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On some soluble groups in which

U-subgroups form a lattice

Leonid A. Kurdachenko, Igor Ya. Subbotin

Abstract. The article is dedicated to groups in which the set of abnormal and normal
subgroups (U -subgroups) forms a lattice. A complete description of these groups under
the additional restriction that every counternormal subgroup is abnormal is obtained.

Keywords: abnormal subgroups, U -subgroups, counternormal subgroups

Classification: 20F16, 20E15

R.W. Carter [C] introduced the abnormal subgroups in connection with his
famous investigation of the nilpotent self-normalizing subgroups in soluble finite
groups. According to the definition, a subgroup A is called abnormal in a group
G if g ∈

〈

A, Ag
〉

for each element g of G. Maximal non-normal subgroups of
arbitrary groups are obviously abnormal. Other well-known examples of abnor-
mal subgroups in finite groups are Carter subgroups and normalizers of Sylow
subgroups (see [BB, Section 6]). The famous Tits example provides us with a
non-trivial abnormal subgroup of the complete linear group GL(n,K) over an ar-

bitrary skew field K (see, for example, [BB, Section 1]). Infinite groups saturated
with abnormal subgroups have been studied in [S], [KS], [DeFKS], and [KS2].
It follows immediately from the definition that abnormal subgroups are self-

normalizing, and every subgroup containing an abnormal subgroup is also ab-
normal. Therefore, we can consider abnormality as a kind of strong opposite to
normality. So, it seems logical to describe the groups, all proper non-normal sub-
groups of which are abnormal. It means that all proper subgroups of such groups
are separated by two classes with an empty intersection: the class of normal sub-
groups and the class of abnormal subgroups. Following [KS1], we will call normal
and abnormal subgroups U -normal (from “union” and “U -turn”). Finite groups
with only U -normal subgroups have been considered in [F]. Locally soluble (in the
periodic case locally graded) infinite groups with U -subgroups have been studied
in [S1]. In [KS1] the groups with all U -normal subgroups and the groups with
transitivity of U -normality have been described completely.
In this article, we will consider a natural question regarding the structure of

groups in which U -normal subgroups form a lattice. We will denote these groups
as #U -groups . It is easy to see that the groups with no abnormal subgroups
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are #U -groups. In particular, all locally-nilpotent groups have this property (see
Lemma 0 below).

Recall that a subgroup H is counternormal in a group G if the normal closure
AG of A in G coincides with G [R].

The following lemma collects all specific facts necessary for the proofs. Some
of them (like (i) and (ii)) are really obvious or very easy to prove. Others (like
(iii) and (iv)) are not so immediate but can be proved in a few lines.

Lemma 0. (i) If B is an abnormal subgroup in a group G, then G = G′B.
(ii) In a soluble group an abnormal subgroup R is exactly a subgroup that is
counternormal in all subgroups containing R ([DeFKS, Lemma 4]).

(iii) If FC = B is abnormal in G, F is normal in G, and C is abnormal in
B = FC, then C is abnormal in G (see, for example [BB, Theorem 3]).

(iv) A locally nilpotent group does not have proper abnormal subgroups
([KNS, Lemma 4]).

Observe that a union of any two U -normal subgroups is U -normal. However,
this assertion is false for intersections. In connection with this, we have the
following simple lemma.

Lemma 1. Let G be a #U -group. Then:

(1) an intersection of any two normal subgroups of G is normal in G;
(2) an intersection of a proper normal subgroup and an abnormal subgroup
of G is normal in G.

Proof: We only need to prove the second assertion. Let A be a normal subgroup
in G and B be an abnormal subgroup in G. Since G is a #U -group, the inter-
section K = A ∩ B could be normal in G (and in this case everything is clear)
or abnormal in G. The second case means that K is abnormal in the proper
normal subgroup A of G. This is impossible, since every subgroup containing an
abnormal subgroup of a group is abnormal. �

Corollary. Let G be a #U -group and G 6= G′. Then for any abnormal subgroup

B the intersection B ∩ G′ is normal in G.

