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Add(U) of a uniserial module

Pavel Př́ıhoda

Abstract. A module is called uniserial if it has totally ordered submodules in inclusion.
We describe direct summands of U (I) for a uniserial module U . It appears that any such
a summand is isomorphic to a direct sum of copies of at most two uniserial modules.

Keywords: serial modules, direct sum decomposition

Classification: 16D70, 16D70, 16D70

1. Introduction

The aim of this paper is to give a classification of objects in Add(U), where U
is a uniserial module over an arbitrary associative ring. Recall that a module U is
said to be uniserial if the lattice of its submodules is a chain. Direct sums of unis-
erial modules are called serial . If a uniserial module U has local endomorphism

ring, then any object in Add(U) is isomorphic to U (I) for a suitable set I because
any uniserial module is σ−small and we can use [3, Theorem 2.52]. In general,
the situation is a bit worse but still easy enough to understand. Recall that a
module K is quasi-small if for any family {Mi | i ∈ I} of modules such that K is
isomorphic to a direct summand of ⊕i∈IMi there exists a finite set I ′ ⊆ I such
that K is isomorphic to a direct summand of ⊕i∈I′Mi. It is possible to prove
that a uniserial module U is not quasi-small if and only if it is isomorphic to a

non-zero direct summand of V (ω), where V is a uniserial module not isomorphic
to U .
Before we formulate the main result of the paper, we summarize several results

of [4, Section 2] we shall use in the sequel. If U and V are uniserial modules, we say
that U, V are of the same monogeny (epigeny) class if there are monomorphisms
(epimorphisms) f :U → V and g:V → U . In this case we write [U ]m = [V ]m
([U ]e = [V ]e). We can get some information about monogeny and epigeny classes
of U from the lattice of submodules of U . Let S be the set of all monomorphisms
in EndR(U) and let T be the set of all epimorphisms in EndR(U). We define Um =⋂

f∈S Im f and Ue =
∑

f∈T Ker f . Then Um, Ue are fully invariant submodules

of U , [V ]m = [U ]m if and only if V is isomorphic to a submodule of U properly
containing Um or U ≃ V , [V ]e = [U ]e if and only if V is isomorphic to U/U ′,
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where U ′ = 0 or U ′  Ue. If U does not have local endomorphism ring, then
0 6= Ue and Um  U . Further, a uniserial module U is not quasi-small if and only
if Um  Ue = U and U is countably generated. If Ue ⊆ Um, then any module
of the same monogeny class as U is quasi-small. On the other hand if Um  Ue,
there is unique module V up to isomorphism such that [V ]m = [U ]m and V is
not quasi-small. Moreover, for any u ∈ Ue there exists a submodule U ′ ⊆ Ue such
that U ′ ≃ V and u ∈ U ′.
Now we can formulate the main result of the paper:

Theorem 1.1. Let U be a non-zero uniserial right module over a ring R. Then

(i) if for any monomorphism f :U → U and any epimorphism g:U → U , the
homomorphism gf is not zero, then any object in Add(U) is isomorphic

to U (I) for a suitable set I;
(ii) if U is quasi-small and there is a monomorphism f :U → U and an epi-
morphism g:U → U such that gf = 0, then any object of Add(U) is iso-

morphic to U (I) ⊕ V (J), where I, J are suitable sets and V is the unique
uniserial module of the same monogeny class as U that is not quasi-small;

(iii) if U is not quasi-small, then any object of Add(U) is isomorphic to U (I)

for a suitable set U .

2. The result

Throughout this paper we suppose that R is an associative ring with unit and
U is a uniserial right module over R such that U is a quasi-small module of
type 2. This means that there is a monomorphism f :U → U and an epimorphism
g:U → U such that neither of them is an isomorphism. If a uniserial module is
not of type 2, then it has local endomorphism ring by [3, Theorem 9.1] and our
main theorem holds for such uniserial modules as remarked above.
Before we start let us fix the following notation: Let M = A ⊕ B = ⊕i∈INi

be two direct sum decompositions of M . We denote πA:M → A, πB :M → B,
πi:M → Ni, i ∈ I the canonical projections and we denote ιA:A → M , ιB :B →
M , ιi:Ni → M the canonical injections.
We start with an auxiliary lemma whose modifications are quite used in the

literature. Recall that a nonzero module is called uniform if any pair of its nonzero
submodules has a nonzero intersection. Obviously, any nonzero uniserial module
is uniform.

