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Quasi-concave copulas, asymmetry and transformations

Elisabetta Alvoni, Pier Luigi Papini

Abstract. In this paper we consider a class of copulas, called quasi-concave; we compare
them with other classes of copulas and we study conditions implying symmetry for them.
Recently, a measure of asymmetry for copulas has been introduced and the maxi-

mum degree of asymmetry for them in this sense has been computed: see Nelsen R.B.,
Extremes of nonexchangeability , Statist. Papers 48 (2007), 329–336; Klement E.P.,
Mesiar R., How non-symmetric can a copula be?, Comment. Math. Univ. Carolin. 47
(2006), 141–148. Here we compute the maximum degree of asymmetry that quasi-
concave copulas can have; we prove that the supremum of {|C(x, y) − C(y, x)|;x, y in

[0, 1]; C is quasi-concave} is 1
5
. Also, we show by suitable examples that such supremum

is a maximum and we indicate copulas for which the maximum is achieved.
Moreover, we show that the class of quasi-concave copulas is preserved by simple

transformations, often considered in the literature.
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1. Copulas and asymmetry

As known, copulas link the joint distribution function of a random vector to
the corresponding marginal distribution functions. Moreover, from some years,
in Finance, Statistics and Probability there is a growing interest on nonexchange-
ability of random variables, and this can be studied in terms of non-symmetric
copulas.

We recall some definitions.
A (bivariate) copula is a function C: [0, 1]2 → [0, 1] satisfying:

(1) C(1, y) = y, C(x, 1) = x, for 0 ≤ x, y ≤ 1,
(2) C(x′, y′)− C(x, y′) ≥ C(x′, y)− C(x, y) for 0 ≤ x ≤ x′ ≤ 1, 0 ≤ y ≤ y′ ≤ 1.

In particular, condition (2), usually called 2-increasingness , together with (1)
implies:

(3) C(x, y) is increasing in each variable

During the preparation of this paper, the authors were partially supported by the Italian
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and

(4) C(0, y) = 0, C(x, 0) = 0, for 0 ≤ x, y ≤ 1.

Also, we obtain from (2) (set y′ = 1 or x′ = 1):

(5) C(x, y) is 1-Lipschitz in each variable.

A copula is the restriction to the unit square of a distribution function with
uniform marginals on [0,1]. We refer to [5] for general results on copulas.

A copula C(x, y) is commutative or symmetric, if

(6) C(x, y) = C(y, x) for all x, y in [0, 1].

If a copula is not commutative, it can be interesting to know how large the
difference between C(x, y) and C(y, x) can be.
According to [6], we set, for a copula C:

(7) βC = sup{|C(x, y)− C(y, x)|; x, y ∈ [0, 1]}.

As proved in [6, Theorem 2.2] and in [3], we have:

(8) sup{βC ; C is a copula} = 1
3
;

due to this fact, it was suggested to use 3βC as a normalized measure of asymmetry
for copulas.
Moreover, the supremum is achieved: the set of copulas for which such value

is attained, was characterized in [6]; their elements were called maximally nonex-
changeable copulas . These and other results on asymmetry have been considered
also in [3].

To see how and where the interest in asymmetry can arise, we recall that for
example in [2] it was explained why it can be suitable to change symmetric copulas
into asymmetric ones.

2. Quasi-concave copulas, symmetry and other related classes of

copulas

We define a class of copulas, described in [5, Section 3.4.3].

Definition 1. We say that a copula is quasi-concave if for all (x, y), (x′, y′) in
[0, 1]2 and all λ ∈ [0, 1], we have:

(9) C(λx + (1− λ)x′, λy + (1− λ)y′) ≥ min{C(x, y), C(x′, y′)}.

Another, more popular, class of copulas can be described in the following way
(see for example [5, Definition 3.4.6]):
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Definition 2. We say that a copula is Schur-concave if for all x, y, λ in [0, 1], we
have:

(10) C(x, y) ≤ C(λx + (1− λ)y, λy + (1− λ)x).

It is clear that a copula satisfying (10) is commutative.

A weakening of condition (10) has been considered, mainly in a context different
from that of copulas (see [4, (4.1)]):

(11) C(
x+ y

2
,
x+ y

2
) ≥ C(x, y) for all x, y ∈ [0, 1].

For copulas, an “asymmetric” version of (11) was considered in [1].

