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Minimal and minimum size latin bitrades of each genus

James Lefevre, Diane Donovan, Nicholas Cavenagh, Aleš Drápal

Abstract. Suppose that T ◦ and T ⋆ are partial latin squares of order n, with the property
that each row and each column of T ◦ contains the same set of entries as the corresponding
row or column of T ⋆. In addition, suppose that each cell in T ◦ contains an entry if and
only if the corresponding cell in T ⋆ contains an entry, and these entries (if they exist) are
different. Then the pair T = (T ◦, T ⋆) forms a latin bitrade. The size of T is the total
number of filled cells in T ◦ (equivalently T ⋆). The latin bitrade is minimal if there is
no latin bitrade (U◦, U⊗) such that U◦ ⊆ T ◦. Drápal (2003) represented latin bitrades
in terms of row, column and entry cycles, which he proved formed a coherent digraph.
This digraph can be considered as a combinatorial surface, thus associating each latin
bitrade with an integer genus, which is a robust structural property of the latin bitrade.
For each genus g ≥ 0, we construct a latin bitrade of smallest possible size, and also a
minimal latin bitrade of size 8g + 8.

Keywords: latin trade, bitrade, genus

Classification: 05B15

1. Introduction

We define a partial latin square P ◦ of order n to be a pair (N, ◦), where
N = N(n) = {0, 1, . . . , n − 1}, and ◦ is a binary operation mapping some subset
of N × N to N , which satisfies the following conditions:

• if i ◦ j = i′ ◦ j then i = i′,
• if i ◦ j = i ◦ j′ then j = j′.

A latin square L◦ is a partial latin square in which ◦ is defined everywhere on
N × N . In this case ◦ is a well defined binary operation on N , and L◦ = (N, ◦)
is a quasigroup. Note that a latin square is also a partial latin square. We
adopt the convention that, for example, P ◦ and Q◦ may denote different partial
latin squares; that is, two partial latin squares may use the same symbol to
denote different operators (although we use different symbols where confusion
might occur).
We often consider a partial latin square P ◦ in terms of its Cayley table: this

will consist of an n × n array of cells which are partially filled with entries from
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N (together with a headline and sideline). From the above conditions, each entry
will occur at most once in each row, and at most once in each column. If P ◦ is a
latin square, all the cells will be filled.

We may also (interchangeably) regard P ◦ as a subset of N × N × N , with
(i, j, k) ∈ P ◦ if and only if i ◦ j = k. We refer to i, j and k as the row, column
and entry respectively. (Note that an entry of P ◦ is one of the symbols in the
array while an element of P ◦ is an ordered triple.) Note that it is common to
give the primary definition of a (partial) latin square in terms of either the set of
ordered triples or the n × n array of entries (typically without the headline and
sideline). When partial latin squares are used with set notation such as ⊆ or ∪,
the partial latin square should be interpreted as a triple set; thus P ◦ ⊆ Q⋆ if
i ◦ j = k ⇒ i ⋆ j = k (so if i ⋆ j = k, then either i ◦ j = k or else i ◦ j is undefined).

A latin bitrade (of order n) is an ordered pair (T ◦, T ⋆) of partial latin squares
(of order n) such that for each i, j, k ∈ N satisfying i◦j = k (respectively, i⋆j = k),
there exists:

• i′ 6= i such that i′ ⋆ j = k (respectively, i′ ◦ j = k),
• j′ 6= j such that i ⋆ j′ = k (respectively, i ◦ j′ = k),
• k′ 6= k such that i ⋆ j = k′ (respectively, i ◦ j = k′).

Thus, each row i of T ◦ contains the same set of entries as row i of T ⋆ (row i is
balanced), and each column of T ◦ contains the same set of entries as T ⋆ (column j
is balanced). Moreover T ⋆ and T ◦ occupy the same set of cells and are disjoint.

The first study of latin bitrades appeared in [DrKe1], where they are referred
to as exchangeable partial groupoids . Later (and at first independently), latin bi-
trades were studied because of their connection to the intersection of latin squares
([5]). More recently, latin bitrades became of interest to researchers of critical sets
(minimal defining sets of latin squares) ([2], [7], [1]). As discussed in [10], latin bi-
trades may be applied to the compact storage of large catalogues of latin squares.
Results on other kinds of combinatorial trades may be found in [9] and [8].

We define the size of a partial latin square P ◦, denoted |P ◦|, to be the number
of filled cells in the Cayley table. Regarding P ◦ as a set of ordered triples, this
is just the standard notation for set size. We define the size of a latin bitrade
T = (T ◦, T ⋆), denoted by |T |, to be the size of the two component partial latin
squares; so |T | = |T ◦| = |T ⋆|. The smallest possible size of a latin bitrade is four;
we call a latin bitrade of this size an intercalate.