Lemma 2.1. Let I be a nonempty set and let {Mi}i∈I be a family of R-modules.
Suppose thatN is a uniform submodule of ⊕i∈IMi. Then there exists a nonempty

finite set I ′ ⊆ I such that πi|N :N → Mi is injective if and only if i ∈ I ′. Moreover,
for any i ∈ I ′, N ∩ (⊕j 6=iMj) = 0.

Proof: Since N is nonzero, there exists 0 6= n ∈ N . Let I ′′ be a finite set such
that for any i ∈ I, πi(n) = 0 if and only if i /∈ I ′′. Now 0 =

⋂
i∈I(N ∩Kerπi) ⊇
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nR ∩
⋂

i∈I′′(Kerπi ∩ N). Since N is uniform and I ′′ finite, Kerπi ∩ N = 0 for

some i ∈ I ′′. So the set I ′ = {i ∈ I ′′ | πi|N is mono} is nonempty. �

The following lemma gives a criterion when a uniserial submodule of U (N) has
a complement. Recall that a family fi, i ∈ I of homomorphisms from M to N is
called summable, if for any m ∈ M there is a finite set I ′ ⊆ I such that fi(m) = 0
for any i ∈ I \ I ′. In this case the sum of this family gives a homomorphism∑

i∈I fi:M → N .

Lemma 2.2. Let V be a submodule of M = ⊕i∈NUi, where V is uniserial and
Ui = U for any i ∈ N. If there is j ∈ N such that πj(V ) = Uj , then V is a direct
summand of M isomorphic to U . Conversely, if V is a direct summand of M
and V ≃ U , then there is j ∈ N such that πj(V ) = Uj .

Proof: Suppose that πj(V ) = Uj for some j ∈ N. Since V is uniform, we can
use Lemma 2.1 to find i ∈ N such that f = πi|V is a monomorphism. If we put
Vi = f(V ) and if gk:Vi → Uk is a homomorphism given by πk ◦f−1 for any k ∈ N,
we see that {gk}k∈N can be considered as a summable family of homomorphism
from Vi to M and V = Im

∑
k∈N

gk. We know that gj is an epimorphism. If gj

is an isomorphism, then πj |V is an isomorphism and thus M = V ⊕ (⊕k 6=jUk).
If Vi = Ui, then πi|V is an isomorphism and M = V ⊕ (⊕k 6=iUk). Thus we can
suppose Vi 6= Ui, i 6= j and gj : Vi → Uj is a non-monic epimorphism. Now, let
V ′ = Im ιi+ ιj , where ιi, ιj : U → M are the canonical injections. Then it is easy

to see V ⊕ V ′ ⊕ (⊕k 6=i,jUk) = M . Since πi|V :V → U is a monomorphism and
πj |V :V → U is an epimorphism, V ≃ U by [3, Lemma 9.2(i)].

Now suppose V is a direct summand of M isomorphic to U . For any n ∈
N consider decomposition M = V ⊕ X = ⊕n

i=1Ui ⊕ Yn, where Yn = ⊕i>nUi.
One of the homomorphisms πV ι1π1ιV , . . . , πV ιnπnιV , πV ιYn

πYn
ιV has to be an

epimorphism because otherwise their sum cannot be an epimorphism. If it is
one of the πV ιiπiιV we are done because πi(V ) = Ui, otherwise for any n ∈
N, πV ιYn

πYn
ιV is an epimorphism. But then V is a union of kernels of these

epimorphisms, therefore Ve = V . This also gives that V is a countable union of
proper submodules and hence countably generated. As V ≃ U , Vm  V and V is
not quasi-small. This contradicts our assumption that U is quasi-small. �

If we want to prove that a uniserial module V is isomorphic to a direct summand
of a module A, it is enough to find f, f ′:V → A and g, g′:A → V such that gf
is a monomorphism and g′f ′ is an epimorphism according to [2, Proposition 2.4]
and [3, Theorem 9.1]. The following lemma says that if A is a non-zero direct

summand of U (ω), it is enough to find the epimorphisms.

