Commentationes Mathematicae Universitatis Carolinae

Allami Benyaiche; Salma Ghiate
Martin boundary associated with a system of PDE

Commentationes Mathematicae Universitatis Carolinae, Vol. 47 (2006), No. 3, 399--425

Persistent URL: http://dml.cz/dmlcz/119602

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Martin boundary associated with a system of PDE

Allami Benyaiche, Salma Ghiate

Abstract

In this paper, we study the Martin boundary associated with a harmonic structure given by a coupled partial differential equations system. We give an integral representation for non negative harmonic functions of this structure. In particular, we obtain such results for biharmonic functions (i.e. $\triangle^{2} \varphi=0$) and for non negative solutions of the equation $\triangle^{2} \varphi=\varphi$.

Keywords: Martin boundary, biharmonic functions, coupled partial differential equations

Classification: Primary 31C35; Secondary 31B30, 31B10, $60 J 50$

1. Introduction

Let D be a domain in $\mathbb{R}^{d}, d \geq 1$, and let $L_{i}, i=1,2$, be two second order elliptic differential operators on D leading to harmonic spaces $\left(D, H_{L_{i}}\right)$ with Green functions G_{i} (see [18]). Moreover, we assume that every ball $B \subset \bar{B} \subset D$ is an $L_{i^{-}}$ regular set. Throughout this paper we consider two positive Radon measures μ_{1} and μ_{2} such that $K_{D}^{\mu_{i}}=\int_{D} G_{i}(\cdot, y) \mu_{i}(d y)$ is a bounded continuous real function on $D, i=1,2$, and

$$
\left\|K_{D}^{\mu_{1}}\right\|_{\infty}\left\|K_{D}^{\mu_{2}}\right\|_{\infty}<1
$$

We consider the system:

$$
(S)\left\{\begin{array}{l}
L_{1} u=-v \mu_{1}, \\
L_{2} v=-u \mu_{2} .
\end{array}\right.
$$

Note that if U is a relatively compact open subset of $D, \mu_{1}=\lambda^{d}$, where λ^{d} is the Lebesgue measure, $\mu_{2}=0$ and $L_{1}=L_{2}=\triangle$, then we obtain the classical biharmonic case on U. In the case when $\mu_{1}=\mu_{2}=\lambda^{d}$ and $\lambda^{d}(D)<\infty$, we obtain equations of type $\triangle^{2} \varphi=\varphi$. In this work, we shall study the Martin boundary associated with the balayage space given by the system (S) (see [7], [14] and [19]), and we shall characterize minimal points of this boundary in order to give an integral representation for non negative solutions of the system (S).

Let us note that the notion of a balayage space defined by J. Bliedtner and W. Hansen in [7] is more general than that of a P-harmonic space. It covers harmonic structures given by elliptic or parabolic partial differential equations, Riesz potentials, and biharmonic equations (which are a particular case of this
work). In the biharmonic case, a similar study can be done using couples of functions as presented in [3], [5], [8], [9], [21] and [22].

We are also grateful to the referee for his remarks and comments.

2. Notations and preliminaries

For $j=1,2$, let $X_{j}=D \times\{j\}$, and let $X=X_{1} \bigcup X_{2}$. Moreover, let i_{j} and π_{j} be the mappings defined by

$$
i_{j}:\left\{\begin{array}{l}
D \longrightarrow X_{j} \\
x \longmapsto(x, j)
\end{array} \quad \text { and } \quad \pi_{j}:\left\{\begin{array}{l}
X_{j} \longrightarrow D \\
(x, j) \longmapsto x .
\end{array} .\right.\right.
$$

Let \mathcal{U}_{0} be the set of all balls B such that $B \subset \bar{B} \subset D, \mathcal{U}_{j}$ be the image of \mathcal{U}_{0} by $i_{j}, j=1,2$, and $\mathcal{U}=\mathcal{U}_{1} \cup \mathcal{U}_{2}$.

Definition 2.1. Let v be a measurable function on X. For $U \in \mathcal{U}_{1}$, we define the kernel S_{U} by

$$
S_{U} v=\left(H_{\pi_{1}(U)}^{1}\left(v \circ i_{1}\right)\right) \circ \pi_{1}+\left(K_{\pi_{1}(U)}^{\mu_{1}}\left(v \circ i_{2}\right)\right) \circ \pi_{1} .
$$

For $U \in \mathcal{U}_{2}$, we define the kernel S_{U} by

$$
S_{U} v=\left(H_{\pi_{2}(U)}^{2}\left(v \circ i_{2}\right)\right) \circ \pi_{2}+\left(K_{\pi_{2}(U)}^{\mu_{2}}\left(v \circ i_{1}\right)\right) \circ \pi_{2},
$$

where $H_{\pi_{j}(U)}^{j}, j=1,2$, denote the harmonic kernels associated with $\left(D, H_{L_{j}}\right)$ and

$$
K_{\pi_{i}(U)}^{\mu_{i}}(w)=\int G_{i}^{\pi_{i}(U)}(\cdot, y) w(y) \mu_{i}(d y) \quad i=1,2
$$

where w is a measurable function on D and $G_{i}^{\pi_{i}(U)}$ is the Green function associated with the operator L_{i} on $\pi_{i}(U)$. Let $G_{j}, j=1,2$, be the Green kernel associated with L_{j} on D. The family of kernels $\left(S_{U}\right)_{U \in \mathcal{U}}$ yields a balayage space on X as defined in [7] and [14].

Let ${ }^{*} \mathcal{H}(X)$ denote the set of all hyperharmonic functions on X, i.e.

$$
{ }^{*} \mathcal{H}(X):=\left\{v \in \mathcal{B}(X): v \text { is l.s.c. and } S_{U} v \leq v \quad \forall U \in \mathcal{U}\right\}
$$

where $\mathcal{B}(X)$ denotes the set of all Borel functions on X. Let $\mathcal{S}(X)$ be the set of all superharmonic functions on X, i.e.

$$
\mathcal{S}(X):=\left\{v \in{ }^{*} \mathcal{H}(X):\left.\left(S_{U} v\right)\right|_{U} \in C(U) \quad \forall U \in \mathcal{U}\right\}
$$

and let $\mathcal{H}(X)$ be the set of all harmonic functions on X :

$$
\mathcal{H}(X):=\left\{h \in \mathcal{S}(X): S_{U} h=h \quad \forall U \in \mathcal{U}\right\} .
$$

Denoting $\mathcal{W}:={ }^{*} \mathcal{H}^{+}(X)$, the space (X, \mathcal{W}) is a balayage space (see [7] and [14]).
For every positive numerical function φ on X and for every $U \in \mathcal{U}$, the reduit R_{φ}^{U} is defined by

$$
R_{\varphi}^{U}:=\inf \left\{v \in^{*} \mathcal{H}(X): v \geq \varphi \text { on } U\right\}
$$

Let $\widehat{R}_{\varphi}^{U}$ be the lower semi-continuous regularization of R_{φ}^{U}, i.e.

$$
\widehat{R}_{\varphi}^{U}(x):=\liminf _{y \rightarrow x} R_{\varphi}^{U}(y), \quad x \in X
$$

Theorem 2.1. Let s be a function on X such that

$$
K_{D}^{\mu_{j}}\left(s \circ i_{k}\right)<\infty, \quad j \neq k, \quad j, k=1,2
$$

The following statements are equivalent.

1. s is a superharmonic function on X.
2. $s_{j}:=s \circ i_{j}-K_{D}^{\mu_{j}}\left(s \circ i_{k}\right), j \neq k, j, k \in\{1,2\}$, are L_{j}-superharmonic on D.

Proof: Let s be a superharmonic function on X and let $U \in \mathcal{U}_{0}$. We have

$$
i_{1}(U) \in \mathcal{U}_{1} \quad \text { and } \quad \pi_{1}\left(i_{1}(U)\right)=U
$$

Since $S_{i_{1}(U)} s \leq s$, we have

$$
H_{U}^{1}\left(s \circ i_{1}\right)+K_{U}^{\mu_{1}}\left(s \circ i_{2}\right) \leq s \circ i_{1}
$$

Knowing that

$$
K_{U}^{\mu_{1}}\left(s \circ i_{2}\right)=K_{D}^{\mu_{1}}\left(s \circ i_{2}\right)-H_{U}^{1}\left(K_{D}^{\mu_{1}}\left(s \circ i_{2}\right)\right),
$$

we obtain

$$
H_{U}^{1}\left(s \circ i_{1}\right)+K_{D}^{\mu_{1}}\left(s \circ i_{2}\right)-H_{U}^{1}\left(K_{D}^{\mu_{1}}\left(s \circ i_{2}\right)\right) \leq s \circ i_{1} .
$$

Therefore

$$
H_{U}^{1}\left(s \circ i_{1}-K_{D}^{\mu_{1}}\left(s \circ i_{2}\right)\right) \leq s \circ i_{1}-K_{D}^{\mu_{1}}\left(s \circ i_{2}\right)
$$

So, $s_{1}:=s \circ i_{1}-K_{D}^{\mu_{1}}\left(s \circ i_{2}\right)$ is an L_{1}-superharmonic function on D. Similarly, we prove that $s_{2}:=s \circ i_{2}-K_{D}^{\mu_{2}}\left(s \circ i_{1}\right)$ is L_{2}-superharmonic on D. Conversely, we assume that $s_{i}, i=1,2$, are L_{i}-superharmonic functions. Let $U \in \mathcal{U}_{j}, j=1,2$ and $k \neq j$. Since s_{j} is an L_{j}-superharmonic function,

$$
H_{\pi_{j}(U)}^{j} s_{j} \leq s_{j}
$$

Hence

$$
H_{\pi_{j}(U)}^{j}\left(s \circ i_{j}-K_{D}^{\mu_{j}}\left(s \circ i_{k}\right)\right) \leq s \circ i_{j}-K_{D}^{\mu_{j}}\left(s \circ i_{k}\right) .
$$

Therefore

$$
H_{\pi_{j}(U)}^{j}\left(s \circ i_{j}\right)+K_{\pi_{j}(U)}^{\mu_{j}}\left(s \circ i_{k}\right) \leq s \circ i_{j} .
$$

So,

$$
S_{U} s \leq s, \quad \forall U \in \mathcal{U}
$$

Thus s is superharmonic on X.

Corollary 2.1. Let v be a function on X such that $K_{D}^{\mu_{j}}\left(v \circ i_{k}\right), j \neq k, j, k \in$ $\{1,2\}$, is a finite function. Then the following properties are equivalent.