The representation of a partial latin square as a set of ordered triples highlights
a level of symmetry between the rows, columns and entries of a latin square or
latin bitrade which is not clear in other representations. Given P ◦ ∈ N ×N ×N ,
the necessary and sufficient conditions for P ◦ to be a partial latin square are

• if (i, j, k), (i′, j, k) ∈ P ◦ then i = i′,
• if (i, j, k), (i, j′, k) ∈ P ◦ then j = j′ and
• if (i, j, k), (i, j, k′) ∈ P ◦ then k = k′.
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(The third condition corresponds to the operation ◦ being uniquely defined.) It
follows that any consistent reordering of the triples in P ◦ will produce another
partial latin square of the same size. The definition of a latin bitrade given
earlier is similarly symmetric with respect to rows, columns and entries; thus any
consistent reordering of the triples in a latin bitrade will produce a second latin
bitrade of the same size.
Next, given a latin bitrade (T ◦, T ⋆) we define the following permutations on

the elements of T ◦:

τ1((i, j, k)) = (i, j
′, k′) iff (i, j, k′) ∈ T ⋆,

τ2((i, j, k)) = (i
′, j, k′) iff (i′, j, k) ∈ T ⋆,

τ3((i, j, k)) = (i
′, j′, k) iff (i, j′, k) ∈ T ⋆.

Note that τ1 is invariant on rows, τ2 on columns and τ3 on entries. In fact, it is
easy to see that τ1τ2τ3 = 1 (evaluating permutations from the right).
Now, consider a digraph whose vertices are elements of T ◦ and whose directed

edges are the ordered pairs of the form (v, τi(v)), where v ∈ T ◦. Drápal ([3])
showed that this digraph is coherent (that is, each face is oriented in one direction),
and thus, from Euler’s formula, a latin bitrade may be associated with a non-
negative, integer genus:

(1) g = (2 +E − V − F )/2,

where V , F and E are the number of vertices, faces and edges in the digraph.
Each cycle of τi, i ∈ {1, 2, 3}, contributes a face, and τ1τ2τ3 = 1 implies that,
in addition, for each vertex there is a corresponding triangular face. Thus F =
|T | + ω(τ1) + ω(τ2) + ω(τ3), where ω(φ) denotes the number of cycles in the
permutation φ. Then, since V = |T | and E = 3|T |, equation (1) becomes:

(2) g = (2 + |T | − ω(τ1)− ω(τ2)− ω(τ3))/2.

A latin bitrade is said to be separated if each row, column and entry give rise
to a unique cycle in τ1, τ2 and τ3, respectively. So for a separated latin bitrade
the genus is given by:

(3) g = (2 + |T | − r − c − e)/2,

where r, c and e stand for the number of rows, columns and entries, respectively.
Any latin bitrade may be made separated by a straightforward process of splitting
rows, columns and entries. This process does not change the size of the latin
bitrade, so for the purposes of this paper, we may assume that all latin bitrades
are separated. We define O(T ) = ω(τ1) + ω(τ2) + ω(τ3); provided that the latin
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bitrade is separated, this becomes O(T ) = r + c + e. We noted above that a
consistent reordering of the triples in a latin bitrade (T ◦, T ⋆) will produce another
latin bitrade of the same size. Such a consistent reordering will reorder the triple
(τ1, τ2, τ3), and will possibly invert each of these three permutations, but it will
not alter O(T ), the genus, or whether the latin bitrade is separated.
The concept of genus has become an important and useful way of classifying

and interpreting latin bitrades. We conjecture that any latin bitrade of genus 0
can be embedded in the Cayley table of an abelian group.

Example. Let (T ◦, T ⋆) be the following latin bitrade of order 3 and size 6:

T
◦

=

◦ 0 1 2

0 0 1 2

1 1 2 0

2

T
⋆

=

⋆ 0 1 2

0 1 2 0

1 0 1 2

2

We may also write:

T ◦ = {(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (1, 2, 0)} and
T ⋆ = {(0, 0, 1), (0, 1, 2), (0, 2, 0), (1, 0, 0), (1, 1, 1), (1, 2, 2)}.

Next,

τ1 = ((0, 0, 0) (0, 1, 1) (0, 2, 2))((1, 0, 1) (1, 2, 0) (1, 1, 2)),

τ2 = ((0, 0, 0) (1, 0, 1))((0, 1, 1) (1, 1, 2))((0, 2, 2) (1, 2, 0)) and

τ3 = ((0, 0, 0) (1, 2, 0))((0, 1, 1) (1, 0, 1))((0, 2, 2) (1, 1, 2)).