Lemma 2.3. Let Ui, i ∈ I, be a family of uniform modules. If A⊕B = ⊕i∈IUi

and A 6= 0, then there are i, j ∈ I such that gf is a monomorphism, where
f = πAιi and g = πj |A.
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Proof: Consider the homomorphisms πAιi, i ∈ I. If none of them is a monomor-
phism, then B∩Ui is non-zero for all i ∈ I. Since in this case⊕i∈IB∩Ui is essential
in ⊕i∈IUi, we have a contradiction to A 6= 0. Let i ∈ I be any index for which
πAιi is a monomorphism. Then V = πA(Ui) is uniform and hence there is j ∈ I
such that πj |V is a monomorphism by Lemma 2.1. Therefore for f = πAιi and
g = πj |A the composition gf is a monomorphism. �

Lemma 2.4. Let A ⊕ B = ⊕i∈NUi, where Ui = U for any i ∈ N. If for any
i, j ∈ N πjπA(Ui) 6= Uj , then B ≃ ⊕i∈NUi.

Proof: From our assumption, for any i ∈ N we have πiπB(Ui) = Ui and
πjπB(Ui) 6= Uj whenever i 6= j.

Set U ′
1 = πB(U1) and observe that U ′

1 ⊕ B1 = B for suitable module B1 by
Lemma 2.2. Note that, for any j > 1, πj(U

′
1) 6= Uj .

Suppose that we have constructed U ′
1, . . . , U

′
k such that B = U ′

1⊕· · ·⊕U ′
k⊕Bk

for some Bk ⊆ B, πj(U
′
1⊕ · · · ⊕U ′

k) 6= Uj for any j > k and πB(U1 ⊕ · · · ⊕Uk) =

U ′
1⊕· · ·⊕U ′

k. Put U
′
k+1 = πBk

(Uk+1) (projection is with respect to decomposition

⊕i∈NUi = A⊕U ′
1 ⊕ · · · ⊕U ′

k ⊕Bk). Now we have πk+1(U
′
k+1) = Uk+1, therefore

U ′
k+1 is a direct summand of Bk and we have U ′

1 ⊕ · · · ⊕ U ′
k ⊕ U ′

k+1 ⊕ Bk+1 for

some Bk+1 ⊆ Bk. From the induction argument we have that U ′
1 ⊕ · · · ⊕U ′

k+1 =

πB(U1 ⊕ · · · ⊕Uk+1) and thus πj(U
′
1 ⊕ · · · ⊕U ′

k+1) 6= Uj for any j > k+1. After

all B = ⊕i∈NU ′
i , where πi(U

′
i) = Ui. Since πi(U

′
i) = Ui, U ≃ U ′

i according to
Lemma 2.2. �

Corollary 2.5. Let U be a uniserial module. Let A⊕ B = U (ω). Then either A

contains a direct summand isomorphic to U or B ≃ U (ω).

Proof: IfA = 0 we are done. Suppose A 6= 0. From Lemma 2.3 we have existence
of homomorphisms f : U → A and g:A → U such that gf is a monomorphism.
If there are no homomorphisms f ′:U → A and g′:A → U such that g′f ′ is

an epimorphism, we have B ≃ U (ω) according to Lemma 2.4 and Lemma 2.2.
Otherwise we have U isomorphic to a direct summand of A. �

Observation 2.6. Let V, V ′ be uniserial modules of type 2 having the same
epigeny class. Then f(Ve) ⊆ V ′

e for any homomorphism f :V → V ′.

