = L is
an essential left ideal of A which, by hypothesis, yields A/IA is flat. Since a ∈ I,
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then a = ua for some u ∈ I ([5, p. 458]). If u = w + c, w ∈ AaA, c ∈ l(AaA),
then a = wa+ ca = wa ∈ (Aa)2, which proves that A is fully left idempotent and
hence (2) implies (1). �

It is well-known that semi-prime, P.I.-rings which are left (and right) p-injective
need not be VNR [4, p. 853] (cf. also [11]).

Proposition 8. If A is a semi-prime P.I.-ring such that for every essential left
ideal L of A which is an ideal of A, A/LA is flat, then A is a VNR left and right
V -ring.

(Apply [2, Theorem 1 and Corollary].)

We now turn to characterizations of strongly regular rings.
A is called a ZI-ring (zero insertive) if, for a, b ∈ A, ab = o implies aAb = o. Re-

duced rings are evidently ZI-rings. The next lemma, proved in [25, Corollary 2.4]
is explicit in the proof of [34, Lemma 4.1] (cf. also the proof of “(2) implies (3)”
in [31, Theorem 2.1]).

Lemma 9. If A is a left quasi-duo ring with zero Jacobson radical, then A is a
reduced ring.

Theorem 10. The following conditions are equivalent:

(1) A is strongly regular;
(2) A is a ZI-ring whose simple left modules are flat;
(3) A is a semi-prime left or right quasi-duo ring such that for every essential
left ideal L of A which is an ideal of A, A/LA is flat.

Proof: (1) implies (2) and (3) evidently.
Assume (2). For any b ∈ A, r(b) is an ideal of A. Suppose that Ab+ r(b) 6= A.

Let M be a maximal left ideal of A containing Ab+ r(b). Then AA/M is flat and
since b ∈ M , b = bc for some c ∈ M . Now 1 − c ∈ r(b) ⊆ M which implies that
1 ∈ M , contradicting M 6= A. This proves that Ab + r(b) = A and b = bub for
some u ∈ A, which yields A VNR. Since A is ZI, then every idempotent is central
in A. A is therefore strongly regular and (2) implies (1).
(3) implies (1) by [3, Theorem 3.1], Lemma 7 and Lemma 9. �

We here give a characterization of division rings.

Proposition 11. The following conditions are equivalent:

(1) A is a division ring;
(2) there exists a maximal left ideal of A which contains no non-zero ideal of

A and there exists a reduced minimal left ideal of A;
(3) A is a prime ring containing a reduced minimal left ideal of A.

Proof: It is clear that (1) implies (2).
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Assume (2). Let M be a maximal left ideal of A which contains no non-zero
ideal of A. Then AA/M is simple, faithful which means that A is a primitive ring
and hence is a prime ring. Therefore (2) implies (3).
Assume (3). Let U be a reduced minimal left ideal of A. Since A is prime,

U = Ae, e = e2 ∈ A. Therefore U is a non-zero reduced left ideal which is a left
annihilator. By [30, Proposition 6], A is an integral domain. Then e(1 − e) = o
implies that e = 1. Therefore U = A and every non-zero element of A is invertible
in A. Thus (3) implies (1).
(Condition (3) improves [20, Remark 1.20(5)].) �

A remark on simple domains follows. [30, Proposition 6] implies

Remark 2. If A is a prime reduced ring whose simple left modules are either
YJ-injective or flat, then A is a simple domain.

(Such rings need not be VNR.)

Theorem 12. The following conditions are equivalent:

(1) A is quasi-Frobenius;
(2) A is a left and right YJ-injective ring satisfying the maximum condition
on right annihilators.

Proof: (1) implies (2) evidently.
Assume (2). Let U be a minimal left ideal of A. If AU is a direct summand

of AA, then it is clear that U is a left annihilator. Now, suppose that U2 = o.
Let U = Au, u ∈ A. Then u2 = o and since A is right YJ-injective, any right
A-homomorphism of uA into A extends to an endomorphism of AA. For any
v ∈ l(r(Au)), since r(u) = r(l(r(u))) ⊆ r(v), define a right A-homomorphism
f : uA → A by f(ua) = va for all a ∈ A. Since A is right YJ-injective, v =
f(u) = yu for some y ∈ A which proves that Au = l(r(Au)). In any case, U = Au
is a left annihilator. Similarly, every minimal right ideal of A is a right annihilator.
Now a right YJ-injective ring with maximum condition on right annihilators is
left Artinian by [6, Theorem 3.7]. Since A is a left Artinian ring whose minimal
one-sided ideals are annihilators, then A is quasi-Frobenius ([19, Proposition 1]).
Therefore (2) implies (1). �

The next corollary answers positively [37, Question 4] and extends [37, Theo-
rem 11].

Corollary 13. A commutative ring is quasi-Frobenius iff it is a YJ-injective ring
with maximum condition on annihilators.

Recall that strongly regular rings are right (and left) V -rings while right V -
rings and right perfect rings (in particular, left Artinian rings) are right max rings
(in the sense that all non-zero right modules contain a maximal submodule) [20].
It may also be noted that if A is VNR, then (a) every non-zero right ideal of A
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contains a maximal right subideal and (b) every non-zero finitely generated right
ideal of A and its maximal right subideal are intersections of maximal right ideals
of A (cf. [28]).
In most of our papers, we have considered singular modules (in particular,

singular ideals), which play an important role in ring theory. For an exhaustive
study of singular modules and ideals, consult K. Goodearl’s classic [10]. If every
singular left A-module is injective (i.e. A is left SI), then A is left hereditary
(K. Goodearl) but not necessarily VNR [9, p. 92]. If, in addition, every injective
left A-module is flat, then A must be VNR [28, Theorem 5]. But such rings
need not be semi-simple Artinian (even if A is commutative). Consequently,
left SI-rings need not be left Noetherian. In this direction, recall that if A is
a left non-singular ring, then for every injective left A-module M , the singular
submodule Z(M) is injective ([26]) which answers negatively a question raised by
F. Sandomierski [18] (cf. also Abraham Zaks’ comment in MR 40 (1970) #5664
and [8, Theorem 19.46A]). Singular submodules may also be used to give partial
answers to Matlis’ problem [15] (which is still open) on complete decomposability:
indeed, given a completely decomposable left A-module M , (a) if N is a direct
summand of M which contains the singular submodule Z(M) of M , then N is
completely decomposable; (b) if there exists an injective submodule of M which
contains Z(M), then every direct summand of M is completely decomposable
([29]). It follows that Matlis’ problem has a positive answer for left SI-rings.
Recently, Chen-Zhou-Zhu showed that YJ-injective rings need not be p-injec-

tive in [7].

Acknowledgment. I would like to express my thanks to the referee for helpful
comments and suggestions leading to this improved version of my paper.
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