Thus the genus of this latin bitrade is equal to (2 + 6 − 8)/2 = 0. Indeed, its
digraph is planar, as shown in Figure 1. (The edges from τ1, τ2 and τ3 are shown
with solid, dot-dash and dashed arrows, respectively.)
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(1,1,2)

(0,1,1)

(0,0,0) (0,2,2)

(1,0,1)

(1,2,0)

Figure 1: The planar digraph associated with (T ⋆, T ◦)
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This paper explores the relationship between the genus and the size of a latin
bitrade. We pose the question: For a given genus, what is the size of the smallest
latin bitrade that has that genus? We give an exact answer to this question.

Theorem 1.2. Let g be an arbitrary non-negative integer, and define n ∈ Z by

n = ⌈(3 +√
8g + 1)/2⌉. The minimum size of a latin bitrade of genus g is

{

3n+ 2g − 3, if n ≥ 2 +√
2g + 1;

3n+ 2g − 2, if n < 2 +
√
2g + 1.

A latin bitrade (T ◦, T ⋆) is said to be minimal if there exists no latin bitrade
(U◦, U⊗) such that U◦ ⊂ T ◦. Note that for minimality we do not require that
U⊗ ⊂ T ⋆. The property of minimality is relevant to the study of critical sets
of latin squares, as a critical set must intersect every minimal latin trade within
a latin square. For a recent survey on critical sets in latin squares, see [7]. In
Section 4 we construct minimal bitrades of genus g and size 8g + 8.

2. The lower bound

Let T = {T ◦, T ⋆} be a separated latin bitrade of genus g. Rearranging equa-
tion (3),

(4) |T | = O(T ) + 2g − 2.

For a given genus, minimising O(T ) = r + c + e is equivalent to minimising |T |.
Since any consistent reordering of the triples in a separated latin bitrade produces
a second separated latin bitrade of the same size and genus, we assume without
loss of generality that

(5) 2 ≤ r ≤ c ≤ e.

There are at most rc cells in T ◦, so |T | ≤ rc. Therefore

(6) rc ≥ r + c+ e+ 2g − 2.

We can produce a lower bound on O(T ) by minimising r+ c+ e subject to the
inequalities (5) and (6) (r, c and e must be integers of course).

Lemma 2.1. Let g be a non-negative integer, and define n = ⌈(3+√
8g + 1)/2⌉.

Given that r, c, e are integers satisfying inequalities (5) and (6), the sum r+ c+ e
is minimised when

{

[r, c, e] = [n − 1, n, n], if n ≥ 2 +√
2g + 1;

[r, c, e] = [n, n, n], if n < 2 +
√
2g + 1.
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Proof: If g = 0, then r = c = e = 2 satisfies (5) and (6), and this solution
minimises r+c+e subject to (5). This proves the lemma for g = 0, so from here on
we assume that g ≥ 1. If r = 2, inequality (6) gives 2c ≥ 2+c+e+2g−2≥ 2c+2g,
contradicting g ≥ 1; hence we may also assume that 3 ≤ r ≤ c ≤ e for the
remainder of the proof.
We begin by looking for solutions in which r = c = e. Inequality (6) becomes

r2 ≥ 3r+2g−2. Since g ≥ 1 and r > 2, this has the solution r ≥ (3+√
8g + 1)/2.

Hence the integer solution to (5) and (6) in which r, c and e are equal and r+c+e
is minimised is r = c = e = n, where

n = ⌈(3 +
√

8g + 1)/2⌉.

In this case r + c+ e = 3n.
We now look for solutions in which r, c, e are not equal. In order for such a

solution to be an improvement upon the solution r = c = e = n, we require that
r + c + e < 3n; by (5), it follows that r < n. Let r = n − 1 − d, where d ≥ 0.
Suppose that c ≤ n − 1 + d (we seek a contradiction). By (5) and (6) we have
rc ≥ r+2c+2g−2 and hence c ≥ (r+2g−2)/(r−2). Therefore, by assumption,
n+ d− 1 ≥ (r+2g − 2)/(r− 2). Substituting r = n− 1− d and simplifying gives

(7) n2 − d − d2 − 5n+ 6 ≥ 2g.