1. v is harmonic on X.
2. $v \circ i_{1}-K_{D}^{\mu_{1}}\left(v \circ i_{2}\right)$ and $v \circ i_{2}-K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)$ are L_{1}-harmonic and L_{2}-harmonic function on D, respectively.

Remarks 2.1. (1) Note that if v is a positive harmonic function on X, then $K_{D}^{\mu_{j}}\left(v \circ i_{k}\right), j \neq k, j, k \in\{1,2\}$, is a finite function.
(2) If $v \in \mathcal{H}(X)$, then the couple $\left(v \circ i_{1}, v \circ i_{2}\right)$ is a solution of (S).

Corollary 2.2. Let v be a positive function defined on X. Then the following properties are equivalent.

1. v is hyperharmonic on X.
2. The function

$$
v_{j}:= \begin{cases}v \circ i_{j}-K_{D}^{\mu_{j}}\left(v \circ i_{k}\right) & \text { if } K_{D}^{\mu_{j}}\left(v \circ i_{k}\right)<\infty \\ +\infty & \text { otherwise }\end{cases}
$$

is a positive L_{j}-hyperharmonic function on $D, j \neq k, j, k \in\{1,2\}$.
If we identify a function s on X with the couple $\left(s \circ i_{1}, s \circ i_{2}\right)$ defined on D, then we get the following N. Bouleau's decomposition [9]:
Theorem 2.2. Any superharmonic function s on X can be written as $s=t+V s$, where

$$
V=\left(\begin{array}{cc}
0 & K_{D}^{\mu_{1}} \\
K_{D}^{\mu_{2}} & 0
\end{array}\right)
$$

and t is a function on X defined by

$$
t:= \begin{cases}s_{1} \circ \pi_{1} & \text { on } X_{1} \\ s_{2} \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

where $s_{j}:=s \circ i_{j}-K_{D}^{\mu_{j}}\left(s \circ i_{k}\right), j \neq k, j, k \in\{1,2\}$.
Proof: It follows from Theorem 2.1 that $s_{j}, j=1,2$, is L_{j}-superharmonic on D. Then, if we identify the function s with the couple ($s \circ i_{1}, s \circ i_{2}$) defined on D and the function t with the couple $\left(t \circ i_{1}, t \circ i_{2}\right)=\left(s_{1}, s_{2}\right)$ defined on D, we have

$$
\left(\begin{array}{cc}
0 & K_{D}^{\mu_{1}} \\
K_{D}^{\mu_{2}} & 0
\end{array}\right)\binom{s \circ i_{1}}{s \circ i_{2}}+\binom{s_{1}}{s_{2}}=\binom{s \circ i_{1}}{s \circ i_{2}} .
$$

Remark 2.1. In the classical biharmonic case, we obtain the N. Bouleau's decomposition [9]. Indeed, if we identify a function s on X with the couple ($s \circ i_{1}, s \circ i_{2}$) on D, then

$$
s \circ i_{1}=s_{1}+K_{D}^{\mu_{1}}\left(s \circ i_{2}\right),
$$

with $s_{1} L_{1}$-superharmonic on D and the N . Bouleau's kernel V is given by $V=$ $K_{D}^{\mu_{1}}$.

3. Martin boundary associated with (S)

Let us fix $x_{0} \in D$ and set for all $x, y \in D$

$$
g^{1}(x, y):= \begin{cases}\frac{G_{1}(x, y)}{G_{1}\left(x_{0}, y\right)} & \text { if } x \neq x_{0} \text { or } y \neq x_{0} \\ 1 & \text { if } x=y=x_{0}\end{cases}
$$

and

$$
g^{2}(x, y):= \begin{cases}\frac{G_{2}(x, y)}{G_{2}\left(x_{0}, y\right)} & \text { if } x \neq x_{0} \text { or } y \neq x_{0} \\ 1 & \text { if } x=y=x_{0}\end{cases}
$$

Let $\mathcal{A}_{1}=\left\{g^{1}(x, \cdot), x \in D\right\}, \mathcal{A}_{2}=\left\{g^{2}(x, \cdot), x \in D\right\}$ and $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$.
As in [10] and [12], we consider the Martin compactification \widehat{D} of D associated with \mathcal{A}. The boundary $\triangle=\widehat{D} \backslash D$ of D is called the Martin boundary of D associated with the system (S).

The function $g^{k}(x, \cdot), k=1,2, x \in D$ can be extended, on \widehat{D}, to a continuous function denoted $g^{k}(x, \cdot), k=1,2, x \in D$ as well.

In the following, we denote $Q:=\sum_{n=0}^{+\infty}\left(K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\right)^{n}\left(\right.$ resp. $\left.T:=\sum_{n=0}^{+\infty}\left(K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}\right)^{n}\right)$ which coincides with $\left(I-K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\right)^{-1}\left(\operatorname{resp} .\left(I-K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}\right)^{-1}\right)$ on $\mathcal{B}_{b}(D)$, where $\left(I-K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\right)^{-1}$ (resp. $\left.\left(I-K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}\right)^{-1}\right)$ is the inverse of the operator ($I-$ $\left.K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\right)\left(\right.$ resp. $\left.\left(I-K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}\right)\right)$ on $\mathcal{B}_{b}(D)$, and $\mathcal{B}_{b}(D)$ denotes the set of all bounded Borel measurable functions on D. We recall the following equalities

$$
\begin{gathered}
\left(K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\right) Q=Q\left(K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\right) \\
\left(K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\right) Q+I=Q
\end{gathered}
$$

Similarly we have

$$
\begin{gathered}
\left(K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}\right) T=T\left(K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}\right) \\
\left(K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}\right) T+I=T \\
K_{D}^{\mu_{2}} Q=T K_{D}^{\mu_{2}}
\end{gathered}
$$

and

$$
K_{D}^{\mu_{1}} T=Q K_{D}^{\mu_{1}}
$$

Remark 3.1. Note that if φ is a finite positive Borel measurable function on D such that $K_{D}^{\mu_{1}} K_{D}^{\mu_{2}} \varphi$ is bounded, then $Q \varphi<+\infty$.

Theorem 3.1. Let $t_{i}, i=1,2$, be two L_{i}-harmonic functions on D such that $K_{D}^{\mu_{j}} t_{k}$ is finite and $K_{D}^{\mu_{k}} K_{D}^{\mu_{j}} t_{k}$ is bounded, $j \neq k, j, k \in\{1,2\}$, on D. Then the functions v and w defined on X by

$$
v:= \begin{cases}\left(Q t_{1}\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(K_{D}^{\mu_{2}} Q t_{1}\right) \circ \pi_{2} & \text { on } X_{2},\end{cases}
$$

and

$$
w:= \begin{cases}\left(Q K_{D}^{\mu_{1}} t_{2}\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(T t_{2}\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

are harmonic on X.
Remark 3.2. In the biharmonic case, if we assume that $K_{D}^{\lambda^{d}} t_{2}<\infty$, then $\left(t_{1}, 0\right)$ and $\left(K_{D}^{\lambda^{d}} t_{2}, t_{2}\right)$ are biharmonic.
Proof: Let us prove first that v and w are finite.
(i) We have

$$
\left(Q t_{1}\right) \circ \pi_{1}=\left(Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}} t_{1}\right) \circ \pi_{1}+t_{1} \circ \pi_{1}
$$

Since $K_{D}^{\mu_{1}} K_{D}^{\mu_{2}} t_{1}$ is bounded and t_{1} is finite,

$$
\left(Q t_{1}\right) \circ \pi_{1}<\infty
$$

(ii) We have also

$$
\left(K_{D}^{\mu_{2}} Q t_{1}\right) \circ \pi_{2}=\left(T K_{D}^{\mu_{2}} t_{1}\right) \circ \pi_{2}
$$

hence

$$
\left(K_{D}^{\mu_{2}} Q t_{1}\right) \circ \pi_{2}=\left(T K_{D}^{\mu_{2}} K_{D}^{\mu_{1}} K_{D}^{\mu_{2}} t_{1}\right) \circ \pi_{2}+\left(K_{D}^{\mu_{2}} t_{1}\right) \circ \pi_{2}
$$

Since $K_{D}^{\mu_{1}} K_{D}^{\mu_{2}} t_{1}$ is bounded and $K_{D}^{\mu_{2}} t_{1}$ is finite,

$$
\left(K_{D}^{\mu_{2}} Q t_{1}\right) \circ \pi_{2}<\infty
$$

(iii) We have

$$
\left(Q K_{D}^{\mu_{1}} t_{2}\right) \circ \pi_{1}=\left(Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}} K_{D}^{\mu_{1}} t_{2}\right) \circ \pi_{1}+\left(K_{D}^{\mu_{1}} t_{2}\right) \circ \pi_{1}
$$

Knowing that $K_{D}^{\mu_{2}} K_{D}^{\mu_{1}} t_{2}$ is bounded and $K_{D}^{\mu_{1}} t_{2}$ is finite, we have

$$
\left(Q K_{D}^{\mu_{1}} t_{2}\right) \circ \pi_{1}<\infty
$$

(iv) We have

$$
\left(T t_{2}\right) \circ \pi_{2}=\left(T K_{D}^{\mu_{2}} K_{D}^{\mu_{1}} t_{2}\right) \circ \pi_{2}+t_{2} \circ \pi_{2}
$$

Since $K_{D}^{\mu_{2}} K_{D}^{\mu_{1}} t_{2}$ is bounded and t_{2} is finite,

$$
\left(T t_{2}\right) \circ \pi_{2}<\infty
$$

Let us show now that v and w are harmonic. From Corollary 2.1, it suffices to show that $v \circ i_{j}-K_{D}^{\mu_{j}}\left(v \circ i_{k}\right)$ and $w \circ i_{j}-K_{D}^{\mu_{j}}\left(w \circ i_{k}\right), j \neq k, j, k \in\{1,2\}$, are L_{j}-harmonic functions on D.
(v) On the one hand,

$$
v \circ i_{1}-K_{D}^{\mu_{1}}\left(v \circ i_{2}\right)=Q t_{1}-\left(K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\right) Q t_{1} .
$$

As

$$
Q t_{1}=\left(K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\right) Q t_{1}+t_{1}
$$

we get

$$
v \circ i_{1}-K_{D}^{\mu_{1}}\left(v \circ i_{2}\right)=t_{1} .
$$

Since t_{1} is an L_{1}-harmonic function on $D, v \circ i_{1}-K_{D}^{\mu_{1}}\left(v \circ i_{2}\right)$ is L_{1}-harmonic on D.