Proof: Let v ∈ Ve be such that f(v) /∈ V ′
e . This is impossible if f is an

epimorphism by [4, Lemma 2.3(iv)]. But there is an epimorphism g:V → V ′ such
that g(v) = 0 since [V ]e = [V

′]e. Then h = f + g is an epimorphism such that
h(v) /∈ V ′

e , a contradiction to [4, Lemma 2.3(iv)]. �

The next proposition gives an answer to [3, Problem 13] for the remaining case

(i.e. there is no superdecomposable direct summand of X(I) if X is a quasi-small
uniserial module of type 2).
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Proposition 2.7. Let A be a non-zero direct summand of U (ω). Then A contains
a non-zero uniserial direct summand. Moreover, if A does not contain a direct
summand isomorphic to U , then there exists a non-quasi-small module V of the
same monogeny class as U and A is a direct sum of modules isomorphic to V .

Proof: Let A ⊕ B = ⊕i∈NUi, where A 6= 0 and Ui = U for any i ∈ N. We can
suppose πjπA(Ui) 6= Uj for any i, j ∈ N, otherwise A contains a direct summand
isomorphic to U by Lemma 2.2.
Let us analyze the proof of Lemma 2.4 a bit. We keep the notation from the

proof of Lemma 2.4. For any u ∈ ⊕i∈N(Ui)e, πB(u) ⊆ ⊕i∈N(U
′
i)e according to Ob-

servation 2.6. From the construction πB(Ui) ⊆ U ′
1⊕· · ·⊕U ′

i and πU ′

i
πB(Ui) = U ′

i .

Thus since [Ui]e = [U
′
i ]e and πU ′

i
πB |Ui

is an epimorphism, we have πU ′

i
πB(u) /∈

(U ′
i)e for any u ∈ Ui \ Ue. Now let a = a1 + · · ·+ ak ∈ A, and ai ∈ Ui. Suppose

that a /∈ ⊕i∈N(Ui)e. Let l be the greatest index 1 ≤ l ≤ k such that al /∈ (Ul)e.
Then πB(a1 + · · ·+ al−1) ∈ U ′

1⊕ · · · ⊕U ′
l−1, πU ′

l
πB(al+1+ · · ·+ ak) ∈ (U

′
l )e, and

πU ′

l
πB(al) /∈ (U ′

l )e. Thus πB(a) 6= 0, a contradiction. From this fact we see that

A ⊆ ⊕i∈N(Ui)e. But since A 6= 0, Lemma 2.3 gives i, j ∈ N such that πjιAπAιi
is a monomorphism. Therefore πj(A) ⊆ (Uj)e contains an isomorphic copy of U
and Um  Ue follows.
If Um  Ue and there are no homomorphisms f : U → A and g : A → U

such that g ◦ f is an epimorphism, then for any i ∈ N we have πj(A) 6= πjπA(Ui)
whenever (Uj)m  πj(A) because πjπA(Ui) ≃ U in this case. Therefore πj(A)
is countably generated whenever (Uj)m  πj(A). Since Um  Ue, any countably
generated submodule of Ue is contained in a submodule of Ue that is not quasi-
small and that properly contains Um (if Ue is countably generated it is not quasi-
small, otherwise we can adapt the proof of [4, Lemma 2.9]). Any such module
is isomorphic to V (the unique module of the same monogeny class as U that
is not quasi-small). It follows that for any i ∈ N there exists Wi ≃ V such that

πi(A) ⊆ Wi ⊆ (Ui)e. Therefore A can be considered as a direct summand of V (ω).
By [4, Theorem 3.12], A is isomorphic to a direct sum of copies of V . �

The next proposition can be seen as an analogy to the result “uniformly big
projective modules are free” which was proved by Bass in [1]. In fact, we just
adapted his proof to our setting. Let us recall the notions we shall need in the
proof of the proposition. A moduleM is called small if for any family of modules
Mi, i ∈ I and any homomorphism f :M → ⊕i∈IMi, there is a finite set I ′ ⊆ I
such that f(M) ⊆ ⊕i∈I′Mi. A module is called σ-small , if it is a union of a
countable chain of its small submodules. As noted above, any uniserial module is
σ-small.