By the definition of n, we have n − 1 < (3 +
√
8g + 1)/2, and hence

(n − 1)(n − 4) < (
√

8g + 1 + 3)(
√

8g + 1− 3)/4

(we have r ≥ 3 and r ≤ n − 1, so n ≥ 4). Rearranging this inequality gives
n2 < 5n + 2g − 6; with (7) this gives −d − d2 > 0, contradicting the condition
d ≥ 0. Thus by contradiction we have c ≥ n + d, and hence also e ≥ n + d,
giving r + c+ e ≥ 3n − 1 + d. It follows that the only possible solution in which
r + c+ e < 3n is r = n − 1, c = e = n, giving r + c+ e = 3n − 1.
By (6), this is a solution if and only if n(n − 1) ≥ 3n − 1 + 2g − 2; that is,

n2 − 4n + 3 ≥ 2g. Solving gives n ≥ 2 + √
2g + 1 (since n and g are positive

integers we can rule out the alternative solution, n ≤ 2−√
2g + 1).

Therefore [r, c, e] = [n − 1, n, n] is the minimal integer solution to inequalities
(5) and (6) if and only if

n ≥ 2 +
√

2g + 1.

Otherwise, the minimal integer solution is [r, c, e] = [n, n, n]. �

With equation (4), we can convert this lower bound on O(T ) = r+ c+ e into a
lower bound on |T | (for a given genus). This is the bound given by Theorem 1.2;
in the following section we prove that this bound is tight.
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3. Constructions

We now wish to construct, for each g ≥ 0, separated latin bitrades of genus
g in which the number of rows, columns and entries correspond to the minimum
values given by Lemma 2.1. We begin by reformulating the conditions slightly.
By the definition of n in Lemma 2.1, we have n− 1 < (3 +

√
8g + 1)/2 ≤ n. This

is equivalent to (n − 2)(n − 3)/2 < g ≤ (n − 1)(n − 2)/2. Likewise the condition
n ≥ 2 + √

2g + 1 is equivalent to g ≤ (n − 1)(n − 3)/2. Thus we can state the
construction problem as follows: Let n ≥ 2 be an integer; for every integer g
satisfying

(n − 1)(n − 3)/2 < g ≤ (n − 1)(n − 2)/2,

we must construct a separated latin bitrade of genus g with [r, c, e] = [n, n, n],
while for every integer g satisfying

(n − 2)(n − 3)/2 < g ≤ (n − 1)(n − 3)/2,

we must construct a separated latin bitrade of genus g with [r, c, e] = [n−1, n, n].
We can further restate the construction problem in terms of the size of the latin

bitrade; this is the easiest form to check. By equation (4), we have |T | = 3n+2g−2
if [r, c, e] = [n, n, n] and |T | = 3n+ 2g − 3 if [r, c, e] = [n− 1, n, n]. Note also that
in the second case, we have (n− 2)(n− 3)/2 < (n− 1)(n− 3)/2, and hence n ≥ 4;
but n = 4 gives 1 < g ≤ 3/2, so in fact n ≥ 5. Therefore:
Case 1: for every integer n ≥ 2 and size S satisfying S ≡ n (mod 2) and

n2 − n+ 1 < S ≤ n2,

we must construct a separated latin bitrade T with [r, c, e] = [n, n, n] and
|T | = S.

Case 2: for every integer n ≥ 5 and size S satisfying S ≡ n+ 1 (mod 2) and

n(n − 1)− n+ 3 < S ≤ n(n − 1),

we must construct a separated latin bitrade with [r, c, e] = [n − 1, n, n]
and |T | = S.

Case 1:

We start with a well-known separated bitrade (see, for example, [6]). Let n ≥ 2
be an integer. Taking all addition modulo n, define Cn = (C

◦
n, C⋆

n), where

C◦
n = {(i, j, i+ j) | i, j ∈ Zn},

C⋆
n = {(i, j, i+ j + 1) | i, j ∈ Zn}.
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Then Cn is a latin bitrade of size n2 with r = c = e = n. The row, column and
symbol permutations τ1, τ2, τ3 satisfy

τ1((i, j, i+ j)) = (i, j + 1, i+ j + 1),

τ2((i, j, i+ j)) = (i − 1, j, i+ j − 1),
τ3((i, j, i+ j)) = (i+ 1, j − 1, i+ j),

for every i, j ∈ Zn. It follows that the permutation on each row, column and entry
is a single cycle; that is, Cn is separated. Therefore Cn is the required construction
for Case 1 when S = n2 (corresponding to genus g = (n − 1)(n − 2)/2). To
complete Case 1, we modify Cn to reduce the size while not altering O(T ); that
is, the sum of the number of rows, columns and entries. We must also ensure that
the modified bitrade is separated. We use the following lemma.