On the other hand,

$$
v \circ i_{2}-K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)=K_{D}^{\mu_{2}} Q t_{1}-K_{D}^{\mu_{2}} Q t_{1}=0
$$

i.e. $v \circ i_{2}-K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)$ is L_{2}-harmonic on D. Then we conclude that v is harmonic on X.
(vi) Since

$$
\begin{equation*}
T=K_{D}^{\mu_{2}} Q K_{D}^{\mu_{1}}+I \tag{*}
\end{equation*}
$$

we have

$$
w \circ i_{1}-K_{D}^{\mu_{1}}\left(w \circ i_{2}\right)=\left(Q K_{D}^{\mu_{1}}-K_{D}^{\mu_{1}} K_{D}^{\mu_{2}} Q K_{D}^{\mu_{1}}-K_{D}^{\mu_{1}}\right) t_{2}
$$

As

$$
Q=\left(K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\right) Q+I
$$

we obtain

$$
w \circ i_{1}-K_{D}^{\mu_{1}}\left(w \circ i_{2}\right)=0 .
$$

Using (*), we have

$$
w \circ i_{2}-K_{D}^{\mu_{2}}\left(w \circ i_{1}\right)=\left(K_{D}^{\mu_{2}} Q K_{D}^{\mu_{1}}+I-K_{D}^{\mu_{2}} Q K_{D}^{\mu_{1}}\right) t_{2}=t_{2}
$$

Then $w \circ i_{j}-K_{D}^{\mu_{j}}\left(w \circ i_{k}\right)$ is L_{j}-harmonic on D and therefore, w is a harmonic function on X.

Corollary 3.1. Let $t_{i}, i=1,2$, be two positive L_{i}-hyperharmonic functions on D. Then the functions v and w defined on D by

$$
v:= \begin{cases}\left(Q t_{1}\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(K_{D}^{\mu_{2}} Q t_{1}\right) \circ \pi_{2} & \text { on } X_{2},\end{cases}
$$

and

$$
w:= \begin{cases}\left(Q K_{D}^{\mu_{1}} t_{2}\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(T t_{2}\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

are hyperharmonic on X.
Theorem 3.2. Let ν_{1} and ν_{2} be two positive Radon measures on \triangle such that

$$
\int_{\triangle} K_{D}^{\mu_{j}} g^{k}(\cdot, y) d \nu_{k}(y)<\infty
$$

and

$$
\int_{\triangle} K_{D}^{\mu_{j}} K_{D}^{\mu_{k}} g^{j}(\cdot, y) d \nu_{j}(y)
$$

is bounded on $D, j \neq k, j, k \in\{1,2\}$. Then the function v defined on X_{1} by

$$
v:=\int_{\triangle}\left(Q g^{1}(\cdot, y)\right) \circ \pi_{1} d \nu_{1}(y)+\int_{\triangle}\left(Q K_{D}^{\mu_{1}} g^{2}(\cdot, y)\right) \circ \pi_{1} d \nu_{2}(y)
$$

and on X_{2} by

$$
v:=\int_{\triangle}\left(K_{D}^{\mu_{2}} Q g^{1}(\cdot, y)\right) \circ \pi_{2} d \nu_{1}(y)+\int_{\triangle}\left(T g^{2}(\cdot, y)\right) \circ \pi_{2} d \nu_{2}(y)
$$

is harmonic on X.
Proof: It suffices to replace the functions t_{j} from Theorem 3.1 with the $L_{j^{-}}$ harmonic functions $\int_{\triangle} g^{j}(\cdot, y) d \nu_{j}(y)$.

Corollary 3.2. Let ν_{1} and ν_{2} be two positive Radon measures on \triangle such that $\int_{\triangle} K_{D}^{\mu_{1}} g^{2}(\cdot, y) d \nu_{2}(y)<\infty$. Then

$$
(v, w)=\left(\int_{\triangle} g^{1}(\cdot, y) d \nu_{1}(y)+\int_{\triangle} K_{D}^{\mu_{1}} g^{2}(\cdot, y) d \nu_{2}(y), \int_{\triangle} g^{2}(\cdot, y) d \nu_{2}(y)\right)
$$

is a biharmonic couple in the classical sense.

Theorem 3.3. Let v be a positive harmonic function on X such that $K_{D}^{\mu_{j}} K_{D}^{\mu_{k}}(v \circ$ i_{j}) is bounded on $D, j, k \in\{1,2\}, j \neq k$. Then there exist two positive Radon measures ν_{1} and ν_{2} supported by \triangle such that v can be represented on X_{1} by

$$
v=\int_{\triangle}\left(Q g^{1}(\cdot, y)\right) \circ \pi_{1} d \nu_{1}(y)+\int_{\triangle}\left(Q K_{D}^{\mu_{1}} g^{2}(\cdot, y)\right) \circ \pi_{1} d \nu_{2}(y)
$$

and on X_{2} by

$$
v=\int_{\triangle}\left(K_{D}^{\mu_{2}} Q g^{1}(\cdot, y)\right) \circ \pi_{2} d \nu_{1}(y)+\int_{\triangle}\left(T g^{2}(\cdot, y)\right) \circ \pi_{2} d \nu_{2}(y)
$$

Proof: Let $\left(D_{n}\right)_{n}$ be an increasing sequence of relatively compact open subsets of D such that $D=\bigcup D_{n}$, and let v be a positive harmonic function on X. From Corollary 2.1, the positive functions $v \circ i_{1}-K_{D}^{\mu_{1}}\left(v \circ i_{2}\right)$ and $v \circ i_{2}-K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)$ are L_{1}-harmonic and L_{2}-harmonic on D, respectively. Then for all $n \in \mathbb{N}$, both $\widehat{R}_{v \circ i_{1}-K_{D}^{\mu_{1}}\left(v \circ i_{2}\right)}^{D_{n}}$ and $\widehat{R}_{v \circ i_{2}-K_{D}^{D_{2}}\left(v \circ i_{1}\right)}^{D_{n}}$ are L_{1}-potential and L_{2}-potential on D, respectively. Therefore, there exist two positive Radon measures μ_{n}^{1} and μ_{n}^{2} on D such that

$$
\widehat{R}_{v \circ i_{1}-K_{D}^{\mu_{1}}\left(v \circ i_{2}\right)}^{D_{n}}=\int_{D} G_{1}(\cdot, y) d \mu_{n}^{1}(y)
$$

and

$$
\widehat{R}_{v \circ i_{2}-K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)}^{D_{n}}=\int_{D} G_{2}(\cdot, y) d \mu_{n}^{2}(y)
$$

Then we have

$$
\widehat{R}_{v \circ i_{1}-K_{D}^{\mu_{1}}\left(v \circ i_{2}\right)}^{D_{n}}=\int_{D} g^{1}(\cdot, y) d \nu_{n}^{1}(y)
$$

and

$$
\widehat{R}_{v \circ i_{2}-K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)}^{D_{n}}=\int_{D} g^{2}(\cdot, y) d \nu_{n}^{2}(y)
$$

with

$$
d \nu_{1}(y)=G_{1}\left(x_{0}, \cdot\right) d \mu_{n}^{1}(y)
$$

and

$$
d \nu_{2}(y)=G_{2}\left(x_{0}, \cdot\right) d \mu_{n}^{2}(y)
$$

Since $\widehat{R}_{v \circ i_{j}-K_{D}^{\mu_{j}}\left(v \circ i_{k}\right)}^{D_{n}}$ is L_{j}-harmonic on $D \backslash D_{n}, j \neq k, j, k \in\{1,2\}, \nu_{n}^{1}$ and ν_{n}^{2} are necessarily supported by $D \backslash D_{n}$.

Because of $\left\|\nu_{n}^{j}\right\| \leq\left(v \circ i_{j}\right)\left(x_{0}\right)-K_{D}^{\mu_{j}}\left(v \circ i_{k}\right)\left(x_{0}\right), j=1,2$, we may extract two subsequences $\left(\nu_{p(n)}^{1}\right)$ and $\left(\nu_{p(n)}^{2}\right)$ converging vaguely to two positive Radon measures ν^{1} and ν^{2} on $\bar{D}=\widehat{D}$. So, ν^{1} and ν^{2} are supported by \triangle. Therefore

$$
\left\{\begin{array}{l}
v \circ i_{1}-K_{D}^{\mu_{1}}\left(v \circ i_{2}\right)=\int_{\triangle} g^{1}(\cdot, y) d \nu^{1}(y), \\
v \circ i_{2}-K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)=\int_{\triangle} g^{2}(\cdot, y) d \nu^{2}(y)
\end{array}\right.
$$

Hence

$$
\left\{\begin{array}{l}
v \circ i_{1}=\int_{\triangle} g^{1}(\cdot, y) d \nu^{1}(y)+K_{D}^{\mu_{1}}\left(\int_{\triangle} g^{2}(\cdot, y) d \nu^{2}(y)+K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)\right) \\
v \circ i_{2}=\int_{\triangle} g^{2}(\cdot, y) d \nu^{2}(y)+K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
v \circ i_{1}=\int_{\triangle} g^{1}(\cdot, y) d \nu^{1}(y)+\int_{\triangle} K_{D}^{\mu_{1}} g^{2}(\cdot, y) d \nu^{2}(y)+K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(v \circ i_{1}\right), \\
v \circ i_{2}=\int_{\triangle} g^{2}(\cdot, y) d \nu^{2}(y)+K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)
\end{array}\right.
$$

Thus,

$$
\left\{\begin{aligned}
Q\left(v \circ i_{1}\right)= & \int_{\triangle} Q g^{1}(\cdot, y) d \nu^{1}(y)+\int_{\triangle} Q K_{D}^{\mu_{1}} g^{2}(\cdot, y) d \nu^{2}(y) \\
& +Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(v \circ i_{1}\right) \\
v \circ i_{2}=\int_{\triangle} & g^{2}(\cdot, y) d \nu^{2}(y)+K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)
\end{aligned}\right.
$$

Since

$$
Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}+I=Q
$$

we obtain

$$
\left\{\begin{aligned}
K_{D}^{\mu_{1}} K_{D}^{\mu_{2}} Q\left(v \circ i_{1}\right)+v \circ i_{1}= & \int_{\triangle} Q g^{1}(\cdot, y) d \nu^{1}(y)+\int_{\triangle} Q K_{D}^{\mu_{1}} g^{2}(\cdot, y) d \nu^{2}(y) \\
& +Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(v \circ i_{1}\right), \\
v \circ i_{2}=\int_{\triangle} g^{2}(\cdot, y) d \nu^{2}(y)+ & K_{D}^{\mu_{2}}\left(v \circ i_{1}\right) .
\end{aligned}\right.
$$

