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Ultrafilter-limit points in metric dynamical systems

S. Garćıa-Ferreira, M. Sanchis

Abstract. Given a free ultrafilter p on N and a space X, we say that x ∈ X is the
p-limit point of a sequence (xn)n∈N in X (in symbols, x = p-limn→∞ xn) if for every
neighborhood V of x, {n ∈ N : xn ∈ V } ∈ p. By using p-limit points from a suitable
metric space, we characterize the selective ultrafilters on N and the P -points of N∗ =
β(N) \ N. In this paper, we only consider dynamical systems (X, f), where X is a
compact metric space. For a free ultrafilter p on N∗, the function fp : X → X is defined
by fp(x) = p-limn→∞ fn(x) for each x ∈ X. These functions are not continuous
in general. For a dynamical system (X, f), where X is a compact metric space, the
following statements are shown:
1. If X is countable, p ∈ N∗ is a P -point and fp is continuous at x ∈ X, then there

is A ∈ p such that fq is continuous at x, for every q ∈ A∗.
2. Let p ∈ N∗. If the family {fp+n : n ∈ N} is uniformly equicontinuous at x ∈ X,

then fp+q is continuous at x, for all q ∈ β(N).
3. Let us consider the function F : N∗ × X → X given by F (p, x) = fp(x), for every

(p, x) ∈ N
∗ × X. Then, the following conditions are equivalent.

(1) fp is continuous on X, for every p ∈ N∗.
(2) There is a dense Gδ-subset D of N∗ such that F |D×X is continuous.
(3) There is a dense subset D of N∗ such that F |D×X is continuous.

Keywords: ultrafilter, P -limit point, dynamical system, selective ultrafilter, P -point,
compact metric

Classification: Primary 54G20, 54D80, 22A99: secondary 54H11

1. Preliminaries and notation

All the spaces are assumed to be Tychonoff (= completely regular and Haus-
dorff). If f : X → Y is a continuous function, then f : β(X) → β(Y ) will stand
for the Stone extension of f . For a metric space X and ǫ > 0, B(x, ǫ) = {y ∈
X : d(x, y) < ǫ}. For short, xn → x means that the sequence (xn)n∈N converges
to x. The Stone-Čech compactification β(N) of the natural numbers N with the
discrete topology will be identified with the set of all ultrafilters on N, and its
remainder N

∗ = β(N) \ N with the set of all free ultrafilters on N. If A ⊆ N,
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then Â = clβ(N)A = {p ∈ β(N) : A ∈ p} is a basic clopen subset of β(N), and

A∗ = Â \ A = {p ∈ N
∗ : A ∈ p} is a basic clopen subset of N

∗. If A, B ⊆ N, then
A ⊆∗ B means that A \ B is finite. In this paper, we shall use the following fact:
If {An : n ∈ N} is a family of subsets of N with the infinite finite intersection
property, then there is an infinite subset B of N such that B ⊆∗ An, for every
n ∈ N. The set of real numbers will be denoted by R and the set of positive inte-
gers will be denoted by N

+. A pair (X, f) is called a dynamical system if X is a
Tychonoff space and f : X → X is a continuous function. If (X, f) is a dynamical
system, then the orbit of a point x ∈ X is the set Of (x) = {fn(x) : n ∈ N}. For
an infinite set X , we let [X ]ω = {A ⊆ X : |A| = ω}.
Let X be space. Given p ∈ N

∗, a point x ∈ X is said to be the p-limit point
of a sequence (xn)n∈N in X (x = p-limn→∞ xn) if for every neighborhood V
of x, {n ∈ N : xn ∈ V } ∈ p. The notion of p-limit point was introduced, in the
context of non-standard analysis, by R.A. Bernstein [4]. H. Furstenberg [9, p. 179]
and E. Atkin [1, p. 5, 61] considered the F -limit points in Dynamical Systems,
where F is a family of nonempty sets with the finite intersection property (for
the definition of a F -limit point of a sequence we replace p by F). The p-limit
points play a very important role in the study of countably compact spaces. In
this paper, we will give some of their applications to Dynamical Systems.
Observe that a point x ∈ X is an adherent point of a countable set {xn : n ∈ N}

iff there is p ∈ β(N) such that x = p-limn→∞ xn. In other words, x is an adherent
point of a countable set {xn : n ∈ N} iff the set {{n ∈ N : xn ∈ V } : V ∈ N (x)}
is a filter base on N. Notice that xn → x iff x = Fr-limn→∞ xn, where Fr is the
Frechét filter {A ⊆ N : N \ A is finite}. Hence, we see that xn → x iff x = p-
limn→∞ xn for all p ∈ N

∗. It is not hard to prove that in a compact space the
p-limit point of a sequence always exists and is unique (for Hausdorff spaces), for
every p ∈ N

∗.
By using p-limit points in metric spaces, we characterize the P -points of N∗ and

the selective ultrafilters on N. In the second section, we study the continuity of
the functions fp (for the definition of this function see the abstract) when (X, f) is
a dynamical system in which X is a compact metric space. These functions have
been also studied in [5], where the author establishes the connection between the
algebra of β(N) and an arbitrary dynamical system. We consider the particular
case when p is a P -point of N

∗ and analyze the continuity of the corresponding
function fp. The functions fp’s are very useful to study the limiting behavior
of the iterates of the original function f when X is a metric compact space.
The fourth section is concerning with some applications to actions of compact
metrizable semigroups.

2. p-limit points in metric spaces

Suppose that X is a metric space and p ∈ N
∗. If x = p-limn→∞ xn, then there

is a subsequence (xnk
)k∈N of (xn)n∈N such that xnk

→ x. In general, xn 6→ x
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and {nk : k ∈ N} /∈ p. Our first task is to use this remark to characterize the
P -points of N

∗ and the selective ultrafilters on N. Let us recall a combinatorial
definition of a P -point of N

∗:
An ultrafilter p ∈ N

∗ is called P -point iff for every partition {An : n ∈ N} of
N with An /∈ p, for each n ∈ N, there is A ∈ p such that A∩An is finite for every
n ∈ N.
W. Rudin [13] proved that CH implies the existence of 2c-many P -points in N

∗,
and years later S. Shelah [6] found a model of ZFC in which N

∗ does not have
any P -point.

Lemma 2.1. Let p ∈ N
∗ and let (xn)n∈N be a sequence in a space X . If there is

a subsequence (xnk
)k∈N such that {nk : k ∈ N} ∈ p and limk→∞ xnk

= x, then
x = p-limn→∞ xn.

Proof: Let V ∈ N (x). By assumption, we know that {nk : k ∈ N} ⊆∗ {n ∈
N : xn ∈ V }. Hence, we deduce that {n ∈ N : xn ∈ V } ∈ p. This shows that
x = p-limn→∞ xn. �

The next lemma was suggested by the referee and simplifies the original proofs
of our main results of this section.

Lemma 2.2. Let p ∈ N
∗ and let {An : n ∈ N} be a partition of N into infinite

sets such that An /∈ p, for all n ∈ N. Let σ : N → N × N be a bijection such that

σ[An] = {n}×N, for every n ∈ N. If for every k ∈ N we have that xk =
1
n+

1
an+m ,

where σ(k) = (n, m) and n ≤ an ∈ N, then 0 = p-limk→∞ xk.