Proposition 2.8. Let M = A ⊕ B = ⊕i∈NUi, where for any i ∈ N Ui = U .
Suppose for any n ∈ N there exists a direct summand of A isomorphic to Un.

Then A is isomorphic to U (ω).
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Proof: Let V be a proper submodule of U such that there is a non-monic epimor-
phism g:V → U . By induction we construct submodules U ′

1, U
′
2, . . . , A1, A2, . . .

of A and we find j1, j2, · · · ∈ N such that for any i ∈ N the following are satisfied:

(i) for any k > i, U ′
k ⊆ Ai,

(ii) Ai ⊕ (⊕j≤iU
′
j) = A,

(iii) πji
(U ′

i) = Uji
,

(iv) for every k ≥ i is πji
(Ak) 6= Uji

,
(v) U ′

i ≃ U for any i ∈ N.

According to the assumption A contains a uniserial direct summand U ′
1 iso-

morphic to U . By Lemma 2.2 there exists j1 such that πj1(U
′
1) = Uj1 . If πj1 |U1

is an isomorphism, we set A1 = A ∩ ⊕k 6=j1Uk. Otherwise there is i1 6= j1 such

that πi1 |U
′
1 is a monomorphism. Let h:V → Ui1 ⊕ Uj1 be given by the sum of

ιi1g and an inclusion of V into Uj1 . Then A⊕B = U ′
1⊕ Imh⊕ (⊕i6=i1,j1Ui). Set

A1 = A ∩ (Imh ⊕ (⊕i6=i1,j1Ui)). In both cases (ii), (iii), (iv) and (v) are satisfied
for i = 1.

Now suppose that j1, . . . , jk, U
′
1, . . . , U

′
k, Ak have been defined such that con-

ditions (i)–(v) are satisfied when restricted to constructed objects. From (ii), A =

⊕k
i=1U

′
i ⊕Ak. According to our assumption Ak contains a direct summand U ′

k+1
isomorphic to U (recall that any uniserial module cancels from direct sums by [3,
Corollary 4.6]). Therefore there is jk+1 such that πjk+1

(U ′
k+1) = Ujk+1

. In the

same way as above we find X such that A⊕B = X⊕U ′
k+1 and πjk+1

(X) 6= Ujk+1
.

Then we put Ak+1 = Ak ∩X . Then conditions (i)–(v) are satisfied by the objects
we have defined.

For the modules U ′
k defined in the construction we have indices ik, jk ∈ N such

that πik |U ′

k
is a monomorphism and πjk

|U ′

k
is an epimorphism. We know that jk

are pairwise different. We can suppose that, for any k < l ∈ N, ik, jk < il, jl if we
remove some of U ′

ns since indices ik can be chosen such that the set {ik | k ∈ N}
is infinite as it follows from considerations about Goldie dimension.

For any k ∈ N such that ik 6= jk let Vik be a projection of U
′
k to Uik ⊕Ujk

and
Vjk
be a complement of Vik in Uik ⊕Ujk

. For any i ∈ N \ {ik, jk | ik 6= jk, k ∈ N}

set Vi = Ui. Then A ⊕ B = ⊕i∈NVi. Let π′
i:M → Vi, ι

′
i:Vi → M be canonical

projections and injections with respect to this decomposition. Observe that for
any k ∈ N π′

ik
|U ′

k
is an isomorphism. Therefore there are fk,l:Vik → Vl such that

for any k ∈ N homomorphism fk,ik is an isomorphism, {fk,l}l∈N is a summable

family of homomorphisms from Vik to M and U ′
k = Im

∑
l∈N

fk,l.