Since $K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(v \circ i_{1}\right)$ is bounded,

$$
\left\{\begin{array}{l}
v \circ i_{1}=\int_{\triangle} Q g^{1}(\cdot, y) d \nu_{1}(y)+\int_{\triangle} Q K_{D}^{\mu_{1}} g^{2}(\cdot, y) d \nu_{2}(y) \\
v \circ i_{2}=\int_{\triangle} K_{D}^{\mu_{2}} Q g^{1}(\cdot, y) d \nu_{1}(y)+\int_{\triangle} T g^{2}(\cdot, y) d \nu_{2}(y)
\end{array}\right.
$$

So the function v can be written on X_{1} as

$$
v=\int_{\triangle}\left(Q g^{1}(\cdot, y)\right) \circ \pi_{1} d \nu_{1}(y)+\int_{\triangle}\left(Q K_{D}^{\mu_{1}} g^{2}(\cdot, y)\right) \circ \pi_{1} d \nu_{2}(y)
$$

and on X_{2} as

$$
v=\int_{\triangle}\left(K_{D}^{\mu_{2}} Q g^{1}(\cdot, y)\right) \circ \pi_{2} d \nu_{1}(y)+\int_{\triangle}\left(T g^{2}(\cdot, y)\right) \circ \pi_{2} d \nu_{2}(y)
$$

Corollary 3.3 ([5]). Let (v, w) be a positive biharmonic couple in the classical sense. Then there exist two positive Radon measures μ and ν supported by \triangle such that

$$
\left\{\begin{array}{l}
v=\int_{\triangle} g^{1}(\cdot, y) d \mu(y)+\int_{\triangle} K_{D}^{\mu_{1}} g^{2}(\cdot, y) d \nu(y) \\
w=\int_{\triangle} g^{2}(\cdot, y) d \nu(y)
\end{array}\right.
$$

4. Minimal points and uniqueness of the integral representation

Definition 4.1. (1) A positive L_{1}-harmonic (resp. L_{2}-harmonic) function h on D is called L_{1}-minimal (resp. L_{2}-minimal) if for any positive L_{1}-harmonic (resp. L_{2}-harmonic) function u on $D, u \leq h$ implies $u=\alpha h$ with a factor $\alpha>0$.
(2) A positive harmonic function h on X is called minimal if for any positive harmonic function u on $X, u \leq h$ implies $u=\alpha h$ with a factor $\alpha>0$.

Denote

$$
\begin{aligned}
& \triangle_{1}=\left\{y \in \triangle: g^{1}(\cdot, y) \quad \text { is } L_{1} \text {-minimal }\right\} \\
& \triangle_{2}=\left\{y \in \triangle: g^{2}(\cdot, y) \text { is } L_{2} \text {-minimal }\right\}
\end{aligned}
$$

Note that for all $y \in \triangle$, the function $g^{1}(\cdot, y)\left(\right.$ resp. $\left.g^{2}(\cdot, y)\right)$ is L_{1}-harmonic (resp. L_{2}-harmonic) on D.
Proposition 4.1. Any positive harmonic function v on X such that $K_{D}^{\mu_{k}} K_{D}^{\mu_{j}}(v \circ$ i_{k}) is bounded for all $j \neq k, j, k \in\{1,2\}$, can be written as $v=w+s$, where w and s are defined by

$$
w:= \begin{cases}\left(Q v_{1}\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(K_{D}^{\mu_{2}} Q v_{1}\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

and

$$
s:= \begin{cases}\left(Q K_{D}^{\mu_{1}} v_{2}\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(T v_{2}\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

with $v_{j}:=v \circ i_{j}-K_{D}^{\mu_{j}}\left(v \circ i_{k}\right), j \neq k, j, k \in\{1,2\}$.
Remark 4.1. (1) Note that if $v=w^{\prime}+s^{\prime}$ is another decomposition of v with

$$
w^{\prime}:= \begin{cases}\left(Q t_{1}\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(K_{D}^{\mu_{2}} Q t_{1}\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

and

$$
s^{\prime}:= \begin{cases}\left(Q K_{D}^{\mu_{1}} t_{2}\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(T t_{2}\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

where $t_{j}, j=1,2$, are L_{j}-harmonic on D, then $t_{1}=v_{1}$ and $t_{2}=v_{2}$.
(2) In the classical case, for any biharmonic couple $\left(h_{1}, h_{2}\right)$ the following holds:

$$
\left(h_{1}, h_{2}\right)=(t, 0)+\left(K_{D}^{\mu_{1}} h_{2}, h_{2}\right)
$$

where t is a harmonic function on D. Note that $\left(K_{D}^{\mu_{1}} h_{2}, h_{2}\right)$ is a pure biharmonic couple (see [3] and [21], [22]).

Corollary 4.1. Let v be a positive minimal harmonic function on X such that $K_{D}^{\mu_{k}} K_{D}^{\mu_{j}}\left(v \circ i_{k}\right), j \neq k, j, k \in\{1,2\}$, is bounded. Then $v=\alpha w$ or $v=\beta s$, where α and β are positive constants; w and s are defined as in Proposition 4.1.
Proposition 4.2. Let v be a positive function on X such that $K_{D}^{\mu_{j}}\left(v \circ i_{k}\right)$ is finite and $K_{D}^{\mu_{k}} K_{D}^{\mu_{j}}\left(v \circ i_{k}\right), j \neq k, j, k \in\{1,2\}$, is bounded. The following statements are equivalent.
(1) v is a minimal harmonic function on X.
(2) v_{1} is a positive minimal L_{1}-harmonic function on D, or v_{2} is a positive minimal L_{2}-harmonic function on D, where $v_{j}:=v \circ i_{j}-K_{D}^{\mu_{j}}\left(v \circ i_{k}\right)$.

Proof: Let v be a positive minimal harmonic function on X. Then we have $v=\alpha w$ or $v=\beta s$ by Corollary 4.1.

We shall show that if $v=\alpha w$, then v_{1} is L_{1}-minimal and if $v=\beta s$, then v_{2} is L_{2}-minimal.
(i) Case $v=\alpha w$:

Suppose that v_{1} is not L_{1}-minimal. Then there exist two L_{1}-harmonic functions u_{1} and u_{2} such that $v_{1}=u_{1}+u_{2}$. So $v=\alpha f_{1}+\alpha f_{2}$, with

$$
f_{1}= \begin{cases}\left(Q u_{1}\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(K_{D}^{\mu_{2}} Q u_{1}\right) \circ \pi_{2} & \text { on } X_{2},\end{cases}
$$

and

$$
f_{2}= \begin{cases}\left(Q u_{2}\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(K_{D}^{\mu_{2}} Q u_{2}\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

It follows from Theorem 3.1 that f_{1} and f_{2} are harmonic on X. This contradicts that v is minimal.
(ii) Case $v=\beta s$:

Suppose that v_{2} is not L_{2}-minimal. Then there exist two L_{2}-harmonic functions u_{1} and u_{2} such that $v_{2}=u_{1}+u_{2}$. Therefore $v=\beta s_{1}+\beta s_{2}$, with

$$
s_{1}= \begin{cases}\left(Q K_{D}^{\mu_{1}} u_{1}\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(T u_{1}\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

and

$$
s_{2}= \begin{cases}\left(Q K_{D}^{\mu_{1}} u_{2}\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(T u_{2}\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

It follows from Theorem 3.1 that s_{1} and s_{2} are harmonic on X. This contradicts that v is minimal.

Conversely, suppose that v_{1} is L_{1}-minimal and let us show that v is minimal. Assume the contrary and put $v=g_{1}+g_{2}$, where g_{1} and g_{2} are harmonic functions
on X. Then, from Proposition 4.1, there exist two L_{1}-harmonic functions s_{1} and s_{2}, and two L_{2}-harmonic functions w_{1} and w_{2} such that

$$
g_{1}= \begin{cases}\left(Q s_{1}\right) \circ \pi_{1}+\left(Q K_{D}^{\mu_{1}} w_{1}\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(K_{D}^{\mu_{2}} Q s_{1}\right) \circ \pi_{2}+\left(T w_{1}\right) \circ \pi_{2} & \text { on } X_{2},\end{cases}
$$

and

$$
g_{2}= \begin{cases}\left(Q s_{2}\right) \circ \pi_{1}+\left(Q K_{D}^{\mu_{1}} w_{2}\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(K_{D}^{\mu_{2}} Q s_{2}\right) \circ \pi_{2}+\left(T w_{2}\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

Therefore the function $g_{1}+g_{2}$ is defined on X_{1} by

$$
g_{1}+g_{2}:=\left(Q\left(s_{1}+s_{2}\right)\right) \circ \pi_{1}+\left(Q K_{D}^{\mu_{1}}\left(w_{1}+w_{2}\right)\right) \circ \pi_{1}
$$

and on X_{2} by

$$
g_{1}+g_{2}:=\left(K_{D}^{\mu_{2}} Q\left(s_{1}+s_{2}\right)\right) \circ \pi_{2}+\left(T\left(w_{1}+w_{2}\right)\right) \circ \pi_{2} .
$$

We deduce, from Proposition 4.1 and Remark 4.1.1, that $v_{1}=s_{1}+s_{2}$, which leads to a contradiction because v_{1} is L_{1}-minimal.

In the same way, we suppose that v_{2} is an L_{2}-minimal function and we show that v is a minimal function.

By using the fact that any positive minimal L_{j}-harmonic function on D is proportional to $g^{j}(\cdot, y), y \in \triangle_{j}$ (see [10]), w and s from Corollary 4.1 can be given more precisely.

Corollary 4.2. Let v be a positive minimal harmonic function defined on X such that the function $K_{D}^{\mu_{k}} K_{D}^{\mu_{j}}\left(v \circ i_{k}\right), j \neq k, j, k \in\{1,2\}$, is bounded. Then

$$
v=\alpha w \quad \text { or } \quad v=\beta s
$$

with

$$
w:= \begin{cases}\left(Q g^{1}(\cdot, y)\right) \circ \pi_{1} & \text { on } X_{1}, y \in \triangle_{1} \\ \left(K_{D}^{\mu_{2}} Q g^{1}(\cdot, y)\right) \circ \pi_{2} & \text { on } X_{2}, y \in \triangle_{1}\end{cases}
$$

and

$$
s:= \begin{cases}\left(Q K_{D}^{\mu_{1}} g^{2}(\cdot, y)\right) \circ \pi_{1} & \text { on } X_{1}, y \in \triangle_{2} \\ \left(T g^{2}(\cdot, y)\right) \circ \pi_{2}, & \text { on } X_{2}, y \in \triangle_{2}\end{cases}
$$

Proof: This result follows immediately from Proposition 4.2 and Corollary 4.1.