Lemma 3.1. Suppose that a separated latin bitrade T = (T ◦, T ⋆) satisfies

A◦ = {(i1, j1, k1), (i1, j2, k2), (i2, j1, k2), (i2, j2, k3)} ⊆ T ◦,

A⋆ = {(i1, j1, k2), (i1, j2, k3), (i2, j1, k3), (i2, j2, k4)} ⊆ T ⋆.

Let

B◦ = {(i1, j1, k1), (i2, j2, k2)},
B⋆ = {(i1, j1, k3), (i2, j2, k4)},
U◦ = (T ◦ \ A◦) ∪ B◦,

U⋆ = (T ⋆ \ A⋆) ∪ B⋆.

Then U = (U◦, U⋆) is a separated latin bitrade with the same number of rows,
columns and entries as T , and with size |U | = |T | − 2.
Proof: By assumption, T ◦ and T ⋆ contain the subsquares

◦ j1 j2
i1 k1 k2
i2 k2 k3

and
⋆ j1 j2
i1 k2 k3
i2 k3 k4

respectively. In U◦ and U⋆, these entries are replaced by

◦ j1 j2
i1 k1
i2 k2

and
⋆ j1 j2
i1 k3
i2 k4

respectively. It is easily verified that the rows and columns are still balanced, and
hence U = (U◦, U⋆) is a latin bitrade of size |U | = |T | − 2. So it only remains to
prove that O(U) = O(T ) (and thus U is separated).
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Let τ1, τ2 and τ3 be respectively the row, column and symbol permutations of
T , and let τ ′1, τ

′
2 and τ ′3 be respectively the row, column and symbol permutations

of U .
By the definition of τ1, the cycle corresponding to row i contains the segment

(. . . (i1, j1, k1) (i1, j2, k2) (i1, j3, k3) . . . ),

where j3 /∈ {j1, j2}. In τ ′1, this segment is replaced by

(. . . (i1 j1, k1) (i1, j3, k3) . . . ).

Otherwise the cycle is unchanged; hence in τ ′1, as in τ1, there is exactly one cycle
corresponding to row i1.
The cycle in τ1 corresponding to row i2 contains the segment

(. . . (i2, j1, k2) (i2, j2, k3) (i2, j4, k4) . . . )

where j4 /∈ {j1, j2}. In τ ′1, this segment is replaced by

(. . . (i2, j2, k2) (i2, j4, k4) . . . ).

Otherwise the cycle is unchanged, and hence in τ ′1, as in τ1, there is exactly one
cycle corresponding to row i2. Note that there is some (i2, j5, k2) ∈ T ⋆; we have

j5 6= j1, j2, and hence also (i2, j5, k2) ∈ U⋆. Thus by definition τ−11 ((i2, j1, k2)) =

(τ ′1)
−1((i2, j2, k2)) = (i2, j5, k5), for some k5.
Every other row cycle in τ ′1 is identical to the corresponding row cycle in τ1,

and hence the total number of cycles in τ ′1 is equal to the total number of cycles
in τ1. Similarly the total number of cycles in τ ′2 is equal to the total number of
cycles in τ2.
In τ3, the cycle corresponding to symbol k2 contains the segment

(. . . (i1, j2, k2) (i2, j1, k2) . . . ).

The entry k2 occurs in row i2 of T ◦; hence by the definition of a latin bi-
trade, there is some column j6 such that (i2, j6, k2) ∈ T ⋆. We have j6 /∈
{j1, j2}, hence (i2, j6, k2) ∈ U⋆ also. By the definition of the symbol permutation,
τ3((i2, j1, k2)) = τ ′3((i2, j2, k2)) = (i3, j6, k2), for some i3 /∈ {i1, i2}. Similarly
τ−13 ((i1, j2, k2)) = (τ

′
3)

−1((i2, j2, k2)), and thus the above segment is replaced by

(. . . (i2, j2, k2) . . . )

in τ ′3; otherwise the cycle corresponding to symbol k2 is unchanged. The cycle in
τ3 corresponding to symbol k3 contains the segment

(. . . (i1, j7, k3) (i2, j2, k3) (i4, j1, k3) . . . ),
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for some i4 /∈ {i1, i2} and j7 /∈ {j1, j2}. In τ ′3, this segment is replaced by

(. . . (i1, j7, k3) (i4, j1, k3) . . . );

otherwise the cycle is unchanged. Every other cycle in τ ′3 is identical to the
corresponding cycle in τ3; thus we see that the total number of cycles in τ ′3 is
equal to the total number of cycles in τ3. With the equivalent results for the row
and symbol permutations, it follows that the order of U is equal to the order of T ,
so we are done. �

Using Lemma 3.1, we can complete the construction for Case 1.