Proof: Let ǫ > 0 and assume that A = {k ∈ N : xk > ǫ} ∈ p. Since An /∈ p, for
each n ∈ N, we must have that {n ∈ N : A ∩ An 6= ∅} is infinite. Hence, we can
find n > 2

ǫ such that A∩An 6= ∅. Pick k ∈ A∩An. Then, σ(k) = (n, m) for some

m ∈ N and we have that xk =
1
n +

1
an+m < 2

n < ǫ, but this is a contradiction.
�

Theorem 2.3. For a point p ∈ N
∗, the following are equivalent.

(1) p is a P -point of N
∗.

(2) In every metric space X , for every sequence (xn)n∈N in X and every

x ∈ X , we have that x = p-limn→∞ xn iff there is a subsequence (xnk
)k∈N

such that {nk : k ∈ N} ∈ p and limk→∞ xnk
= x.

(3) For every sequence (xn)n∈N of real numbers and for every x ∈ R, we

have that x = p-limn→∞ xn iff there is a subsequence (xnk
)k∈N such that

{nk : k ∈ N} ∈ p and limk→∞ xnk
= x.

Proof: (1)⇒ (2). Necessity. Let An = {i ∈ N : xi ∈ B(x, 1n )}. By assumption,
An ∈ p for every n ∈ N. Then, we can find A ∈ p so that A ⊆∗ Ak for every k ∈ N.
If we enumerate A as {xnk

: k ∈ N}, then (xnk
)k∈N is the desired subsequence.

Sufficiency. This follows directly from Lemma 2.1.



468 S.Garćıa-Ferreira, M. Sanchis

(2)⇒ (3). This is trivial.
(3) ⇒ (1). Suppose that p is not a P -point of N

∗. Then, there is a partition
{An : n ∈ N} of N such that An /∈ p, for every n ∈ N, and for every A ∈ p there
is n ∈ N for which A ∩ An is infinite. Fix a bijection σ : N → N × N so that
σ[An] = {n}×N, for all n ∈ N. For each k ∈ N, we define xk =

1
n+

1
n+m provided

that σ(k) = (n, m). Then, by Lemma 2.2, we know that 0 = p-limk→∞ xk.
By assumption, we can find a subsequence (xnk

)k∈N such that B = {nk : k ∈
N} ∈ p and 0 = limk→∞ xnk

. Pick l ∈ N so that B ∩ Al is infinite. Then, the

sequence (xn)n∈B∩Al
must converge to 1l and as a subsequence of (xnk

)k∈N it
must converge to 0, which is impossible. �

An ultrafilter p ∈ N
∗ is called selective if for every partition {An : n ∈ N} of

N with An /∈ p, for each n ∈ N, there is A ∈ p such that |A ∩ An| ≤ 1, for every
n ∈ N. Every selective ultrafilter is a P -point and under CH we can find 2c-many
selective ultrafilters (see [7]).

Theorem 2.4. For a point p ∈ N
∗, the following are equivalent.

(1) p is selective.
(2) In every metric space X , for every sequence (xn)n∈N in X and every

x ∈ X \ {xn : n ∈ N}, we have that x = p-limn→∞ xn iff there are

a subsequence (xnk
)k∈N and an increasing sequence of integers (mk)k∈N

such that {nk : k ∈ N} ∈ p and 1
mk+1

≤ d(xnk
, x) < 1

mk
, for every k ∈ N.

(3) For every sequence of real numbers (xn)n∈N and every x ∈ R \ {xn : n ∈
N}, we have that x = p-limn→∞ xn iff there are a subsequence (xnk

)k∈N

and an increasing sequence of integers (mk)k∈N such that {nk : k ∈ N} ∈ p

and 1
mk+1

≤ |xnk
− x| < 1

mk
, for every k ∈ N.

Proof: (1) ⇒ (2). Necessity. Define A0 = {i ∈ N : 1 ≤ d(xi, x)} and for every
1 ≤ n ∈ N, we let An = {i ∈ N : 1

n+1 ≤ d(xi, x) < 1
n}. It is evident that An /∈ p,

for each n ∈ N. Then, we can find A ∈ p so that |A ∩ An| ≤ 1, for every n ∈ N.
Enumerate A as {xnk

: k ∈ N}. Then, for every k ∈ N there is a unique mk ∈ N

such that nk ∈ Amk
. Without loss of generality we may assume that the sequence

(mk)k∈N is increasing. It clear that(xnk
)k∈N is the desired subsequence.

Sufficiency. It is a consequence of Lemma 2.1.

(2)⇒ (3). It is evident.
(3) ⇒ (1). Assume that p is not selective. Then there is a partition {An :

n ∈ N
+} of N such that for all n ∈ N

+, An /∈ p and for every A ∈ p there
is n ∈ N

+ with |A ∩ An| ≥ 2. Let σ : N
+ → N

+ × N
+ be a bijection such

that σ[An] = {n} × N
+, for each n ∈ N

+. Put a1 = 1 and for n > 1, we let

an = n2 − n. Observe that if n > 1, then 1n +
1

an
= 1

n−1 . Now, for each k ∈ N
+,

we define xk =
1
n +

1
an+m provided that σ(k) = (n, m). By Lemma 2.2, we know

that 0 = p-limk→∞ xk. Then, by hypothesis, there is a subsequence (xnk
)k∈N
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and an increasing sequence of integers (mk)k∈N such that B = {nk : k ∈ N} ∈ p

and 1
mk+1

≤ xnk
< 1

mk
, for every k ∈ N. Notice that B \ A1 ∈ p. We know

that there is r ∈ N with r > 1 such that |B ∩ Ar| = |(B \ A1) ∩ Ar | ≥ 2.
Choose k, l ∈ N such that k < l and nk, nl ∈ B ∩ Ar. Put σ(nk) = (r, s) and

σ(nl) = (r, t) for some s, t ∈ N
+. Then, we have that 1r < xnl

= 1r +
1

ar+t < 1
ml

and 1
r−1 =

1
r +

1
ar

> 1
r +

1
ar+s = xnk

≥ 1
mk+1

. Hence, r − 1 < mk+1 ≤ ml < r,

which is impossible since r and ml are natural numbers. �

3. p-limit points and dynamical systems

This section is devoted to study the continuity and discontinuity of the function
fp : X → X , for p ∈ N

∗.

Definition 3.1. Let (X, f) be a dynamical system, where X is a compact space.
For a free ultrafilter p on N, the function fp : X → X is defined by fp(x) = p-
limn→∞ fn(x), for every x ∈ X . For a point x ∈ X , the function fx := p 7→
fp(x) : β(N)→ X is the Stone extension of the continuous function n 7→ fn(x) :
N → X .

We remark that the function fx : β(N) → X is continuous for every x ∈
X . Observe that fx[β(N)] = clX(Of (x)). But, the functions fp are not always
continuous as we shall see in the next example:

Example 3.2. Let X = {0} ∪ { 1n : n ∈ N
+} and define f : X → X as follows:

f(x) =

{
x if x ∈ {0, 1}
1
n if x = 1

n+1 and 1 ≤ n ∈ N.

It is easy to see that if p ∈ N
∗, then fp(x) = 1 for every x > 0 and fp(0) = 0.