Remark 4.2. Note that $K_{D}^{\mu_{j}}\left(v \circ i_{k}\right)<\infty, j \neq k, j, k \in\{1,2\}$, because v is a positive harmonic function on X.

Consider the family of mappings on the real vector space $\mathcal{H}(X)$ defined by

$$
\varphi_{K}:\left\{\begin{array}{l}
\mathcal{H}(X) \longrightarrow \\
h \longrightarrow \mathbb{R}^{+} \\
h \longmapsto
\end{array},\right.
$$

where

$$
\varphi_{K}(h)=\sup _{x \in K}\left(\left|h \circ i_{1}(x)\right|+\left|h \circ i_{2}(x)\right|\right),
$$

and K is a compact subset of $D .\left(\varphi_{K}\right)$ is a family of semi-norms on $\mathcal{H}(X)$ and these semi-norms define a topology that makes $\mathcal{H}(X)$ a metrizable topological space. It follows that this space is locally convex.

The cone $\mathcal{H}^{+}(X)=\{h \in \mathcal{H}(X): h \geq 0\}$ defines on $\mathcal{H}(X)$ an order relation called specific order:

$$
h_{1} \prec h_{2} \quad \Longleftrightarrow \quad h_{2}=h_{1}+g, \quad g \in \mathcal{H}^{+}(X) .
$$

Equipped with this order, $\mathcal{H}^{+}(X)$ is a lattice. The minimal harmonic functions are the points of the extreme generatrices of $\mathcal{H}^{+}(X)$. We recall that a base of $\mathcal{H}^{+}(X)$ is the intersection of $\mathcal{H}^{+}(X)$ with a closed hyperplane.

Let us consider the set

$$
B:=\left\{h \in \mathcal{H}^{+}(X):\left(h \circ i_{1}\right)\left(x_{o}\right)+\left(h \circ i_{2}\right)\left(x_{o}\right)=1\right\}, \quad x_{o} \in D .
$$

B is a compact base of the cone $\mathcal{H}^{+}(X)$. Indeed, the mapping

$$
\phi_{x_{o}}:\left\{\begin{array}{l}
\mathcal{H}^{+}(X) \longrightarrow \mathbb{R}, \\
h \longrightarrow\left(h \circ i_{1}\right)\left(x_{o}\right)+\left(h \circ i_{2}\right)\left(x_{o}\right)=1
\end{array}\right.
$$

is a continuous linear form. Then it defines a closed hyperplane B such that the origin $0 \notin B$. Then, B is equicontinuous at any point $x \in X$. So, we conclude, by Ascoli's theorem, that B is compact. Note that $\mathcal{H}^{+}(X)=\mathbb{R}^{+} B$. Let $\mathcal{E}(B)$ denote the set of all extreme points of $\mathcal{H}^{+}(X)$ belonging to B (see [11]). Moreover, using Corollary 4.2, we have

$$
\mathcal{E}(B)=\mathcal{E}_{1}(B) \cup \mathcal{E}_{2}(B)
$$

where
$\mathcal{E}_{1}(B)=\left\{h \in \mathcal{E}(B): \exists \alpha \in \mathbb{R}^{+}, \exists y \in \triangle_{1}: h=\left\{\begin{array}{ll}\left(\alpha Q g^{1}(\cdot, y)\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(\alpha K_{D}^{\mu_{2}} Q g^{1}(\cdot, y)\right) \circ \pi_{2} & \text { on } X_{2}\end{array}\right\}\right.$
and
$\mathcal{E}_{2}(B)=\left\{h \in \mathcal{E}(B): \exists \beta \in \mathbb{R}^{+}, \exists y \in \triangle_{2}: h=\left\{\begin{array}{ll}\left(\beta Q K_{D}^{\mu_{1}} g^{2}(\cdot, y)\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(\beta T g^{2}(\cdot, y)\right) \circ \pi_{2} & \text { on } X_{2}\end{array}\right\}\right.$.
We recall the following results which are useful for showing the uniqueness of an integral representation (see [16]).

Definition 4.2 ([16]). Let Γ a closed convex cone. A mapping $\ell: \lambda \longmapsto e_{\lambda}$ of a separated topological space Ω in $\mathcal{E}(\Gamma)$ is called a parametrization of $\mathcal{E}(\Gamma)$, if any element $\gamma \in \mathcal{E}(\Gamma)$ is proportional to a unique element e_{λ}. It is called admissible if it is continuous and the inverse mapping $\mathcal{E}(\Gamma) \longrightarrow \Omega$ is universally measurable.
Theorem A ([16]). Let a closed cone convex Γ and an admissible parametrization ℓ of $\mathcal{E}(\Gamma)$ be given. For any $\gamma \in \Gamma$, there exist a positive Radon measure μ on Ω such that

$$
\gamma=\int_{\Omega} e_{\lambda} d \mu(\lambda)
$$

Theorem B ([16]). The measure μ given by Theorem A is unique for any $\gamma \in \Gamma$, if and only if the cone Γ is a lattice.
Theorem 4.1. If $g^{1}(x, \cdot), x \in D$, separates \triangle_{1} and $g^{2}(x, \cdot), x \in D$, separates \triangle_{2}, then for any positive harmonic function v on X such that the function $K_{D}^{\mu_{k}} K_{D}^{\mu_{j}}$ (vo $\left.i_{k}\right), j \neq k, j, k \in\{1,2\}$, is bounded, there exist two unique measures ν_{1} and ν_{2} supported respectively by \triangle_{1} and \triangle_{2} such that v can be represented on X_{1} by

$$
v=\int_{\triangle_{1}}\left(Q g^{1}(\cdot, y)\right) \circ \pi_{1} d \nu_{1}(y)+\int_{\triangle_{2}}\left(Q K_{D}^{\mu_{1}} g^{2}(\cdot, y)\right) \circ \pi_{1} d \nu_{2}(y)
$$

and on X_{2} by

$$
v=\int_{\triangle_{1}}\left(K_{D}^{\mu_{2}} Q g^{1}(\cdot, y)\right) \circ \pi_{2} d \nu_{1}(y)+\int_{\triangle_{2}}\left(T g^{2}(\cdot, y)\right) \circ \pi_{2} d \nu_{2}(y)
$$

Proof: If $v=0$, we have $\nu_{1}=\nu_{2}=0$.
If $v \neq 0$, we may assume without loss of generality that $v \in B$. Consider the mapping

$$
\Psi:\left\{\begin{array}{l}
\triangle_{1} \cup \triangle_{2} \longrightarrow \mathcal{E}(B) \\
y \longmapsto \Psi(y)
\end{array}\right.
$$

where $\Psi(y)$ is defined by

$$
\left.\begin{array}{l}
\Psi(y):=\left\{\begin{array}{ll}
\left(Q g^{1}(\cdot, y)\right) \circ \pi_{1} & \text { on } X_{1} \\
\left(K_{D}^{\mu_{2}} Q g^{1}(\cdot, y)\right) \circ \pi_{2} & \text { on } X_{2}
\end{array}, y \in \triangle_{1},\right.
\end{array}\right\} \begin{array}{ll}
\left(Q K_{D}^{\mu_{1}} g^{2}(\cdot, y)\right) \circ \pi_{1} & \text { on } X_{1} \\
\left(T g^{2}(\cdot, y)\right) \circ \pi_{2} & \text { on } X_{2}
\end{array}, y \in \triangle_{2} . ~ . ~ \$(y):=\left\{\begin{array}{l}
\end{array}\right.
$$

The mapping Ψ is bijective because $g^{1}(x, \cdot)$ and $g^{2}(x, \cdot)$ separate \triangle_{1} and \triangle_{2}, respectively. Ψ and its inverse Ψ^{-1} are continuous because g^{1} and g^{2} are continuous on $\triangle \times D$. Then there exists, by Theorem B , a unique measure ν supported by $\triangle_{1} \cup \triangle_{2}$ such that

$$
v=\int_{\triangle_{1} \cup \triangle_{2}} \Psi(y) d \nu(y)
$$

Let $\nu_{j}, j=1,2$, be the restriction of the measure ν to \triangle_{j}. Then v may be written on X_{1} as

$$
v=\int_{\triangle_{1}}\left(Q g^{1}(\cdot, y)\right) \circ \pi_{1} d \nu_{1}(y)+\int_{\triangle_{2}}\left(Q K_{D}^{\mu_{1}} g^{2}(\cdot, y)\right) \circ \pi_{1} d \nu_{2}(y)
$$

and on X_{2} as

$$
v=\int_{\triangle_{1}}\left(K_{D}^{\mu_{2}} Q g^{1}(\cdot, y)\right) \circ \pi_{2} d \nu_{1}(y)+\int_{\triangle_{2}}\left(T g^{2}(\cdot, y)\right) \circ \pi_{2} d \nu_{2}(y)
$$

Let $t_{i}, i=1,2$, be two positive L_{i}-harmonic functions on D such that the function $K_{D}^{\mu_{j}} t_{k}$ is finite and the function $K_{D}^{\mu_{k}} K_{D}^{\mu_{j}} t_{k}, j \neq k, j, k \in\{1,2\}$, is bounded on D. By [10] and [12], there exists a unique measure $\nu_{t_{j}}$, supported by \triangle_{j}, such that $t_{j}=\int_{\triangle_{j}} g^{j}(\cdot, y) d \nu_{t_{j}}(y), j=1,2$. We consider the harmonic function w from Theorem 3.1 defined on X by

$$
w:= \begin{cases}\left(Q t_{1}+Q K_{D}^{\mu_{1}} t_{2}\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(K_{D}^{\mu_{2}} Q t_{1}+T t_{2}\right) \circ \pi_{2} & \text { on } X_{2} .\end{cases}
$$

Corollary 4.3. If the functions $g^{j}(x, \cdot), x \in D$, separate $\triangle_{j}, j=1,2$, then w is written on X_{1} by

$$
w=\int_{\triangle_{1}}\left(Q g^{1}(\cdot, y)\right) \circ \pi_{1} d \nu_{t_{1}}(y)+\int_{\triangle_{2}}\left(Q K_{D}^{\mu_{1}} g^{2}(\cdot, y)\right) \circ \pi_{1} d \nu_{t_{2}}(y)
$$

and on X_{2} by

$$
w=\int_{\triangle_{1}}\left(K_{D}^{\mu_{2}} Q g^{1}(\cdot, y)\right) \circ \pi_{2} d \nu_{t_{1}}(y)+\int_{\triangle_{2}}\left(T g^{2}(\cdot, y) \circ \pi_{2} d \nu_{t_{2}}(y)\right.
$$

Proof: It suffices to replace $t_{j}, j=1,2$, with their Martin representations in the expression of w, and the result follows from the uniqueness of the measures ν_{j} in Theorem 4.1.