Corollary 3.1. For every integer n ≥ 2 and size S satisfying S ≡ n (mod 2) and

n2 − n+ 1 < S ≤ n2,

there exists a separated latin bitrade T with [r, c, e] = [n, n, n] and |T | = S.

Proof: We begin with the latin bitrade Cn (recall that this is the required
construction for the case S = n2). We may apply Lemma 3.1 repeatedly, using
i1 = 0, i2 = 1, j1 = 2m and j2 = 2m+ 1, for 0 ≤ m ≤ ⌊(n − 2)/2⌋, reducing the
size of the latin bitrade by two each time (so we modify 2× 2 regions along the
top of C◦

n and C⋆
n). We may carry out repeated modifications since a different set

of elements is replaced for each choice of j. The minimum size obtained in this
way is n2 − 2(⌊(n − 2)/2⌋+ 1) ≤ n2 − n+ 1, and we can obtain latin bitrades of
any size with the same parity as n within this range. �

Case 2:

We begin with a variation of the latin bitrade Cn. Taking all addition modulo
n (where n ≥ 5), define Dn = (D

◦
n, D⋆

n), where

D◦
n = {(i, j, i+ j) | 0 ≤ i ≤ n − 2, 0 ≤ j ≤ n − 1},

D⋆
n = {(i, j, i+ j + 1) | 0 ≤ i ≤ n − 3, 0 ≤ j ≤ n − 1}

∪ {(n − 2, j, j) | 0 ≤ j ≤ n − 1}.

Then Dn is a latin bitrade of size n(n − 1) with r = n − 1 and c = e = n. The
row, column and symbol permutations τ1, τ2, τ3 satisfy

τ1((i, j, i+ j)) =

{

(i, j + 1, i+ j + 1), if 0 ≤ i ≤ n − 3,
(i, j + 2, i+ j + 2), if i = n − 2,

τ2((i, j, i+ j)) =

{

(i − 1, j, i+ j − 1), if 1 ≤ i ≤ n − 2,
(n − 2, j, j − 2), if i = 0,

τ3((i, j, i+ j)) =

{

(i+ 1, j − 1, i+ j), if 0 ≤ i ≤ n − 3,
(0, j − 2, j − 2), if i = n − 2.
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It follows that the permutation on each row, column and entry is a single cycle,
with the possible exception of row n − 2. If n is odd, the permutation on row
n − 2 is a single cycle, and hence the bitrade is separated; but if n is even, then
the permutation on row n− 2 consists of two cycles. If n is odd, we complete the
construction as for Case 1.

Lemma 3.2. For every odd integer n ≥ 5 and size S satisfying S ≡ n+1 (mod 2)
and

n(n − 1)− n+ 3 < S ≤ n(n − 1),

there exists a separated latin bitrade T with [r, c, e] = [n − 1, n, n] and |T | = S.

Proof: We begin with the latin bitrade Dn, which is separated since n is odd,
and hence Dn is the required latin bitrade when S = n(n−1). Note that the first
two rows (and in fact the first n − 2 rows) of both D◦

n and D⋆
n are identical to

the corresponding rows of C◦
n and C⋆

n respectively. As in Corollary 3.1 (with Cn),
we may apply Lemma 3.1 repeatedly to Dn, using i1 = 0, i2 = 1, j1 = 2m and
j2 = 2m+ 1, for 0 ≤ m ≤ (n− 5)/2, reducing the size of the latin bitrade by two
each time. The minimum size obtained in this way is n(n − 1) − 2((n − 3)/2) =
n(n − 1) − n + 3, as required, and we can obtain latin bitrades of any size with
the opposite parity to n within this range. �

If n is even, we modify Dn to produce a separated latin bitrade. This mod-
ification will also reduce the size of the latin bitrade by one, which is necessary
because in Case 2 the size has the opposite parity to n, and hence the maximum
size is n(n − 1)− 1.
By definition, D◦

n and D⋆
n contain the subsquares

◦ 0 1
n − 3 n − 3 n − 2
n − 2 n − 2 n − 1

and
⋆ 0 1

n − 3 n − 2 n − 1
n − 2 0 1

respectively. We modify the latin bitrade by replacing these entries with

◦ 0 1
n − 3 n − 3
n − 2 n − 1 n − 2

and
⋆ 0 1

n − 3 n − 1
n − 2 0 1

respectively. We label the modified latin bitrade En = (E
◦
n, E⋆

n); it is easily
verified that En is a latin bitrade of size n(n − 1)− 1 with [r, c, e] = [n − 1, n, n],
but it remains to be proved that En is separated.

Lemma 3.3. For every even integer n ≥ 6, the latin bitrade En is separated.