Thus, fp is discontinuous at 0, for all p ∈ N
∗. For a connected example, take

X = [0, 1] and define f : [0, 1]→ [0, 1] as follows:

f(x) =






x if x ∈ [0, 12 ]

(n+1)(n+2)x−(2n+1)
n(n+1)

if x ∈ [ n
n+1 ,

n+1
n+2 ] and 1 ≤ n ∈ N

1 if x = 1.

Observe that f is a homeomorphism between the closed intervals [ n
n+1 ,

n+1
n+2 ] and

[n−1n , n
n+1 ], for each 1 ≤ n ∈ N. Then, we have that fp[[0, 1)] = [0, 12 ] and

fp(1) = 1, for every p ∈ N
∗. This implies that fp is discontinuous at 1, for all

p ∈ N
∗.

Let us explain one way to extend the ordinary addition on the set of natural
numbers to the whole β(N) and how to apply this extension to the Theory of
Dynamical Systems:
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For p ∈ β(N) and n ∈ N, we define p+n = p-limm→∞(m+n) and if p, q ∈ β(N),
then we define p+ q = q-limn→∞ p+ n.

The following theorem is taken from [5].

Theorem 3.3. Let (X, f) be a dynamical system where X is a compact space.
Then

fp ◦ fq(x) = fq+p(x),

for every x ∈ X and for every p, q ∈ β(N).

Thus, if fq is continuous at x and fp is continuous at fq(x), then fq+p is
continuous at x, for p, q ∈ β(N).

The following two theorems are characterizations of the continuity of the func-
tion fp at some point of the given space.

Theorem 3.4. Let (X, f) be a dynamical system, where X is a compact metric
space, and let p ∈ N

∗. For a point x ∈ X , the following are equivalent.

(1) fp is continuous at x.
(2) For all ǫ > 0 there is δ > 0 such that for all y ∈ X if d(x, y) < δ, then

{n ∈ N : d(fn(x), fn(y)) < ǫ} ∈ p.

Proof: (1) ⇒ (2). Let ǫ > 0. So, there is δ > 0 such that if y ∈ X and
d(x, y) < δ, then d(fp(x), fp(y)) < ǫ

3 . Suppose that y ∈ X satisfies that d(x, y) <
δ. By definition, we have that A = {n ∈ N : d(fn(x), fp(x)) < ǫ

3} ∩ {n ∈ N :
d(fn(y), fp(y)) < ǫ

3} ∈ p. Hence,

d(fn(x), fn(y)) ≤ d(fn(x), fp(x)) + d(fp(x), fp(y)) + d(fp(y), fn(y))

≤
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ,

for every n ∈ A.
(2)⇒ (1). Let ǫ > 0 and let δ > 0 be satisfy the conditions of our hypothesis.

Fix y ∈ X with d(x, y) < δ. Then, we have that A = {n ∈ N : d(fn(x), fn(y)) <
ǫ
3} ∈ p. Thus,

d(fp(x), fp(y)) ≤ d(fp(x), fn(x)) + d(fn(x), fn(y)) + d(fn(y), fp(y))

≤ d(fp(x), fn(x)) +
ǫ

3
+ d(fn(y), fp(y)).

We know that n ∈ A can be chosen so that d(fp(x), fn(x)) < ǫ
3 , d(f

n(x), fn(y)) <
ǫ
3 and d(fn(y), fp(y)) < ǫ

3 . Therefore, d(fp(x), fp(y)) < ǫ. This shows the
continuity of fp at x. �
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Definition 3.5. Let (X, f) be a dynamical system, where X is a metric space,
and let p ∈ N

∗. We say that a sequence (xk)k∈N in X is p-proximal to a point
x if limk→∞ xk = x and for every ǫ > 0 there is N ∈ N such that {n ∈ N :
d(fn(x), fn(xk)) < ǫ} ∈ p, for every k ∈ N with k ≥ N . Two points x, y ∈ X are
said to be p-proximal if for every ǫ > 0, {n ∈ N : d(fn(x), fn(y)) < ǫ} ∈ p.

Theorem 3.6. Let (X, f) be a dynamical system, where X is a compact metric
space, and let p ∈ N

∗. For a point x ∈ X the following are equivalent.

(1) fp is continuous at x.
(2) Every sequence (xk)k∈N that converges to x is p-proximal to x.

Proof: (1) ⇒ (2). Let (xk)k∈N be a sequence converging to x. Given ǫ > 0,
by Theorem 3.4, we can find δ > 0 such that for all y ∈ X , if d(x, y) < δ, then
{n ∈ N : d(fn(x), fn(y)) < ǫ} ∈ p. Let N ∈ N such that d(xk, x) < δ for every
N ≤ k ∈ N. Then, we have that {n ∈ N : d(fn(x), fn(xk)) < ǫ} ∈ p for every
k ∈ N with k ≥ N .
(2)⇒ (1). Let us assume that fp is not continuous at x. Then, by Theorem 3.4,

there is ǫ > 0 such that for every k ∈ N there is xk ∈ X such that d(x, xk) <
1

k+1
and {n ∈ N : d(fn(x), fn(xk)) < ǫ} /∈ p. It is evident that the sequence (xk)k∈N

converges to x and it is not p-proximal to x. �

Next we state a classical notion in Dynamical Systems and establish its relation
with the concept introduced in Definition 3.5.

Definition 3.7. Let (X, f) be a dynamical system where X is a metric space.
We say that two points x, y ∈ X are proximal if for every ǫ > 0, {n ∈ N :
d(fn(x), fn(y)) < ǫ} is infinite.

The following result shows that the standard notion “proximal” is included in
Definition 3.5.

Theorem 3.8. Let (X, f) be a dynamical system, where X is a metric space,
and let x, y ∈ X . The following conditions are equivalent.

(1) x and y are proximal.
(2) There is p ∈ N

∗ such that fp(x) = fp(y).
(3) x and y are p-proximal for some p ∈ N

∗.

Proof: The equivalence (1) ⇔ (2) is stated, for a general case, in [3] and it is
proved in [5]. The implication (3)⇒ (1) is trivial.
(1) ⇒ (3). For every ǫ > 0, we define Aǫ = {n ∈ N : d(fn(x), fn(y)) < ǫ}.

Since the family {Aǫ : ǫ > 0} has the finite intersection property, we can find
p ∈ N

∗ such that {Aǫ : ǫ > 0} ⊆ p. It is then evident that x and y are p-proximal.
�

The equivalence (2)⇔ (3) of the previous theorem can be rewritten as follows.
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Theorem 3.9. Let (X, f) be a dynamical system, where X is a metric space, let
x, y ∈ X and let p ∈ N

∗. The following conditions are equivalent.

(1) x and y are p-proximal.
(2) fp(x) = fp(y).

It follows from Theorem 3.9 that if p ∈ N
∗ is an idempotent (that is, p+p = p),

then every x ∈ X is p-proximal to fp(x). Indeed, fp(x) = fp+p(x) = fp(fp(x)).

Theorem 3.10. Let (X, f) be a dynamical system, where X is a metric space,
and let x, y ∈ X . Then, {p ∈ N

∗ : x and y are p-proximal} is a closed subset
of N

∗.