We are going to define a sequence k1 < k2 < · · · ∈ N such that ⊕l∈NU ′
kl
is a

direct summand of M . Since any uniserial module is σ-small, there are modules
Vk,l ⊆ Vik such that Vk,l is small for any k, l ∈ N and Vik =

⋃
l∈N

Vk,l for any
k ∈ N.

First put k1 = 1. Observe thatM = U ′
k1

⊕ (⊕i6=i1Vi). Suppose k1, . . . , kn have
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been defined such that if I ′ = N \ {ik1, . . . , ikn
}, then M = ⊕n

j=1U
′
kj

⊕ (⊕i∈I′Vi).

Clearly, module N = ⊕n
j=1Vkj ,n is small. Therefore there is k′ such that N ⊆

⊕n
j=1U

′
kj

⊕ (⊕i<k′,i∈I′Vi). Now, let kn+1 be an integer greater that k′ such that

M = ⊕n+1
j=1U

′
kj

⊕ (⊕i∈I′′Vi), where I ′′ = I ′ \ {ikn+1
}. (Any j > max(k′, kn) such

that fkl,ij is neither a monomorphism nor an epimorphism for any 1 ≤ l ≤ n can

be chosen for kn+1.)
By our construction, M = ⊕j∈NU ′

kj
⊕ (⊕i∈IVi), where I = N \ {ik1, ik2 , . . . }.

Of course, ⊕j∈NU ′
kj

⊆ A and thus A contains a direct summand isomorphic to

U (ω). To finish the proof we use the Eilenberg’s trick as usually: Recall that

X⊕U (ω) ≃ U (ω) whenever X is a direct summand of U (ω). Therefore if A⊕A′ ≃
U (ω) and U (ω) ⊕ A′′ ≃ A, then A ≃ U (ω). �

Corollary 2.9. Let W be a uniserial module. If A ⊕ B ≃ W (ω), then either

A ≃ W (ω) or B ≃ W (ω).

Proof: If W is not of type 2, we use [3, Corollary 2.54]. If W is not quasi-small,
we use [4, Theorem 3.12]. IfW is quasi-small and of type 2, we use Proposition 2.8,
Corollary 2.5 and the fact that uniserial modules cancel from direct sums (see [3,
Corollary 4.6]). �

Proof of Theorem 1.1: Any direct summand of U (I) can be decomposed as

a direct sum of direct summands of U (ω) by [3, Corollary 2.49]. Therefore it is
possible to suppose I countable. Uniserial modules with local endomorphism ring
satisfy the hypothesis of (i) and the theorem holds for such modules as explained
above. Also the case (iii) was already proved in [4, Theorem 3.12] So it remains
to prove the theorem for quasi-small uniserial modules of type 2.
Let A⊕B = ⊕i∈NUi, where Ui = U for any i ∈ N. It is enough to see that A is

a direct sum of uniserial modules since any non-zero uniserial direct summand has
the same monogeny class as U by [3, Proposition 9.6] and thus the uniserial direct
summand can be isomorphic only to U or, in case (ii), to V . We can suppose that
A does not have finite Goldie dimension otherwise we use Proposition 2.7 to see
that A is serial. If A contains a direct summand isomorphic to Uk for arbitrary

k ∈ N, then A ≃ U (ω) by Proposition 2.8. In the other case there exist k ∈ N and
A′ ⊆ A such that A ≃ Uk ⊕ A′ and A′ contains no direct summand isomorphic
to U .
(i) In this case A′ = 0 by Proposition 2.7. (ii) A′ is isomorphic to a direct sum

of copies of V by Proposition 2.7. �

Remark 2.10. The reader could observe that we proved that summands of U (ω)

having infinite Goldie dimension in case (ii) can be only modules isomorphic to

U (ω) or Uk ⊕ V (ω), k ∈ N0. This reflects the main result of [5] that imply that

for cardinals κ, λ, κ′, λ′ the modules U (κ)⊕V (λ) and U (κ
′)⊕V (λ

′) are isomorphic
if and only if κ = κ′ and κ+ λ = κ′ + λ′.
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