The meaning of (11) and, respectively, (10), is the following. Consider the
values of C along the line segment x + y = 2α (0 ≤ α ≤ 1); if (11) holds, then
C(x, y) takes the maximum value at the point (α, α); if (10) holds, then C(x, y)
is also increasing in the upper part of the line x+ y = 2α, from the border of the
unit square to the diagonal, and decreasing along the lower part (from (α, α) to
the border).

We recall (see [5, p. 104]) that quasi-concave copulas are also Schur-concave if
they are symmetric (but not in general).
Now we prove that also quasi-concavity together with (11) implies Schur-

concavity. Thus we obtain a description of symmetric quasi-concave copulas.

Theorem 1. If a quasi-concave copula satisfies (11), then it is Schur-concave.

Proof: Let C(x, y) be quasi-concave and satisfy (11); assume, by contradiction
that C is not Schur-concave, and let be (x, y), (x′, y′) points along the segment
x+ y = 2α (0 ≤ α ≤ 1) such that:

(∗) 0 ≤ x < x′ ≤ x+ y

2
; C(x, y) > C(x′, y′).

Since, according to (11):

C(
x + y

2
,

x+ y

2
) ≥ C(x, y),

the quasi-concavity of C implies

C(x′, y′) ≥ min{C(x, y), C(
x + y

2
,

x+ y

2
)} = C(x, y),

against (∗); so we have a contradiction.
Analogously, we obtain a contradiction starting from x+y

2 ≤ x < x′ ≤ 1. This
concludes the proof of the theorem. �

We have immediately the following consequence.
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Corollary. For a quasi-concave copula C the following are equivalent:

(i) C is symmetric,
(ii) C satisfies (11),
(iii) C is Schur-concave.

Remark. For an example of a (symmetric) Schur-concave copula which is not
quasi-concave see [5, Example 3.28(a)]; so condition (11) does not imply quasi-
concavity. Example 2 in [1] describes a symmetric copula satisfying (11), which
is not Schur-concave (so neither quasi-concave).

We can ask for some other condition implying the quasi-concavity of a copula.
We give below one possible answer.

We consider another class of copulas, satisfying a condition which also has a
statistical meaning (see [5, Definition 5.2.9 and Corollary 5.2.11]).

Definition 3. We say that a copula is stochastically increasing in x and y, (SI)
for short, if it is concave in each variable; namely:

(12)
C(x, y) is a concave function of y for any fixed x,

and a concave function of x for any fixed y (x, y ∈ [0, 1]).

We have the following result.

Theorem 2. (SI) copulas are quasi-concave.

Proof: We recall that, since we are dealing with continuous functions, quasi-
concavity for copulas is equivalent to Jensen (midpoint) quasi-concavity, that is
to

(9′) C(
x+ x′

2
,

y + y′

2
) ≥ min{C(x, y), C(x′, y′)}.

We prove now a simple claim.

Claim. If a copula C(x, y) is not quasi-concave, then (9′) is violated by a pair of
points (x, y), (x′, y′) such that the line joining them has a negative slope.

Proof of the claim: Let C(x, y) be a copula. Let the points (x, y), (x′, y′) be
such that the line joining them has a non-negative slope; if x ≤ x′ and y ≤ y′,
then (3) implies: min{C(x, y), C(x′, y′)} = C(x, y) ≤ C(x′, y′); moreover C(λx +
(1− λ)x′, λy + (1− λ)y′), λ ∈ [0, 1], is an increasing function of λ.
Thus in this case (9′) is satisfied; this proves the claim. �

Proof of Theorem 2: We deal with Jensen concavity. Let C(x, y) be an (SI)
copula; assume, by contradiction, that C(x, y) is not quasi-concave: according to
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the claim, there are two points (x, y), (x′, y′) such that the line joining them has
a negative slope and moreover:

min{C(x, y), C(x′, y′)} > C(
x+ x′

2
,

y + y′

2
).

Assume that, for example, x < x′ and y > y′ (a similar reasoning applies in the
case x > x′ and y < y′).
According to (12), we have

C(
x + x′

2
,

y + y′

2
) ≥ 1
2
(C(x,

y + y′

2
) + C(x′,

y + y′

2
));

therefore:

1

2
(C(x,

y + y′

2
) + C(x′,

y + y′

2
)) < min{C(x, y), C(x′, y′)}

≤ 1
2
(C(x, y) + C(x′, y′)).