Proof: Put D = {p ∈ N
∗ : x and y are p-proximal} and let q ∈ clN∗ D. Suppose

that x and y are not q-proximal. Then, there is ǫ > 0 such that A = {n ∈ N :
d(fn(x), fn(y)) ≥ ǫ} ∈ q. Choose p ∈ A∗ ∩ D. By assumption, B = {n ∈ N :
d(fn(x), fn(y)) < ǫ} ∈ p. But this is impossible since A ∩ B = ∅. Therefore,
D = clN∗ D. �

We remark that the points x and y are p-proximal, for all p ∈ N
∗, iff

lim
n→∞

d(fn(x), fn(y)) = 0.

The next example shows that the notion of p-proximally could distinguish, in
some sense, two proximal points.

Example 3.11. Let (an)n∈N be a sequence of positive real numbers such that
limn→∞ an = 0, a0 = 1 and an+1 < an, for each n ∈ N. For every n ∈ N, choose
a strictly decreasing sequence (an,m)m∈N such that

(1) limm→∞ an,m = an, for each n ∈ N, and
(2) an < an,m < an−1, for all n, m ∈ N; here, a−1 = 2.

Consider the subspace X = {0}∪{an : n ∈ N}∪{an,m : n, m ∈ N} of R. Then, X
is a compact metric space. Now, we shall define a function f : X → X as follows.

a. f(a0) = 0 and f(0) = 0.
b. f(an) = an−1, for each n ∈ N.
c. f(an,0) = an+1,0, for each n ∈ N.
d. f(a0,n) = an,1, for each 1 ≤ n ∈ N.
e. f(an−m,m+1) = an−m−1,m+2, for each m < n ∈ N.

It is not difficult to prove that f is continuous. Let x = a0,0 and y = a0,1. We
define i0 = 1, j0 = 2, i1 = 3, j1 = 5 and if 2 ≤ k ∈ N, then we define ik = jk−1+1

and jk = jk−1 + k + 2. We know from the definition that f i0(a0,1) = a1,1,

f j0(a0,1) = a0,2, f i1(a0,1) = a2,1 y f j1(a0,1) = a0,3. By induction, we can
establish that

f ik(a0,1) = f jk−1+1(a0,1) = f(f jk−1(a0,1)) = f(a0,k+1) = ak+1,1,

f jk(a0,1) = f jk−1+k+2(a0,1) = fk+1(f ik(a0,1)) = fk+1(ak+1,1) = a0,k+2,
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and
f i(ak,1) = ak−i,i+1,

for every k ∈ N and for each 1 ≤ i ≤ k. Let us define A = {ik : k ∈ N} and
B = {jk : k ∈ N}. Then, we have that

lim
k→∞

|f ik(a0,0)− f ik(a0,1)| = lim
k→∞

|aik+1,0 − ak+1,0| = 0.

On the other hand,

lim
k→∞

|f jk(a0,0)− f jk(a0,1)| = lim
k→∞

|ajk+1,0 − a0,k+1| = 1.

These two conditions imply that x and y are p-proximal for all p ∈ A∗ and they
are not q-proximal for any q ∈ B∗.

When the function fp is continuous on the whole space we have the following
uniform property:

Theorem 3.12. Let (X, f) be a dynamical system where X is a compact metric
space and let p ∈ N

∗. Then, fp is continuous iff for every ǫ > 0 there is δ > 0
such that for all x, y ∈ X , if d(x, y) < δ, then {n ∈ N : d(fn(x), fn(y)) < ǫ} ∈ p.

Proof: Necessity. If fp is continuous on X , then fp is uniformly continuous on
X and then we follow the proof of Theorem 3.4.
Sufficiency. This follows directly from Theorem 3.4. �

Now, let us study the behavior of the function fx around a P -point of N
∗.

Theorem 3.13. Let (X, f) be a dynamical system and let x ∈ X , where X is
a compact metric space. If p ∈ N

∗ is a P -point, then there is A ∈ p such that
fx(p) = fx(q), for every q ∈ A∗.

Proof: By the continuity of fx, for every k ∈ N there is Ak ∈ p such that

d(fx(p), fx(q)) <
1

k + 1
,

for all q ∈ A∗
k. Since p is a P -point there is A ∈ p such that A ⊆∗ Ak, for each

k ∈ N. Thus, if q ∈ A∗ and k ∈ N, then q ∈ A∗
k and hence d(fx(p), fx(q)) < 1

k+1 .

This implies that fx(p) = fx(q), for every q ∈ A∗. �

For an arbitrary free ultrafilter p on N we have the following property.

Theorem 3.14. Let (X, f) be a dynamical system and let x ∈ X , where X is
a compact metric space. Then, for every p ∈ N

∗, there is A ∈ [N]ω such that
fx(p) = fx(q) for every q ∈ A∗.
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Proof: We know that fx(p) ∈ clX ({f
n(x) : n ∈ N}). First suppose that fx(p)

is not an accumulation point of Of (x). Then, fx(p) = fp(x) = fn(x) for some
n ∈ N and there is ǫ > 0 such that B(fn(x), ǫ) ∩ Of (x) = {fn(x)}. Since fx is
continuous, there is A ∈ p such that fx(q) ∈ B(fn(x), ǫ) for all q ∈ A∗. That is,
fx(p) = fx(q) = fn(x) for every q ∈ A∗. Now, assume that there is a non-trivial
sequence (fnk(x))k∈N for which limk→∞ fnk(x) = fx(p) and we also assume that
fni(x) 6= fnj (x) for distinct i, j ∈ N. Put A = {nk : k ∈ N} and fix q ∈ A∗.
According to Lemma 2.1, we obtain that fx(p) = fx(q). �

The proof of Theorem 3.14 with small changes establishes the next result.

Theorem 3.15. Let (X, f) be a dynamical system and let x ∈ X , where X is
a compact metric space. Then, for every A ∈ [N]ω , there is B ∈ [A]ω such that
fx(p) = fx(q), for every p, q ∈ B∗.

Now, let us study the continuity of the function fp when p is a P -point of N
∗

and X is a countable metric space.

Theorem 3.16. Let (X, f) be a dynamical system, where X is a compact metric
countable space. If fp is continuous at x ∈ X , for some P -point p ∈ N

∗, then

for every ǫ > 0 there are δ > 0 and A ∈ p so that for y ∈ X if d(x, y) < δ, then
d(fp(y), fn(y)) < ǫ, for all n ∈ A except finitely many.

Proof: By definition, we know that fp(x) = p-limn→∞ fn(x). Since X is a
metric space, by Theorem 2.3, there is a sequence (nk)k∈N of natural numbers
such that fp(x) = limk→∞ fnk(x) and B = {nk : k ∈ N} ∈ p. Given ǫ > 0, by
Theorem 3.4, we may find δ > 0 such that Cy = {n ∈ N : d(fn(x), fn(y)) < ǫ

3} ∈
p and d(fp(x), fp(y)) < ǫ

3 , provided that d(x, y) < δ. As p is a P -point, there is
A ∈ p such that A ⊆∗ Cy ∩ B for all y ∈ X with d(x, y) < δ. Fix y ∈ X with
d(x, y) < δ and m ∈ N such that A \ {0, 1, . . . , m} ⊆ Cy and d(fn(x), fp(x)) < ǫ

3 ,
for every n ∈ A \ {0, 1, . . . , m}. Then, for n ∈ A \ {0, 1, . . . , m} we have that

d(fp(y), fn(y)) < d(fp(y), fp(x)) + d(fp(x), fn(x)) + d(fn(x), fn(y))

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ,

as required. �

Lemma 3.17. Let (X, f) be a dynamical system, where X is a compact metric
countable space. Suppose that fp is continuous at x ∈ X for a P -point p of N

∗.