Remark 4.3. By Corollary 4.3 , we have $\nu_{t_{j}}\left(\triangle \backslash \triangle_{j}\right)=0$, thus $\nu_{t_{j}}\left(\triangle \backslash\left(\triangle_{1} \cup\right.\right.$ $\left.\left.\triangle_{2}\right)\right)=0, j=1,2$.

5. Dirichlet problem on the Martin boundary associated with (S)

Given a couple of functions $\left(u_{1}, u_{2}\right)$ defined on \triangle, the Dirichlet problem on \triangle consists to find a couple of functions $\left(h_{1}, h_{2}\right)$ solving the system (S) such that

$$
\lim _{x \longrightarrow y} h_{i}(x)=u_{i}(y) \quad \forall y \in \triangle
$$

The couple $\left(u_{1}, u_{2}\right)$ can be identified with a function f on $\bar{\triangle}:=\bigcup_{j=1}^{2} \triangle \times\{j\}$ such that $f \circ i_{j}=u_{j}$, where $i_{j}, j=1,2$, denote always the mappings of \triangle in $\triangle \times\{j\}$ defined by $i_{j}(z):=(z, j), z \in \triangle$. The Dirichlet problem may be stated as follows: for a given function f defined on $\bar{\triangle}$, determine, if possible, a harmonic function H_{f} on X such that $H_{f}(x) \longrightarrow f(y)$ as $x \longrightarrow y$ for each $y \in \bar{\triangle}$. As in harmonic and biharmonic cases, there are some examples where there is no solution of this problem. In this section, we will discuss the Perron-Wiener-Brelot (PWB) approach to the Dirichlet problem. To this end, we give the following definition.

Definition 5.1. Let $h_{1}\left(\right.$ resp. $\left.h_{2}\right)$ be a strictly positive L_{1}-harmonic (resp. $L_{2^{-}}$ harmonic) function on D, and let h be the function defined on X by

$$
h:= \begin{cases}h_{1} \circ \pi_{1} & \text { on } X_{1}, \\ h_{2} \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

A function v on X is called h-harmonic (resp. h-hyperharmonic, h-superharmonic) on X if and only if the function u defined on X by

$$
u:= \begin{cases}\left(h_{1}\left(v \circ i_{1}\right)\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(h_{2}\left(v \circ i_{2}\right)\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

is harmonic (resp. hyperharmonic, superharmonic) on X.
We also define the upper and lower class associated with a function defined on $\bar{\triangle}$. Let f be a function defined on $\bar{\triangle}$ and let h be a function defined on X as in Definition 5.1. We define:
$\bar{U}_{f}:=\{v: v$ is h-hyperharmonic and bounded from below on X and

$$
\left.\liminf _{x \rightarrow y} v(x) \geq f(y), \forall y \in \bar{\triangle}\right\}
$$

and
$\underline{\mathrm{U}}_{f}:=\{s: s$ is h-hypoharmonic and bounded from above on X and

$$
\left.\limsup _{x \rightarrow y} v(x) \leq f(y), \forall y \in \bar{\triangle}\right\}
$$

We note that \bar{U}_{f} and $\underline{\mathrm{U}}_{f}$ are never empty since they contain the constant functions $+\infty$ and $-\infty$ respectively, and that $\bar{U}_{f}=-\underline{\mathrm{U}}_{-f}$. Put

$$
\bar{H}_{f}:=\inf \bar{U}_{f} \text { and } \underline{\mathrm{H}}_{f}:=\sup \underline{\mathrm{U}}_{f} .
$$

f is called h-resolutive if \bar{H}_{f} and $\underline{\mathrm{H}}_{f}$ are equal and h-harmonic on X. If f is h-resolutive, then we define $H_{f}^{h}:=\bar{H}_{f}=\underline{\mathrm{H}}_{f}$ and call H_{f}^{h} the PWB-solution of the Dirichlet problem on X with boundary function f. If $f \circ i_{j}$ is h_{j}-resolutive on \triangle, we call $H_{f \circ i_{j}}^{h_{j}}$ the PWB-solution of Dirichlet problem on D associated with $f \circ i_{j}, j=1,2$.

Further properties of PWB solutions.

Let f and g be two functions defined on $\bar{\triangle}$. Then we have
(i) $\underline{\mathrm{H}}_{f}^{h}=-\bar{H}_{-f}^{h}$.
(ii) $\underline{\mathrm{H}}_{f}^{h} \leq \bar{H}_{f}^{h}$.
(iii) $\underline{\mathrm{H}}_{f}^{h} \leq \underline{\mathrm{H}}_{g}^{h}$ and $\bar{H}_{f}^{h} \leq \bar{H}_{g}^{h}$ if $f \leq g$.
(iv) Let f, g be two h-resolutive functions and $\alpha \in \mathbb{R}$. Then $f+g$ and αf are h-resolutive and

$$
H_{f+g}^{h}=H_{f}^{h}+H_{g}^{h}, \quad H_{\alpha f}^{h}=\alpha H_{f}^{h}
$$

(v) If $\underline{\mathrm{U}}_{f} \cap(-S(X)) \neq \emptyset$ (resp. $\left.\bar{U}_{f} \cap S(X) \neq \emptyset\right)$, then the function \bar{H}_{f}^{h} (resp. $\left.\underline{H}_{f}^{h}\right)$ is identically ∞, or h-harmonic on X.
Let f be a positive function on $\bar{\triangle}$ such that $f \circ i_{2}=0$ and w the function defined on X by

$$
w:= \begin{cases}\left(\frac{1}{h_{1}} Q\left(h_{1} \cdot \bar{H}_{f \circ i_{1}}^{h_{1}}\right)\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(\frac{1}{h_{2}} K_{D}^{\mu_{2}} Q\left(h_{1} \cdot \bar{H}_{f \circ i_{1}}^{h_{1}}\right)\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

We have $\bar{H}_{f}^{h} \leq w$. Indeed, it follows from Corollary 3.1 that w is a positive h-hyperharmonic function on X and moreover, we have

$$
\liminf _{x \longrightarrow y}\left(w \circ i_{1}\right)(x) \geq\left(f \circ i_{1}\right)(y), \text { for all } y \in \triangle
$$

and

$$
\liminf _{x \longrightarrow y}\left(w \circ i_{2}\right)(x) \geq 0, \text { for all } y \in \triangle
$$

Hence, $w \in \bar{U}_{f}$. Thus $\bar{H}_{f}^{h} \leq w$ and therefore if $\bar{H}_{f}^{h}=+\infty$ then $w=+\infty$. If $\bar{H}_{f}^{h}<\infty$, we have

Lemma 5.1. Let f be a positive function on $\bar{\triangle}$ such that $f \circ i_{2}=0$ and $K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)$ is bounded on D. Then we have

$$
\bar{H}_{f}^{h}= \begin{cases}\left(\frac{1}{h_{1}} Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)\right) \circ \pi_{1} & \text { on } X_{1} \\ \left(\frac{1}{h_{2}} K_{D}^{\mu_{2}} Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

Proof: It suffices to show that $w \leq \bar{H}_{f}^{h}$.
(a) Let us show that $w \circ i_{1} \leq \bar{H}_{f}^{h} \circ i_{1}$.

It follows from property (v) of PWB solutions that the function \bar{H}_{f}^{h} is h harmonic on X. Then the function

$$
\bar{u}:= \begin{cases}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

is a positive harmonic function on X, and by Corollary 2.1, the functions $\bar{u}_{j}=$ $h_{j}\left(\bar{H}_{f}^{h} \circ i_{j}\right)-K_{D}^{\mu_{j}}\left(h_{k}\left(\bar{H}_{f}^{h} \circ i_{k}\right)\right), j, k \in\{1,2\}, j \neq k$ are positive and L_{j}-harmonic on D. Put $v_{j}:=\frac{1}{h_{j}} \bar{u}_{j}$. On the one hand, we have

$$
K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) \leq\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right),
$$

hence

$$
K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) \leq K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)
$$

i.e.

$$
K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) \leq\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)-h_{1} \cdot v_{1}\right)
$$

So,

$$
Q\left(h_{1} \cdot v_{1}\right)+Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) \leq Q\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) .
$$

Since

$$
Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}+I=Q
$$

we get

$$
Q\left(h_{1} v_{1}\right)+Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) \leq Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)+h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right) .
$$

Therefore,

$$
\begin{equation*}
Q\left(h_{1} v_{1}\right) \leq h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right) . \tag{5.1.1}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\liminf _{x \longrightarrow y} v_{1}(x) & =\liminf _{x \longrightarrow y}\left(\bar{H}_{f}^{h} \circ i_{1}-\frac{1}{h_{1}} K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)\right)(x) \\
& \geq\left(f \circ i_{1}\right)(y)-\limsup _{x \longrightarrow y}\left(\frac{1}{h_{1}} K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)\right)(x)
\end{aligned}
$$

for all $y \in \triangle$. Since

$$
\begin{aligned}
\limsup _{x \longrightarrow y}\left(\frac { 1 } { h _ { 1 } } K _ { D } ^ { \mu _ { 1 } } \left(h_{2}\right.\right. & \left.\left.\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)\right)(x) \\
& \leq \int_{D} \limsup _{x \longrightarrow y} \frac{1}{h_{1}(x)} G_{1}(x, z) h_{2}(z)\left(\bar{H}_{f}^{h} \circ i_{2}\right)(z) d \mu_{1}(z)
\end{aligned}
$$

and $\lim \sup _{x \longrightarrow y} \frac{1}{h_{1}(x)} G_{1}(x, z)=0 \nu_{h_{1}}$-a.e. on \triangle_{1}, where $\nu_{h_{1}}$ is the measure associated with h_{1} in the Martin representation ([13, p. 218]), we have, by Remark 4.3, $\nu_{h_{1}}\left(\triangle \backslash \triangle_{1}\right)=0$. Hence $\lim \sup _{x \longrightarrow y} \frac{1}{h_{1}(x)} G_{1}(x, z)=0 \nu_{h_{1}}$-a.e. on \triangle. Thus $\liminf _{x \longrightarrow y} v_{1}(x) \geq\left(f \circ i_{1}\right)(y) \nu_{h_{1}}$-a.e. on \triangle. Hence v_{1} is a positive $h_{1}-L_{1^{-}}$ hyperharmonic function on D and $\liminf _{x \longrightarrow y} v_{1}(x) \geq\left(f \circ i_{1}\right)(y) \nu_{h_{1}}$-a.e. on \triangle. So

$$
\begin{equation*}
v_{1} \geq \bar{H}_{f \circ i_{1}}^{h_{1}} \tag{5.1.2}
\end{equation*}
$$

Thus, by (5.1.1), we have

$$
Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right) \leq\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)
$$

(b) Let us show that $w \circ i_{2} \leq\left(\bar{H}_{f}^{h} \circ i_{2}\right)$.