Proof: We need to show that there is exactly one cycle in En corresponding to
each of row n−3, row n−2, column 0, column 1, symbol n−2, and symbol n−1.
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All other cycles are identical to the corresponding cycles in Dn, and hence there
is exactly one cycle corresponding to each row, column and symbol.
The cycle in Dn corresponding to row n − 3 contains the segment
(. . . (n − 3, n− 1, n − 4) (n − 3, 0, n− 3) (n − 3, 1, n− 2) (n − 3, 2, n− 1) . . . ).
In En, this segment is replaced by

(. . . (n − 3, n − 1, n− 4) (n − 3, 0, n− 3) (n − 3, 2, n− 1) . . . ).
Similarly, the cycle in Dn corresponding to column 0 contains the segment

(. . . (0, 0, 0) (n − 2, 0, n− 2) (n − 3, 0, n− 3) (n − 4, 0, n− 4) . . . ),
which is replaced in En by

(. . . (0, 0, 0) (n − 2, 0, n− 1) (n − 3, 0, n− 3) (n − 4, 0, n− 4) . . . );
the cycle in Dn corresponding to column 1 contains the segment

(. . . (0, 1, 1) (n − 2, 1, n− 1) (n − 3, 1, n− 2) (n − 4, 1, n− 3) . . . ),
which is replaced in En by

(. . . (0, 1, 1) (n − 2, 1, n− 2) (n − 4, 1, n − 3) . . . );
the cycle in Dn corresponding to entry n − 2 contains the segment
(. . . (n − 4, 2, n− 2) (n − 3, 1, n− 2) (n − 2, 0, n − 2) (0, n − 2, n − 2) . . . ),

which is replaced in En by

(. . . (n − 4, 2, n− 2) (n − 2, 1, n− 2) (0, n − 2, n − 2) . . . );
and the cycle in Dn corresponding to entry n − 1 contains the segment

(. . . (n − 3, 2, n− 1) (n − 2, 1, n− 1) (0, n − 1, n − 1) . . . ),
which in En is replaced by

(. . . (n − 3, 2, n− 1) (n − 2, 0, n− 1) (0, n − 1, n − 1) . . . ).
In each case we obtain a single cycle in En for the given row, column or entry.
We are left with row n− 2. In Dn, there are two cycles on this row (since n is

even), namely

((n − 2, 0, n− 2) (n − 2, 2, 0) (n − 2, 4, 2) . . . (n − 2, n − 2, n − 4))
and

((n − 2, 1, n− 1) (n − 2, 3, 1) (n − 2, 5, 3) . . . (n − 2, n− 1, n − 3)).
In En, these two cycles are replaced by the single cycle

((n − 2, 0, n− 1) (n − 2, 2, 0) (n − 2, 4, 2) . . . (n − 2, n − 2, n − 4)
(n − 2, 1, n− 2) (n − 2, 3, 1) (n − 2, 5, 3) . . . (n − 2, n− 1, n − 3)).

Therefore En is separated. �
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Corollary 3.2. For every even integer n ≥ 6 and size S satisfying S ≡ n +
1 (mod 2) and

n(n − 1)− n+ 3 < S ≤ n(n − 1)− 1,
there exists a separated latin bitrade T with [r, c, e] = [n − 1, n, n] and |T | = S.

Proof: We begin with the separated latin bitrade En which is the required
construction for Case 2 when n is even and S = n(n − 1) − 1 (as noted earlier,
there is no such latin bitrade for S = n(n− 1). Note that the first two rows (and
in fact the first n− 3 rows) of both D◦

n and D⋆
n are identical to the corresponding

rows of C◦
n and C⋆

n respectively (by construction, the last row of Dn differs from
Cn, while the last two rows of En differ from Dn; En has n − 1 rows). As
in Corollary 3.1 and Lemma 3.2 (with Cn and Dn respectively), we may apply
Lemma 3.1 repeatedly to En, using i1 = 0, i2 = 1, j1 = 2m and j2 = 2m+ 1, for
0 ≤ m ≤ (n − 2)/2, reducing the size of the latin bitrade by two each time. The
minimum size obtained in this way is n(n − 1) − 1 − 2(n/2) ≤ n(n − 1)− n+ 3,
as required, and we can obtain latin bitrades of any size with the opposite parity
to n within this range. �

The constructions in this section prove that the bound given by Lemma 2.1 is
tight. This completes the proof of Theorem 1.2.

4. Minimal latin bitrades of genus g and size 8g + 8

In this section we introduce a complementary result which shows that minimal
latin bitrades of genus g and size in the order of g (specifically, 8g + 8) exist for
each integer g. The latin bitrades in the previous section, while having minimum
size for a given genus, are not minimal in general (see the definition at the end
of Section 1). For example, recall that the first latin bitrade given was {C◦

n, C⋆
n}.