Then, for every ǫ > 0 there are δ > 0 and A ∈ p such that if y ∈ X satisfies that
d(x, y) < δ, then d(fn(x), fn(y)) < ǫ for all n ∈ A except finitely many.

Proof: According to Theorem 3.16, we can find δ > 0 and B ∈ p so that if
y ∈ X and d(x, y) < δ, then d(fp(x), fp(y)) < ǫ

3 and d(fp(y), fn(y)) < ǫ
3 for all

n ∈ B except finitely many. Put A = {n ∈ B : d(fp(x), fn(x)) < ǫ
3}. Assume
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that y ∈ X satisfies the inequality d(x, y) < δ. By assumption, we can find m ∈ N

such that d(fp(y), fn(y)) < ǫ
3 , for each n ∈ A \ m. Thus, if n ∈ A \ m, then we

obtain that

d(fn(x), fn(y)) ≤ d(fn(x), fp(x)) + d(fp(x), fp(y)) + d(fp(y), fn(y))

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

�

Theorem 3.18. Let (X, f) be a dynamical system, where X is a compact metric
countable space, and let x ∈ X . Suppose that fp is continuous at x ∈ X for a
P -point p of N

∗. Then, there is A ∈ p such that fq is continuous at x, for every
q ∈ A∗.

Proof: By Theorem 3.13, we know that there is B ∈ p such that fp(x) = fq(x)
for each q ∈ B∗. From the previous lemma, for every n ∈ N, we can find δn > 0
and An ⊆ B such that if d(x, y) < δn, then d(fk(x), fk(y)) < 1

n+1 for all k ∈ An

except finitely many. For every n ∈ N, let Cn = {k ∈ N : d(fp(x), fk(x)) < 1
n+1}.

We know that Cn ∈ p for all n ∈ N. Since p is a P -point, we can find A ∈ p
so that A ⊆∗ An ∩ Cn, for each n ∈ N. Now, fix q ∈ A∗ and let ǫ > 0. Choose
n ∈ N such that 1

n+1 < ǫ
3 . Suppose that y ∈ X satisfies that d(x, y) < δn. Since

D = {i ∈ N : d(f i(y), fq(y)) < 1
n+1} ∈ q, we can find k ∈ D ∩ Cn ∩ An for which

d(fk(x), fk(y)) < 1
n+1 . Then, we have that

d(fq(x), fq(y)) = d(fp(x), fq(y))

≤ d(fp(x), fk(x)) + d(fk(x), fk(y)) + d(fk(y), fq(y))

<
1

n+ 1
+

1

n+ 1
+

1

n+ 1

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

Therefore, fq is continuous at x. �

The next corollary is a direct application of Theorem 3.18.

Corollary 3.19. Let (X, f) be a dynamical system, where X is a compact metric
countable space. If p ∈ N

∗ is a P -point and fp is continuous on X , then there is
A ∈ p such that fq is continuous on X , for every q ∈ A∗.

Proof: According to Theorem 3.18, for every x ∈ X , there is Ax ∈ p such that
fq is continuous at x, for every q ∈ A∗

x. Choose A ∈ p so that A ⊆∗ Ax, for all
x ∈ X . Then, it is evident that fq is continuous on X , for each q ∈ A∗. �

In the general case, we have the following statement:
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Theorem 3.20. Let (X, f) be a dynamical system, where X is a compact metric
space, and let p ∈ N

∗. Suppose that there exist A ∈ p and x ∈ X such that

(1) fx(s) = fx(t) for each s, t ∈ A∗; and

(2) fp is continuous at x.

If x = limn→∞ xn, then there is B ∈ [A]ω such that fq(x) = limn→∞ fq(xn) for
every q ∈ B∗.

Proof: Since fp is continuous at x, by Theorem 3.4, for every i ∈ N there is
Ki ∈ N such that Bk,i = {n ∈ N : d(fn(x), fn(xk)) < 1

i+1} ∈ p, for all k ≥ Ki.

For each i ∈ N, let Ci = {n ∈ N : d(fn(x), fp(x)) < 1
i+1}. By definition, we know

that Ci ∈ p for each i ∈ N. ChooseB ∈ [A]ω so thatB ⊆∗ Bk,i∩Ci, for every i ∈ N

and for every k ≥ Ki. Let q ∈ B∗ and let ǫ > 0. Pick j ∈ N such that 1
j+1 < ǫ

3 .

Fix k ≥ Kj . We know that D = {n ∈ N : d(fn(xk), f
q(xk)) < 1

j+1} ∈ q. Let

h ∈ D ∩ Bk,j ∩ Cj . Then, we have that

d(fq(xk), f
q(x)) = d(fq(xk), f

p(x))

≤ d(fq(xk), f
h(xk)) + d(fh(xk), f

h(x)) + d(fh(x), fp(x))

<
1

j + 1
+
1

j + 1
+
1

j + 1
< ǫ.

�

Next, we shall study the continuity properties of various functions fp’s at the
same time.

Lemma 3.21. Let (X, f) be a dynamical system, where X is a compact metric,
x, y ∈ X and p ∈ N

∗. If d(fp(x), fp(y)) < ǫ
3 for some ǫ > 0, then {n ∈ N :

d(fn(x), fn(y)) < ǫ} ∈ p.

Proof: We know that A = {n ∈ N : d(fp(x), fn(x)) < ǫ
3} ∈ p and B = {n ∈ N :

d(fp(y), fn(y)) < ǫ
3} ∈ p. Then, we have that A ∩ B ∈ p and if n ∈ A ∩ B, then

d(fn(x), fn(y)) ≤ d(fn(x), fp(x)) + d(fp(x), fp(y)) + d(fp(y), fn(y))

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

�

Theorem 3.22. Let (X, f) be a dynamical system, where X is a compact metric
space, and let x ∈ X . Let {pn : n ∈ N} ⊆ β(N) and assume that the family
{fpn : n ∈ N} is uniformly equicontinuous at x. Then, fq is continuous at x, for
each q ∈ clN∗({pn : n ∈ N}).

Proof: Fix q ∈ clN∗({pn : n ∈ N}). We know that q = p-limn→∞ pn for some
p ∈ N

∗. Suppose that fq is not continuous at x. According to Theorem 3.4,
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there is ǫ > 0 and a sequence (xk)k∈N in X converging to x such that Ak =
{m ∈ N : d(fm(x), fm(xk)) ≥ ǫ} ∈ q, for each k ∈ N. We know that Bk = {n ∈
N : Ak ∈ pn} ∈ p, for all k ∈ N. By assumption, there is δ > 0 such that if
y ∈ X and d(x, y) < δ, then d(fpn(x), fpn(y)) < ǫ

3 , for all n ∈ N. Choose l ∈ N

such that d(x, xk) < δ for each k ∈ N with l ≤ k. Fix k ∈ N with l ≤ k. So,
d(fpn(x), fpn(xk)) <

ǫ
3 for all n ∈ N. By Lemma 3.21, we have that

Cn = {m ∈ N : d(fm(x), fm(xk)) < ǫ} ∈ pn,

for every n ∈ N. Pick n ∈ Bk. It then follows that Ak ∩ Cn ∈ pn, which is
impossible. �

Corollary 3.23. Let (X, f) be a dynamical system, where X is a compact metric
space, and let p ∈ N

∗. If {fp+n : n ∈ N} is uniformly equicontinuous at x ∈ X ,
then fp+q is continuous at x, for all q ∈ β(N).