It follows from (a) that

$$
Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right) \leq\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)
$$

Then,

$$
K_{D}^{\mu_{2}} Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right) \leq K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) \leq\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right) .
$$

This finishes the proof.
Remark 5.1. The result of Lemma 5.1 is still valid if instead of the assumption $K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)$ is bounded, we suppose only that $Q\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)$ is finite.

Let f be a positive function on $\bar{\triangle}$ such that $f \circ i_{1}=0$ and \tilde{w} the function defined on X by

$$
\tilde{w}:= \begin{cases}\left(\frac{1}{h_{1}} Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(\frac{1}{h_{2}} T\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{2} & \text { on } X_{2} .\end{cases}
$$

We have $\bar{H}_{f}^{h} \leq \tilde{w}$. Therefore if $\bar{H}_{f}^{h}=+\infty$, then $\tilde{w}=+\infty$. If $\bar{H}_{f}^{h}<\infty$, we have:

Lemma 5.2. Let f be a positive function on $\bar{\triangle}$ such that $f \circ i_{1}=0$ and $K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)$ is bounded on D. Then

$$
\bar{H}_{f}^{h}= \begin{cases}\left(\frac{1}{h_{1}} Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(\frac{1}{h_{2}} T\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{2} & \text { on } X_{2} .\end{cases}
$$

Proof: It suffices to show that $\tilde{w} \leq \bar{H}_{f}^{h}$.
(a) Let us show that $\tilde{w} \circ i_{1} \leq \bar{H}_{f}^{h} \circ i_{1}$.

By the property (v) of PWB solutions, the function \bar{H}_{f}^{h} is h-harmonic on X. Then the function

$$
\bar{u}:= \begin{cases}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

is a positive harmonic function on X and by Corollary 2.1, $\bar{u}_{j}=h_{j}\left(\bar{H}_{f}^{h} \circ i_{j}\right)-$ $K_{D}^{\mu_{j}}\left(h_{k}\left(\bar{H}_{f}^{h} \circ i_{k}\right)\right), j, k \in\{1,2\}, j \neq k$, are positive and L_{j}-harmonic functions on D. Put $v_{j}:=\frac{1}{h_{j}} \bar{u}_{j}$. On the one hand, we have

$$
K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right) \leq\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right),
$$

hence

$$
K_{D}^{\mu_{1}}\left(h_{2} v_{2}+K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)\right) \leq h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)
$$

and

$$
Q K_{D}^{\mu_{1}}\left(h_{2} v_{2}\right)+Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) \leq Q\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) .
$$

Since

$$
Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}+I=Q
$$

we get

$$
Q K_{D}^{\mu_{1}}\left(h_{2} \cdot v_{2}\right) \leq h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)
$$

 on \triangle. Since v_{2} is a positive $h_{2}-L_{2}$-hyperharmonic function and $\lim \inf _{x \longrightarrow y} v_{2}(x)$ $\geq\left(f \circ i_{2}\right)(y), \nu_{h_{2}}$-a.e. on \triangle, we obtain

$$
\begin{equation*}
v_{2} \geq \bar{H}_{f \circ i_{2}}^{h_{2}} \tag{5.1.2}
\end{equation*}
$$

hence

$$
Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right) \leq\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)
$$

(b) Let us show that $\left.\tilde{w} \circ i_{2} \leq\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)$. We have

$$
K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right) \leq h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right) .
$$

So

$$
K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right) \leq K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)=h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)-h_{2} v_{2} .
$$

Hence

$$
T\left(h_{2} \cdot v_{2}\right)+T K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right) \leq T\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right) .
$$

Since

$$
T K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}+I=T
$$

we get

$$
T\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right) \leq\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)
$$

Remark 5.2. The result of Lemma 5.2 is still valid if instead of the assumption $K_{D}^{\mu_{2}} K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)$ is bounded, we suppose only that $T\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)$ is finite.

Let f be a positive function on $\bar{\triangle}$ and let w^{\prime} be the function defined on X by

$$
w^{\prime}:= \begin{cases}\frac{1}{h_{1}}\left(Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)+Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{1} & \text { on } X_{1} \\ \frac{1}{h_{2}}\left(K_{D}^{\mu_{2}} Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)+T\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

We have $\bar{H}_{f}^{h} \leq w^{\prime}$. Therefore, if $\bar{H}_{f}^{h}=+\infty$ then $w^{\prime}=+\infty$. If $\bar{H}_{f}^{h}<\infty$, we have
Proposition 5.1. Let f be a positive function on $\bar{\triangle}$ such that $K_{D}^{\mu_{j}} K_{D}^{\mu_{k}}\left(h_{j}\left(\bar{H}_{f}^{h} \circ\right.\right.$ $\left.i_{j}\right)$) is bounded on $D, j, k \in\{1,2\}, j \neq k$. Then we have

$$
\bar{H}_{f}^{h}= \begin{cases}\frac{1}{h_{1}}\left(Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)+Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{1} & \text { on } X_{1}, \\ \frac{1}{h_{2}}\left(K_{D}^{\mu_{2}} Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)+T\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{2} & \text { on } X_{2} .\end{cases}
$$

Proof: It suffices to show that $w^{\prime} \leq \bar{H}_{f}^{h}$.
(a) Let us show that $w^{\prime} \circ i_{1} \leq \bar{H}_{f}^{h} \circ i_{1}$.

By the property (v) of PWB solutions, the function \bar{H}_{f}^{h} is h-harmonic on X. Then the function

$$
\bar{u}:= \begin{cases}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right) \circ \pi_{1} & \text { on } X_{1}, \\ \left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

is a positive harmonic on X and by Corollary 2.1, $\bar{u}_{j}=h_{j}\left(\bar{H}_{f}^{h} \circ i_{j}\right)-K_{D}^{\mu_{j}}\left(h_{k}\left(\bar{H}_{f}^{h} \circ\right.\right.$ $\left.i_{k}\right)$), $j, k \in\{1,2\}, j \neq k$, are positive L_{j}-harmonic on D. Put $v_{j}=\frac{1}{h_{j}} \bar{u}_{j}$. On the one hand,

$$
h_{1} \cdot v_{1}+K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)=h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)
$$

and

$$
h_{2} v_{2}+K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)=h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right) .
$$

Hence

$$
Q\left(h_{1} v_{1}\right)+Q K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)=Q\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)
$$

and

$$
Q K_{D}^{\mu_{1}}\left(h_{2} \cdot v_{2}\right)+Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)=Q K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right) .
$$

Since

$$
Q K_{D}^{\mu_{1}} K_{D}^{\mu_{2}}+I=Q
$$

we have

$$
Q\left(h_{1} \cdot v_{1}\right)+Q K_{D}^{\mu_{1}}\left(h_{2} \cdot v_{2}\right)=h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right) .
$$

It follows from (5.1.2) and (5.2.1) that

$$
Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)+Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right) \leq h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right) .
$$

Similarly, we show that

$$
\frac{1}{h_{2}}\left(K_{D}^{\mu_{2}} Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)+T\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) \leq h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right) .
$$

Remark 5.3. The result of Proposition 5.1 is still valid if instead of the assumption $K_{D}^{\mu_{j}} K_{D}^{\mu_{k}}\left(h_{j}\left(\bar{H}_{f}^{h} \circ i_{j}\right)\right)$ is bounded on $D, j, k \in\{1,2\}, j \neq k$, we suppose that $Q\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)<\infty$ and $T\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)<\infty$.

h-negligible sets.

Definition 5.2. Let e be a subset of $\bar{\triangle}$. e is called h-negligible if $\bar{H}_{1_{e}}^{h}=0$, where 1_{e} is the indicator of the set e.

Let \tilde{e} be a subset of \triangle. \tilde{e} is called h_{j}-negligible if and only if $\bar{H}_{1_{\tilde{e}}}^{h_{j}}=0, j=1,2$.
Proposition 5.2. Let $e \subset \bar{\triangle}=(\triangle \times\{1\}) \cup(\triangle \times\{2\})$ be such that $e=\left(e_{1} \times\right.$ $\{1\}) \cup\left(e_{2} \times\{2\}\right)$, where $e_{j} \subset \triangle, j=1,2$. The following are equivalent:
(1) e is h-negligible;
(2) e_{j} is h_{j}-negligible, $j=1,2$.

Proof: Suppose that e is h-negligible; then $\bar{H}_{1_{e}}^{h}=0$. By Proposition 5.1, we have

$$
\bar{H}_{1_{e}}^{h}= \begin{cases}\frac{1}{h_{1}}\left(Q\left(h_{1} \bar{H}_{1_{e} \circ i_{1}}^{h_{1}}\right)+Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{1_{e} \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{1} & \text { on } X_{1} \\ \frac{1}{h_{2}}\left(K_{D}^{\mu_{2}} Q\left(h_{1} \bar{H}_{1_{e} \circ i_{1}}^{h_{1}}\right)+T\left(h_{2} \bar{H}_{1_{e} \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{2} & \text { on } X_{2},\end{cases}
$$

hence

$$
Q\left(h_{1} \bar{H}_{1_{e} \circ i_{1}}^{h_{1}}\right)=-Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{1_{e} \circ i_{2}}^{h_{2}}\right), K_{D}^{\mu_{2}} Q\left(h_{1} \bar{H}_{1_{e} \circ i_{1}}^{h_{1}}\right)=-T\left(h_{2} \bar{H}_{1_{e} \circ i_{2}}^{h_{2}}\right) .
$$

Since the functions $h_{j} \bar{H}_{1_{e} \circ i_{j}}^{h_{j}}, j=1,2$, are positive, $\bar{H}_{1_{e} \circ i_{j}}^{h_{j}}=0, j=1,2$. Since $1_{e} \circ i_{j}=1_{e_{j}}, \bar{H}_{1_{e_{j}}}^{h_{j}}=0$, i.e., the set e_{j} is h_{j}-negligible. The converse is obvious.