Since (by (12))

C(x′, y)− C(x′,
y + y′

2
) ≤ C(x′,

y + y′

2
)− C(x′, y′),

we obtain

C(x′, y)− C(x′,
y + y′

2
) < C(x, y) − C(x,

y + y′

2
)

or

C(x,
y + y′

2
) + C(x′, y) < C(x, y) + C(x′,

y + y′

2
).

The last inequality contradicts 2-increasingness. This completes the proof of
the theorem. �

Remark 1. Following the lines of the now given proof, also the following fact
can be proved:

If a copula is (SI), then it is also concave along lines with a negative slope.

Recall that (SI) does not imply concavity of a copula (the definition of concavity
being the usual one, which implies (SI)): in fact, there exists a unique concave
copula (which is the greatest copula: see [5, Example 3.26.(a)]). Also: Schur
concavity and concavity are independent notions for functions (see [7, p .258]);
but the unique concave copula is Schur-concave.

Remark 2. Note that in general (SI) copulas are not symmetric (or equivalently,
according to Theorem 2 and the Corollary to Theorem 1, they do not satisfy (10)
or (11)). An example of an asymmetric, (SI) copula, is the following:
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Example 1. Consider the following copula:

C(x, y) =

{

xy3/4 if x ≤ y1/2

yx1/2 if x > y1/2.

Remark 3. It is also possible to see that symmetric, quasi-concave copulas (see
the Corollary) are not in general (SI) copulas: consider for example as C(x, y)
a copula whose level lines, which are broken lines, join (x2, 1), (x, x), (1, x2),
x ∈ [0, 1].
Remark 4. Recall that a copula is associative if for all x, y, z ∈ [0, 1] we have:

C(C(x, y), z) = C(x, C(y, z)) for all x, y, z ∈ [0, 1].

The following copula is (SI), symmetric but not associative:

C(x, y) =

{

x
√

y if x ≤ y,

y
√

x if x ≥ y;

to see this, it is enough to consider for example in the above definition x = y =
1
2 ; z = 14 .

3. Quasi-concave copulas and asymmetry

In this section we want to study the quantity

(13) β(Q) = sup{βC ; C is a quasi-concave copula}.

We recall the following result (see [6, Lemma 2.1]).

Lemma. For any copula C and any x, y ∈ [0, 1] we have:

(14) |C(x, y) − C(y, x)| ≤ min{x, y, 1− x, 1− y, |x − y|}.

Now we prove the main result of this section.

Theorem 3. We have:

(15) β(Q) = 1/5.

Proof: Let β(C) = β > 0 for some quasi-concave copula C and let β = C(x, y)−
C(y, x) for a pair x, y. It is not a restriction to assume x < y (otherwise, by
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symmetry, we may construct a copula C′, with same asymmetry, for which this
holds true).
Let C(y, x) = α and C(x, y) = α + β. According to the Lemma, P ≡ (x, y)

belongs to the triangle T : {(x, y); x ≥ β; y ≤ 1− β; y ≥ x+ β}.
The points (1, α + β), (α + β, 1), (x, y) all belong to the level sets L =

{(u, v); C(u, v) = α+ β}.
Recall that C(y, x) = α; let (y, z) be the lower point of abscissa y that belongs

to L, and (y, z′) the point of abscissa y that belongs to the segment of extremes

(x, y), (1, x) (x ≥ α+β). Considering that segment, if we write y = 1−y
1−xx+ y−x

1−x1,
we see that

z′ =
1− y

1− x
y +

y − x

1− x
x.

Now the quasi-concavity of C implies C(y, z′) ≥ α + β, so z′ ≥ z > x, and then
(by using (5)) z′ − x ≥ z − x ≥ C(y, z)− C(y, x) = β; then

1− y

1− x
y +

y − x

1− x
x − x ≥ β; equivalently

y − y2 + yx − x

1− x
≥ β.

Now consider the function f(x, y) =
−y2+y(1+x)−x

1−x in the triangle T ; simple

computations show that it attains its maximum at the point (β, 1+β
2 ). So we

have
1− β

4
≥ β, which is equivalent to β ≤ 1/5.

We have proved that 1/5 is an upper bound for β(Q). To conclude the proof
we must produce an example of a quasi-concave copula C such that

βC = sup{|C(x, y)− C(y, x)|; x, y ∈ [0, 1]} = 1/5.