Proof: Let p ∈ N
∗. We know that the function λp : β(N) → β(N) given by

λp(q) = p + q is continuous (see [11]). Hence, we obtain that λp[clβ(N)N] =

{p + q : q ∈ β(N)} = clβ(N)(λp[N]). By Theorem 3.22, we conclude that fp+q is

continuous at x, for each q ∈ β(N). �

Theorem 3.24. Let (X, f) be a dynamical system, where X is a compact metric
space, and x ∈ X . If {q ∈ N

∗ : fq is continuous at x} is dense in N
∗, then fp is

continuous at x for all p ∈ N
∗.

Proof: Put D = {q ∈ N
∗ : fq is continuous at x}. Suppose that fp is not

continuous at x for some p ∈ N
∗ \ D. Then, by Theorem 3.4, there is ǫ > 0 and

for every k ∈ N there is xk ∈ X such that x = limk→∞ xk and Ak = {n ∈ N :
d(fn(x), fn(xk)) ≥ ǫ} ∈ p, for each k ∈ N. We can find A ∈ [N]ω such that
A ⊆∗ Ak for all k ∈ N. By assumption, there is q ∈ A∗ ∩ D for which fq is
continuous at x. Hence, we may chose N ∈ N such that d(fq(x), fq(xk)) < ǫ

3 , for
all k ∈ N with k ≥ N . It then follows from Lemma 3.21 that

Bk = {m ∈ A : d(fm(x), fm(xk)) < ǫ} ∈ q,

for all k ≥ N . Fix N ≤ i ∈ N. We know that Bi ⊆∗ Ai. So, if m ∈ Bi ∩ Ai,
then d(fm(x), fm(xi)) < ǫ and d(fm(x), fm(xi)) ≥ ǫ, but this is impossible.
Therefore, fp is continuous at x, for all p ∈ N

∗. �

Theorem 3.25. Let (X, f) be a dynamical system, where X is a compact metric
space, and x ∈ X . Let 1 < k ∈ N. For i < k, we define Ai = {n ∈ N : n ∼=
imod(k)}. If there is j < k such that fq is continuous at x for all q ∈ A∗

j , then

fp is continuous at x for every p ∈ N
∗.

Proof: First, observe that N
∗ =

⋃
i<k A∗

i . Let j 6= i < k. We define φi : N → N

by φi(n) = |n+ i − j| for every n ∈ N. It is not hard to see that φi is a bijection
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between Aj and Ai module a finite set. Hence, if p ∈ A∗
i , then there is q ∈ A∗

j

such that φi(q) = q + i − j = p. Thus, if i > j and fq is continuous at x, then
fq+i−j = fp = f i−j◦fq is continuous at x. If i < j, then we consider the function
φk+i which is also a bijection between Aj and Ai module a finite set. Thus, for

a given p ∈ A∗
i there is q ∈ A∗

j such that φk+i(q) = q + k + i − j = p and then

fq+k+i−j = fp = fk+i−j ◦ fq is continuous at x whenever fq is continuous at x.
�

Let (X, f) be a dynamical system, where X is a metric compact space, and
let x ∈ X . The previous corollary assures that if fp is continuous at x, for all
p ∈ {an : n ∈ N}∗, where a ∈ N, then fp is continuous at x, for all p ∈ N

∗.

Lemma 3.26. Let (X, f) be a dynamical system, where X is a compact metric
space, and let x ∈ X be a fixed point of f . Suppose that there is ǫ > 0 such that for
every k ∈ N there are xk, yk ∈ X such that d(x, xk) <

1
k+1 , Of (yk) ∩ B(x, ǫ) = ∅

and Of (yk) ∩Of (xk) 6= ∅. Then, fp is discontinuous at x for every p ∈ N
∗.

Proof: Fix k ∈ N. We know that f l(xk) = fm(yk), for some l, m ∈ N. Then,

f l+a(xk) = fm+a(yk) ∈ Of (yk), for all a ∈ N. Hence, {n ∈ N : d(fn(xk), x) ≥ ǫ}
is a cofinite subset of N and so

{n ∈ N : d(fn(xk), f
n(x)) ≥ ǫ} = {n ∈ N : d(fn(xk), x) ≥ ǫ} ∈ p,

for each p ∈ N
∗. Therefore, fp is discontinuous at x for every p ∈ N

∗. �

Theorem 3.27. Let (X, f) be a dynamical system such that X is a compact

metric space with only one non-isolated point. Then, either fp is continuous for

all p ∈ N
∗ or fp is discontinuous for all p ∈ N

∗.

Proof: Let x be the unique non-isolated point of X . First, suppose that f(x) 6=
x. Then, we have that A = {y ∈ X : f(y) = f(x)} is cofinite. If y ∈ A
and n ∈ N, then fn(y) = fn(x); hence, we deduce that fp(y) = fp(x) for all
y ∈ A and for all p ∈ N

∗. Thus, fp is continuous, for all p ∈ N
∗. Now, we

assume that f(x) = x. Let ǫ > 0 and let X \ B(x, ǫ) = {x0, . . . , xm}. Put
F = {i ≤ m : Of (xi) is finite} and I = m \ F . We may also assume that
x /∈ Of (xi) for every i ∈ F . Suppose that the conditions of the previous lemma
fail. Then, we can find δ > 0 such that B(x, δ) ∩ Of (xi) = ∅, for each i ≤ F ,
and if d(x, y) < δ, then Of (y) ∩ Of (z) = ∅, whenever Of (z) ∩ B(x, ǫ) = ∅.
Let y ∈ X such that d(x, y) < δ. If Of (y) ∩ Of (xi) 6= ∅ for some i ∈ I, then
limn→∞ fn(y) = x and hence {n ∈ N : d(x, fn(y)) < ǫ} ∈ p for all p ∈ N

∗.
Suppose that Of (y) does not intersect any Of (xi), for all i ≤ m. Then, Of (y) ⊆
B(x, ǫ). So, N = {n ∈ N : d(x, fn(y)) < ǫ} ∈ p for all p ∈ N

∗. This shows that
fp : X → X is continuous, for each p ∈ N

∗. �
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Theorem 3.28. Let (X, f) be a dynamical system such that X is a compact

metric space and let x ∈ X be a fixed point of f . Suppose that there is m ∈ N

such that |Of (y)| ≤ m, for all y ∈ X . Then, either fp is continuous at x for all
p ∈ N

∗, or fp is discontinuous at x for all p ∈ N
∗.