Proposition 5.3. Let f and \tilde{f} be two positive functions defined on $\bar{\triangle}$ such that $e=\{f \neq \tilde{f}\}$ is a h-negligible set. Then $\bar{H}_{f}^{h}=\bar{H}_{\tilde{f}}^{h}$.
Proof: We have $e=\{f \neq \tilde{f}\}=\left(e_{1} \times\{1\}\right) \cup\left(e_{2} \times\{2\}\right)$, where $e_{j}=\left\{f \circ i_{j} \neq \tilde{f} \circ i_{j}\right\}$, $j=1,2$, and e is h-negligible. Then, by Proposition 5.2, e_{j} is h_{j}-negligible. Thus $\bar{H}_{f \circ i_{j}}^{h_{j}}=\bar{H}_{\tilde{f} \circ i_{j}}^{h_{j}}, j=1,2$. Therefore, by Proposition 5.1, $\bar{H}_{f}^{h}=\bar{H}_{\tilde{f}}^{h}$.
Lemma 5.3. Let f be a positive function on $\bar{\triangle}$ such that $K_{D}^{\mu_{j}} K_{D}^{\mu_{k}}\left(h_{j}\left(\bar{H}_{f}^{h} \circ i_{j}\right)\right)$ is bounded on $D, j, k \in\{1,2\}, j \neq k$. Then we have

$$
h_{j} \bar{H}_{f \circ i_{j}}^{h_{j}}=h_{j}\left(\bar{H}_{f}^{h} \circ i_{j}\right)-K_{D}^{\mu_{j}}\left(h_{k}\left(\bar{H}_{f}^{h} \circ i_{k}\right)\right) .
$$

Proof: By Proposition 5.1, we have

$$
\left\{\begin{array}{l}
\bar{H}_{f}^{h} \circ i_{1}=\frac{1}{h_{1}}\left(Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)+Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right), \\
\bar{H}_{f}^{h} \circ i_{2}=\frac{1}{h_{2}}\left(K_{D}^{\mu_{2}} Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)+T\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) .
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{l}
h_{1} \bar{H}_{f}^{h} \circ i_{1}=\left(Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)+Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right), \\
h_{2} \bar{H}_{f}^{h} \circ i_{2}=\left(K_{D}^{\mu_{2}} Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)+T\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) .
\end{array}\right.
$$

Hence

$$
\left\{\begin{array}{l}
K_{D}^{\mu_{2}}\left(h_{1} \cdot \bar{H}_{f}^{h} \circ i_{1}\right)=K_{D}^{\mu_{2}}\left(Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)\right)+K_{D}^{\mu_{2}}\left(Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right), \\
h_{2} \bar{H}_{f}^{h} \circ i_{2}=\left(K_{D}^{\mu_{2}} Q\left(h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}}\right)+T\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)\right) .
\end{array}\right.
$$

Since \bar{H}_{f}^{h} is h-harmonic on $X, K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)<\infty$. Thus,

$$
h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)-K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)=T\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)-K_{D}^{\mu_{2}} Q K_{D}^{\mu_{1}}\left(h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}}\right)
$$

Since

$$
T=K_{D}^{\mu_{2}} Q K_{D}^{\mu_{1}}+I
$$

we get

$$
h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)-K_{D}^{\mu_{2}}\left(h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)\right)=h_{2} \bar{H}_{f \circ i_{2}}^{h_{2}} .
$$

Similarly, we show that

$$
h_{1}\left(\bar{H}_{f}^{h} \circ i_{1}\right)-K_{D}^{\mu_{1}}\left(h_{2}\left(\bar{H}_{f}^{h} \circ i_{2}\right)\right)=h_{1} \bar{H}_{f \circ i_{1}}^{h_{1}} .
$$

Theorem 5.1. Let f be a positive function defined on $\bar{\triangle}$ such that $K_{D}^{\mu_{j}} K_{D}^{\mu_{k}}\left(h_{j}\left(\bar{H}_{f}^{h} \circ i_{j}\right)\right)$ is bounded, $j \neq k, j, k \in\{1,2\}$. The following are equivalent:
(a) f is h-resolutive;
(b) (1) $f \circ i_{j}$ is h_{j}-resolutive on $\triangle, j=1,2$, and
(2) $K_{D}^{\mu_{k}}\left(h_{j} H_{f \circ i_{j}}^{h_{j}}\right)$ is finite, $j \neq k, j, k \in\{1,2\}$.

Proof: Suppose that (b) holds. Then the function $h_{j} H_{f \circ i_{j}}^{h_{j}}$ is L_{j}-harmonic, $j=1,2$. Moreover, we have

$$
h_{j} H_{f \circ i_{j}}^{h_{j}} \leq h_{j}\left(\bar{H}_{f}^{h} \circ i_{j}\right) .
$$

Since $K_{D}^{\mu_{j}} K_{D}^{\mu_{k}}\left(h_{j}\left(\bar{H}_{f}^{h} \circ i_{j}\right)\right)$ is bounded, $j \neq k, j, k \in\{1,2\}, K_{D}^{\mu_{j}} K_{D}^{\mu_{k}}\left(h_{j} H_{f \circ i_{j}}^{h_{j}}\right)$ is bounded, $j \neq k, j, k \in\{1,2\}$. Hence, by Theorem 3.1, the function

$$
\bar{H}_{f}^{h}= \begin{cases}\frac{1}{h_{1}}\left(Q\left(h_{1} H_{f \circ i_{1}}^{h_{1}}\right)+Q K_{D}^{\mu_{1}}\left(h_{2} H_{f \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{1} & \text { on } X_{1} \\ \frac{1}{h_{2}}\left(K_{D}^{\mu_{2}} Q\left(h_{1} H_{f \circ i_{1}}^{h_{1}}\right)+T\left(h_{2} H_{f \circ i_{2}}^{h_{2}}\right)\right) \circ \pi_{2} & \text { on } X_{2}\end{cases}
$$

is h-harmonic on X, moreover $\bar{H}_{f}^{h}=\underline{\mathrm{H}}_{f}^{h}=H_{f}^{h}$, therefore f is h-resolutive.
Conversely, suppose that f is h-resolutive. Then $\bar{H}_{f}^{h}=\underline{\mathrm{H}}_{f}^{h}=H_{f}^{h}$ and H_{f}^{h} is h-harmonic. On the one hand, it follows from Lemma 5.3 that

$$
h_{j} \bar{H}_{f \circ i_{j}}^{h_{j}}=h_{j}\left(H_{f}^{h} \circ i_{j}\right)-K_{D}^{\mu_{j}}\left(h_{k}\left(H_{f}^{h} \circ i_{k}\right)\right),
$$

and by Corollary 2.1, the function $H_{f \circ i_{j}}^{h_{j}}$ is $h_{j}-L_{j}$-harmonic on D, i.e. $f \circ i_{j}$ is h_{j}-resolutive on \triangle. On the other hand,

$$
K_{D}^{\mu_{k}}\left(h_{j} H_{f \circ i_{j}}^{h_{j}}\right) \leq K_{D}^{\mu_{k}}\left(h_{j}\left(H_{f}^{h} \circ i_{j}\right)\right) \leq h_{k} H_{f}^{h} \circ i_{k},
$$

thus

$$
K_{D}^{\mu_{k}}\left(h_{j} H_{f \circ i_{j}}^{h_{j}}\right)<\infty
$$

References

[1] Benyaiche A., On almost biharmonic functions in \mathbb{R}^{n}, Publ. Math., Ec. Norm. Supér, Takaddoum 4 (1988), 47-53 (See Zbl. Math. 678).
[2] Benyaiche A., Distributions bi-sousharmoniques sur $\mathbb{R}^{n}(n \geq 2)$, Math. Bohem. 119 (1994), no. 1, 1-13.
[3] Benyaiche A., Mesures de représentation sur les espaces biharmoniques, Proc. ICPT 91, Kluwer Acad. Publ., Dordrecht, 1994, pp. 171-178.
[4] Benyaiche A., Ghiate S., Propriété de moyenne restriente associée à un système d'E.D.P., Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (1) 27 (2003), 125-143.
[5] Benyaiche A., Ghiate S., Frontière de Martin biharmonique, preprint, 2000.
[6] Benyaiche A., El Gourari A., Caractérisation des ensembles essentiels, J. Math. Soc. Japan 54 (2002), no. 2, 467-486.
[7] Bliedtner J., Hansen W., Potential Theory: An Analytic and Probabilistic Approach to Balayage, Universitext, Springer, Berlin, 1986.
[8] Boukricha A., Espaces biharmoniques, Théorie du potentiel (Orsay, 1983), Lecture Notes in Math. 1096, Springer, Berlin, 1984, pp. 116-149.
[9] Bouleau N., Espaces biharmoniques et couplage de processus de Markov, J. Math. Pures Appl. 59 (1980), 187-240.
[10] Brelot M., On Topologies and Boundaries in Potential Theory, Lecture Notes in Math. 175, Springer, Berlin, 1971.
[11] Brelot M., Eléments de la théorie classique du potentiel, 4ème edition, Centre de Documentation Universitaire, Paris, 1969.
[12] Constantinescu C., Cornea A., Potential Theory on Harmonic Spaces, Springer, New YorkHeidelberg, 1972.
[13] Doob J.L., Classical Potential Theory and its Probabilistic Counterpart, Springer, New York, 1984.
[14] Hansen W., Modification of balayage spaces by transitions with application to coupling of PDE's, Nagoya Math. J. 169 (2003), 77-118.
[15] Helms L.L., Introduction to Potential Theory, Wiley, New York, 1969.
[16] Phelps R.R., Lectures on Choquet's Theorem, Van Nostrand, Princeton-Toronto-London, 1966.
[17] Hervé R.M., Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier 12 (1962), 415-571.
[18] Hervé R.M., Hervé M., Les fonctions surharmoniques associées à un opérateur elliptique du second ordre à coefficients discontinus, Ann. Inst. Fourier 19 (1969), no. 1, 305-359.
[19] Meyer M., Balayage spaces on topological sums, Potential Theory (Prague, 1987), Plenum, New York, 1988, pp. 237-246.
[20] Nakai M., Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan 26 (1974), 483-507.
[21] Smyrnelis E.P., Axiomatique des fonctions biharmoniques, I, Ann. Inst. Fourier 26 (1976), no. 1, 35-97.
[22] Smyrnelis E.P., Axiomatique des fonctions biharmoniques, II, Ann. Inst. Fourier 26 (1976), no. $3,1-47$.

Université Ibn Tofail, Faculté de Sciences, B.P. 133, Kénitra, Morocco
(Received April 13, 2004, revised April 7, 2006)