Let U◦ = {(0, j, j), (1, j, j+1) | j ∈ Zn} and U⋆ = {(0, j, j+1), (1, j, j) | j ∈ Zn},
where n is an integer and addition is taken modn. Then {U◦, U⋆} is a latin
bitrade, and U◦ ⊆ C◦

n (in fact U◦ consists of the first two rows of C◦
n), hence

{C◦
n, C⋆

n} is not minimal. The latin bitrade {C◦
n, C⋆

n} was generalised by modifying
the first two rows, but any two unmodified rows can be used in a similar way to
form a latin bitrade. By contrast the constructions given here are minimal, but
are not necessarily the smallest minimal latin bitrades of a given genus.
For g ≥ 0, we define partial latin squares:

M◦ = {(0, 4i, 2i), (1, 4i+ 1, 2i), (0, 4i+ 2, 2i+ 1),
(1, 4i+ 3, 2i+ 1), (2, 4i+ 1, 2i+ 1), (3, 4i, 2i+ 1),

(2, 4i+ 2, 2i+ 2), (3, 4i+ 3, 2i+ 2) | 0 ≤ i ≤ g}
M⋆ = {(0, 4i, 2i+ 1), (1, 4i+ 1, 2i+ 1), (0, 4i+ 2, 2i+ 2),

(1, 4i+ 3, 2i+ 2), (2, 4i+ 1, 2i), (3, 4i, 2i),

(2, 4i+ 2, 2i+ 1), (3, 4i+ 3, 2i+ 1) | 0 ≤ i ≤ g}
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where arithmetic is calculated modulo 2g + 2.

Example 4.1. We give the pair (M◦, M⋆) for g = 1:

◦ 0 1 2 3 4 5 6 7

0 0 1 2 3

1 0 1 2 3

2 1 2 3 0

3 1 2 3 0

M
◦

◦ 0 1 2 3 4 5 6 7

0 1 2 3 0

1 1 2 3 0

2 0 1 2 3

3 0 1 2 3

M
⋆

Lemma 4.1. The ordered pair of partial latin squares (M◦, M⋆) forms a sepa-
rated, minimal latin bitrade of size 8g + 8 and genus g.

Proof: It is clear that M◦ and M⋆ are disjoint. Each column of (M◦, M⋆)
contains exactly two entries, so the columns are both balanced and separated.
Each row contains the set of entries {0, 1, . . . , 2g + 1} so the rows are balanced.
Thus (M◦, M⋆) is a latin bitrade.
Next, there are four cycles of τ1, corresponding to the four rows of M

◦:

((0, 0, 0)(0, 2, 1) . . . (0, 4i, 2i)(0, 4i+ 2, 2i+ 1) . . . )

((1, 1, 0)(1, 3, 1) . . . (1, 4i+ 1, 2i)(1, 4i+ 3, 2i+ 1) . . . )

((2, 4g + 2, 2g + 2)(2, 4g + 1, 2g + 1) . . . (2, 4i+ 2, 2i+ 2)(2, 4i+ 1, 2i+ 1) . . . )

((3, 4g + 3, 2g + 2)(3, 4g, 2g + 1) . . . (3, 4i+ 3, 2i+ 2)(3, 4i, 2i+ 1) . . . )

Thus the rows are separated.
Consider an odd entry 2i+ 1. Within τ3 the corresponding cycle is:

((0, 4i+ 2, 2i+ 1)(3, 4i, 2i+ 1)(1, 4i+ 3, 2i+ 1)(2, 4i+ 1, 2i+ 1)).

It is clear that each odd entry gives one cycle of τ3. A similar result can be shown
for the even entries, so the entries are separated.
Thus the entire latin bitrade is separated, and its genus is:

(8g + 8− 4− (4g + 4)− (2g + 2) + 2)/2 = g.
�

Via more sophisticated constructions it should be possible to improve this
result. That is, we conjecture that there should be some constant c < 8 such
that there exists a minimal latin bitrade of genus g and size at most cg for each
g ≥ 0. It is an open problem to determine the least such c. However, the results
in the earlier sections prove that any upper bound for the minimum size is, at
best, linear with respect to g.
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A. Drápal:
Charles University, Faculty of Mathematics and Physics, Department of Algebra,

Sokolovská 83, 186 75 Prague 8, Czech Republic

(Received September 6, 2006, revised February 6, 2007)


		webmaster@dml.cz
	2012-05-01T00:04:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