Proof: Suppose that fp is continuous at x and fq is discontinuous at x, for
some p, q ∈ N

∗. Then there are ǫ > 0 and a sequence (xk)k∈N in X converging
to x such that {n ∈ N : d(x, fn(xk)) ≥ ǫ} ∈ q, for all k ∈ N. By the continuity
of fp and Theorem 3.4, there is δ > 0 such that δ < ǫ and if y ∈ X and
d(x, y) < δ, then {n ∈ N : d(x, fn(y)) < ǫ} ∈ p. We know that there is M ∈ N

such that d(x, xk) < δ for all M ≤ k ∈ N. Then, for each k ∈ N with k ≥ M ,
there is 0 < mk ≤ m so that d(x, fmk+1(xk)) ≥ ǫ and mk is the minimum
positive integer with this property. Without loss of generality, we may assume
that there is l ≤ m for which mk = l, for each k ∈ N \ M . Since f is continuous
we can find 0 < δl < δl−1 < · · · < δ0 < ǫ such that if d(x, y) < δi, then
d(x, f(y)) < δi−1, for every 0 ≤ i < l, and if d(x, y) < δ0, then d(x, f(x)) < ǫ.
Choose N ∈ N such that M < N and d(x, xk) < δl, for every N ≤ k ∈ N. Then,

we have that d(x, f l(xk)) < δ0, for each N ≤ k ∈ N. But, this is impossible since

d(x, f l+1(xk)) ≥ ǫ, for every N ≤ k ∈ N. �

We finish this section with some conditions that are equivalent to the continuity
of all functions fp’s.

Theorem 3.29. Let (X, f) be a dynamical system, where X is a compact metric
space. Let us consider the function F ∗ : N∗ ×X → X given by F ∗(p, x) = fp(x),
for every (p, x) ∈ N

p × X . Then, the following conditions are equivalent.

(1) fp is continuous on X , for every p ∈ N
∗ (that is, F ∗ is separately contin-

uous).
(2) There is a dense Gδ-subset D of N

∗ such that F ∗|D×X is continuous.

(3) There is a dense subset D of N
∗ such that F ∗|D×X is continuous.

Proof: The implication (1)⇒ (2) follows directly from Namioka’s Theorem ([2,
Theorem III.5.5], [12]), the implication (2) ⇒ (3) is trivial and the implication
(3)⇒ (1) follows directly from Theorem 3.24. �

4. Dynamical systems and actions of metrizable semigroups

Throughout this section, (X, f) will stand for a dynamical system where X
is a compact metric space. From now on to avoid trivial situations we assume
that X is infinite and that for every couple of natural numbers (n, m) there exists
x ∈ X such that fn(x) 6= fm(x). Our main goal is to establish that the action
F : β(N)× X → X induced by (X, f) is (in some sense) equivalent to the action
of a metrizable semigroup on X . To do this, let us define an equivalent relation
∼ on β(N) by letting p ∼ q if and only if fp(x) = fq(x) for every x ∈ X . If d is a
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compatible metric on X , the real-valued function on β(N) × β(N) defined by

d̄(p, q) = sup
x∈X

d(fp(x), fq(x)) p, q ∈ β(N),

is a pseudometric on β(N) (notice that being X compact, d is bounded). It is
clear that d̄ induces a metric (also denoted by d̄) on the quotient space β(N)/∼.
The following result follows from Theorem 3.3.

Proposition 4.1. β(N)/∼ is a semigroup with the addition + defined as

[ p ] + [ q ] = [ p+ q ],

for each p, q ∈ β(N).

As we deal with actions on metrizable semigroups, a natural question is when
the semigroup (β(N)/∼,+) equipped with the topology induced by the metric d̄
is a topological semigroup; that is, when the operation defined in Proposition 4.1
is continuous. A useful sufficient condition is given in Theorem 4.3 below. Before
the statement of this theorem, we prove a lemma.

Lemma 4.2. Let (X, f) be a dynamical system, where X is a compact metric
space. If the family of functions {fn : n ∈ N} is uniformly equicontinuous, then
the family {fp : p ∈ N

∗} is also uniformly equicontinuous.

Proof: By assumption, given ǫ > 0 we can find δ > 0 such that if x, y ∈ X satisfy
that d(x, y) < δ, then d(fn(x), fn(y)) < ǫ

3 for all n ∈ N. Let x, y ∈ X . Assume
that d(x, y) < δ and fix p ∈ N

∗. Choose n ∈ N so that d(fp(x), fn(x)) < ǫ
3 and

d(fp(y), fn(y)) < ǫ
3 . Then, we obtain that

d(fp(x), fp(y)) ≤ d(fp(x), fn(x)) + d(fn(x), fn(y)) + d(fn(x), fp(y))

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

Therefore, the family {fp : p ∈ N
∗} is also uniformly equicontinuous. �

Theorem 4.3. Assume that the family {fn : n ∈ N} is uniformly equicontinuous,
then β(N)/∼ is a topological semigroup with the topology induced by the metric d̄.

Proof: Let [ p ], [ q ] ∈ β(N)/∼. We know from Lemma 4.2 that the family
of functions {f t : t ∈ β(N)} is also uniformly equicontinuous. Hence, given
ǫ > 0 there is δ > 0 such that δ < ǫ

2 and if x, y ∈ X and d(x, y) < δ, then

d(f t(x), f t(y)) < ǫ
2 for all t ∈ β(N). Suppose that r, s ∈ β(N) satisfy that

d̄(p, r) = sup{d(fp(x), fr(x)) : x ∈ X} < δ

and
d̄(q, s) = sup{d(fq(x), fs(x)) : x ∈ X} < δ.
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Then, d(fs(fp(x)), fs(fr(x))) < ǫ
2 and d(fq(fp(x)), fs(fp(x))) < ǫ

2 , for all x ∈
X . Thus,

d(fq(fp(x)), fs(fr(x))) ≤ d(fq(fp(x)), fs(fp(x))) + d(fs(fp(x)), fs(fr(x)))

<
ǫ

2
+

ǫ

2
= ǫ,

for all x ∈ X . Therefore,

d̄(p+ q, r + s) = sup{d(fq(fp(x)), fs(fr(x))) : x ∈ X} ≤ ǫ.

This shows the theorem. �

Given a dynamical system (X, f) where X is a compact metric space, and an

ultrafilter p ∈ β(N), f [ p ] stands for the function from X into itself defined by

f [ p ](x) = fp(x), for every x ∈ X . Let F : β(N) × X −→ X be defined by
F (p, x) = fp(x), for all (p, x) ∈ β(N)×X . We observe that this action F induces

a natural action F̂ : (β(N)/∼)× X −→ X defined as

F̂ ([ p ], x) = f [ p ](x) for each ([ p ], x) ∈ (β(N)/∼)× X.

Although the authors could not find a specific reference, the following result is
probably well known. We include a proof for reader convenience. Given a function
f :X ×Y → Z we shall denote by fx (respectively, by fy) the function fx:Y → Z
defined by the rule fx(y) = f(x, y) for every y ∈ Y (respectively, by the rule
fy(x) = f(x, y) for every x ∈ X). We recall that, if X , Y and Z are topological
spaces, then f is said to be separately continuous if every fx and every fy are
continuous functions.

Theorem 4.4. Let (X, d1), (Y, d2) and (Z, d3) be three compact metric spaces. If
f : X × Y → Z is a separately continuous function, then the following conditions
are equivalent.