This is done by the example below.

Example 2. The above proof shows that the value 1/5 for asymmetry can only

be attained, in the upper triangle y ≥ x of the unit square, at the point (15 ,
3
5 ).

Note that the copulas we are considering are related to examples in Section 3.2.1
of [5].

We define a copula C1(x, y), whose asymmetry is 1/5, in the following way:

C1(x, y) =

{

max{y + (x − 1)/2, 0} if 0 ≤ y ≤ x+1
2 ,

x if x+1
2 < y ≤ 1.

The copula C1 is quasi-concave (the upper boundary of level sets are convex: see
[5, Theorem 3.4.5]). The support of C1 consists of the two line segments in I2:

{(x, y) ∈ I2; y =
1 + x

2
} ∪ {(x, y) ∈ I2; y =

1− x

2
}.
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We can also consider a copula C2, with the same asymmetry, whose support
is distributed along some line segments: weight 4/5 spread along the line joining
(1/5, 1) and (1, 1/5); weight 1/5 along the segment joining (0, 3/5) and (1/5,
2/5); weight 2/5 along the segment joining (1/5, 2/5) and (1, 0); finally, negative
weight 2/5 spread along the segment of extremes (1/5, 3/5) and (1, 1/5).
The copulas C1 and C2 seem to be, respectively, the largest and the smallest

quasi-concave copulas among of all quasi-concave copulas such that C(3/5, 1/5) =
0, C(1/5, 3/5) = 1/5.
Analogously we can construct, by symmetry, another pair of copulas C3 and

C4 so that, by using these 4 copulas, we can indicate all quasi-concave copulas
attaining the largest values for asymmetry. All of this can be done following the
scheme of [6]. �

Remark. Our last result also says how far a quasi-concave copula can be from
being Schur-concave. For example, given any quasi-concave copula C(x, y), the

copula C′(x, y) = 12 (C(x, y) + C(y, x)) is a symmetric copula such that

|C(x, y) − C′(x, y)| ≤ 1

10
for all x, y.

But we can observe that in this way the copula we obtain is not in general a
quasi-concave copula. This can be seen by starting, for example, from the copula
in Exercise 3.8 in [5], with α = 13 and β = 12 .

4. Quasi-concave copulas and transformations

The following transformations have often been considered for aggregation op-
erators, in particular for copulas.
Let ϕ be a strictly increasing bijection of [0,1].

Set
Cϕ(x, y) = ϕ−1(C(ϕ(x), ϕ(y))).

It is well known that only if ϕ is concave, Cϕ is a copula whenever C is a copula.
Now we prove that if ϕ is concave, then also quasi-concavity of copulas is

preserved.

Theorem 4. If C is a quasi-concave copula and ϕ is concave, then Cϕ is a

quasi-concave copula.

Proof: We already know that under our assumptions, Cϕ is a copula. Assume,
by contradiction, that Cϕ is not quasi-concave. This means that there exist two
pairs (x1, y1) and (x2, y2) and some λ ∈ [0, 1] such that for the point (xλ, yλ),
where xλ = λx1 + (1− λ)x2; yλ = λy1 + (1− λ)y2, we have:

Cϕ(xλ, yλ) < Cϕ(x1, y1); Cϕ(xλ, yλ) < Cϕ(x2, y2);
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since ϕ is increasing, these are equivalent to

C(ϕ(xλ), ϕ(yλ)) < C(ϕ(x1), ϕ(y1)); C(ϕ(xλ), ϕ(yλ)) < C(ϕ(x2), ϕ(y2)).

Now set, for λ ∈ [0, 1]:

x
′

λ = λϕ(x1) + (1 − λ)ϕ(x2); y
′

λ = λϕ(y1) + (1 − λ)ϕ(y2).

The fact that ϕ is concave implies

ϕ(xλ) ≥ x
′

λ, ϕ(yλ) ≥ y
′

λ;

therefore we obtain:

C(x
′

λ, y
′

λ) ≤ C(ϕ(xλ), ϕ(yλ)) < C(ϕ(x1), ϕ(y1)),

and similarly,

C(x
′

λ, y
′

λ) < C(ϕ(x2), ϕ(y2)),

against the quasi-concavity of C. This contradiction proves the theorem. �
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