(1) f is continuous.
(2) The family {fx | x ∈ X} is uniformly equicontinuous.
(3) The family {fy | y ∈ Y } is uniformly equicontinuous.

Proof: Obviously we only need to prove that the clauses (1) and (2) are equiv-
alent.

(1)⇒ (2) Consider the space (C(Y, Z), ‖·‖) where ‖·‖ stands for the supremum
norm. It is a well-known fact that f continuous implies that the function g : X →
(C(Y, Z), ‖ · ‖) defined as g(x) = fx is continuous (for a more general result the
reader can consult [14, Theorem 3.3]). Let ε > 0. Since X is compact, the
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family g(X) = {fx | x ∈ X} is compact so that there exists a finite subfamily
{fx1 , fx2 , . . . , fxn} such that

{fx | x ∈ X} ⊆
n⋃

i=1

B(fxi , ε/3).

Moreover, since each fxi is uniformly continuous, we can choose δ > 0 such that
d3(fxi(y1), fxi(y2)) < ε

3 whenever d2(y1, y2) < δ, i = 1, 2, . . . , n.

Now let x ∈ X and consider fx. If fxi satisfies that fx ∈ B(fxi , ε/3), then

d3(fx(y1), fx(y2)) ≤ d3(fx(y1), fxi(y1))

+ d3(fxi(y1), fxi(y2)) + d3(fxi(y2), fx(y2))

≤
ε

3
+

ε

3
+

ε

3
= ε

whenever d2(y1, y2) < δ. Thus, the family {fx | x ∈ X} is uniformly equicontin-
uous.

(2) ⇒ (1). Since the family {fx | x ∈ X} is uniformly equicontinuous it is
apparent that the function g : Y → (C(X, Z), ‖ · ‖) defined as g(y) = fy is
continuous. Now to see that f is continuous, consider a point (x0, y0) ∈ X × Y
and ε > 0. Since both g and fy0 are continuous we can choose δ > 0 such that

d3(f(x, y), f(x, y0)) <
ε

2
and d3(f(x, y0), f(x0, y0)) <

ε

2

whenever d1(x, x0) < δ and d2(y, y0) < δ, that is

d3(f(x, y), f(x0, y0)) ≤ d3(f(x, y), f(x, y0)) + d3(f(x, y0), f(x0, y0))

≤
ε

2
+

ε

2
= ε

whenever d1(x, x0) < δ and d2(y, y0) < δ. Thus, f is continuous at the point
(x0, y0) ∈ X × Y . This completes the proof. �

The proof of the following theorem is straightforward.

Theorem 4.5. Let (X, f) be a dynamical system, where X is a compact metric
space, and let x ∈ X . For every p ∈ β(N), the following conditions are equivalent.

(1) fp is continuous at x.

(2) f [ p ] is continuous at x.
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Theorem 4.6. For a compact metric dynamical system (X, f), the following are
equivalent.

(1) The set {fn : n ∈ N} is uniformly equicontinuous on X .
(2) d̄ induces the quotient topology on β(N)/∼ and F is continuous.

(3) The action F̂ is (jointly) continuous.

Proof: The implication (3)⇒ (1) is trivial.
(1) ⇒ (2) We shall prove that the quotient map g : β(N) −→ (β(N)/∼, d̄) is

continuous. Indeed, by Lemma 4.2, we deduce that the family {fp : p ∈ N
∗}

is uniformly equicontinuous. Hence, given ǫ > 0 there is δ > 0 such that if
d(x, y) < δ, then d(fp(x), fp(y)) < ǫ

3 for all p ∈ β(N), and Theorem 4.4 tells us
that F : β(N)×X → X is continuous. It is clear that g is continuous at any point
of N. Let p ∈ N

∗. Then, for every x ∈ X there are Ax ∈ p and δx < δ such that
if (q, y) ∈ A∗

x ×B(x, δx), then d(fp(x), fq(y)) < ǫ
3 . Since X is compact, there are

x0, . . . , xk ∈ X such that X =
⋃

i≤k B(xi, δxi). Put A =
⋂

i≤k Axi . Then, A ∈ p.

Fix q ∈ A∗ and let x ∈ X . Then, x ∈ B(xj , δxj ), for some j ≤ k. Thus,

d(fp(x), fq(x)) ≤ d(fp(x), fp(xj)) + d(fp(xj), f
q(xj)) + d(fq(xj), f

q(x))

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

So, d̄([p], [q]) ≤ ǫ, whenever q ∈ A∗. This shows that g is continuous.
(2) ⇒ (3) Since β(N) is compact, Whitehead’s Theorem ([8, Theorem 3.3.17]

and [15]) assures that the function g × idX : β(N) × X → (β(N)/∼) × X is a

quotient map. Since F is continuous and F = F̂ ◦ (g × idX) is continuous, by

Proposition 2.4.2 from [8], we get that the function F̂ is continuous. �

The previous theorem establishes a necessary and sufficient condition in order

that the induced action F̂ be continuous. This can be applied to obtain that the

action F is equivalent to the action F̂ in the sense of Definition 4.7 below. If F is
a continuous action of a (compact) topological semigroup S on a compact metric
space, we say that (S, X, F ) is a flow .

Definition 4.7. Let S, T be two compact topological semigroups. Two flows
(S, X, F ) and (T, Y, G) are said to be topologically conjugate (or equivalent) if
there exists a continuous epimorphism e : S −→ T and a homeomorphism h :
X −→ X such that the diagram

S × X
F

//

e

��

h

��

X

h

��

T × Y
G

// Y
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commutes, that is, h(F (s, x)) = G((e × h)(s, x)) for each (s, x) ∈ S × X .

From Theorem 4.6 we can see that a continuous action of β(N) on a compact
metric space X is equivalent to a continuous action of a compact metrizable
semigroup.

Theorem 4.8. If X is a compact metric space, then every flow (β(N), X, F ) is
equivalent to a flow (S, X, G) where S is compact metrizable semigroup.

Proof: By density, the action F is determined by its restriction to N × X . So,
F is the action induced by the dynamical system (X, f) where f is the function
defines as f(x) = F (1, x) for every x ∈ X . Since F is continuous, Theorem 4.4

and Theorem 4.6 assert that (β(N)/∼, X, F̂ ) is a flow. Hence, the diagram

β(N) × X
F

//

g

��

idX

��

X

idX

��

S × X
bF

// X

commutes, where S = β(N)/∼ and g is the quotient map. By Proposition 4.1, g

is an epimorphism. The proof is done by taking (S, X, G) = (β(N)/∼, X, F̂ ). �

5. Open questions

We end with some open questions that the authors were unable to solve.

Question 5.1. Given p, q ∈ N
∗ such that p + n 6= q, for all n ∈ N, is there a

dynamical system (X, f) and a point x ∈ X such that X is a compact metric
space, fp is continuous at x and fq is discontinuous at x ?

Question 5.2. Given p, q ∈ N
∗ such that p + n 6= q, for all n ∈ N, is there a

dynamical system (X, f) and a point x ∈ X such that X is a connected, compact
metric space, fp is continuous at x and fq is discontinuous at x ?

Acknowledgments. We are grateful to the referee for correcting an error which
appeared in an earlier version and for his/her suggestions to improve the paper.
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