Observe that in an arbitrary group the abnormality is not transitive. For ex-
ample, in S4 there is an abnormal subgroup of order 6 which includes an abnormal
in it but non-abnormal in S4 subgroup of order 2 (see [BB, Section 1]). However,
if a group G has a normal subgroup A satisfying the normalizer condition and
the factor-group G/A does not have abnormal subgroups, then in G abnormality
is transitive (i.e. G is a TA-group) [KS2, Theorem 1.2].

In connection with this, the following assertion seems to be interesting.
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Lemma 2. Let G be a #U -group and G 6= G′. Then in G abnormality is a
transitive relation (i.e. G is a TA-group).

Proof: Let B be an abnormal subgroup in G, and C be an abnormal subgroup
in B. By Lemma 0(i), G′B = G, and B′C = B. Then G = G′B = G′(B′C) =
G′C. Let F = B∩G′. By Lemma 1, F is normal in G. It is clear that B = B′C =
FC. Therefore, FC = B is abnormal in G, F is normal in G, and C is abnormal
in B = FC. By Lemma 0(iii), C is abnormal in G, i.e. G is a TA-group. �

Lemma 3. Any factor group of a #U -group is a #U -group.

This lemma is a direct consequence of the following simple observation: if N
is a normal subgroup of G, then any subgroup A > N is abnormal (normal) in G
if and only if A/N is abnormal (normal) in G/N .

Lemma 4. Let G be a #U -group and G 6= G′. If G contains an abnormal
proper subgroup, then G/G′ is a cyclic subgroup of prime power order (or a
primary subgroup [K, p. 179]).
Moreover, if B is a proper abnormal subgroup in G, F = (G′ ∩ B) ⊳ G,

G∗ = G/F ∼= G′∗⋉B∗, where G′∗ andB∗ are the images of G′ andB respectively,
B∗ is a proper abnormal cyclic primary subgroup in G∗.

Proof: Let B be a proper abnormal subgroup of G. Then G = G′B. Corollary
of Lemma 1 implies that F = G′∩B ⊳ G. By Lemma 3, without loss of generality,
we can assume that F = 〈1〉. Let b be a non-identical element of B. Assume that
B 6= 〈b〉. Consider in G a proper normal subgroup K = G′ ⋉ 〈b〉. It is clear that
K ∩B = 〈b〉. Lemma 1 implies that 〈b〉 is normal in G. Since every proper cyclic
subgroup of B is normal in G, every proper subgroup of G is also normal in G.
Observe that if B is not cyclic, then its every (finite or infinite) set of generators
consists of more than one element. In this case B is generated by its normal in G
cyclic subgroups and therefore B is normal in G. However, B is abnormal in G.
This contradiction shows that B is a cyclic group.
Assume that 〈b〉 is infinite. Consider two proper normal subgroups G′ ⋉

〈

b2
〉

and G′ ⋉
〈

b3
〉

of G. Lemma 1 implies that
〈

b2
〉

and
〈

b3
〉

are normal in G. So
their product, i.e. 〈b〉 itself, is also a normal subgroup in G. This contradiction
shows that 〈b〉 is a finite subgroup.
Repeating almost the same arguments we can prove that B is a subgroup of

prime power order. �

Note that from Lemma 4 it follows that there is a metabelian group that is not
a #U -group.

J.S. Rose has introduced in [R] the counternormal subgroups. A subgroup

H is counternormal in a group G if the normal closure AG of A in G coincides
with G. It is easy to observe that in a soluble group an abnormal subgroup R
is exactly a subgroup that is counternormal in all subgroups containing R (see
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Lemma 0(ii)). The condition that every counternormal subgroup is abnormal (the
CA-property) is an amplification of the TA-property. However, the class of TA-
groups is wider then the class of CA-groups. The following example supports this
statement and confirms the existence of TA-groups that are not #U -groups. Let
Q =

〈

s1, s2
〉

⋉ 〈q〉, q3 = 1,
〈

s1, s2
〉

— a quaternion group, s
q
1 = s2, s

q
2 = s−11 s2.

Then 〈q〉 is a counternormal subgroup of Q but it is not abnormal since the center
Z(Q) =

〈

s21
〉

does not belong to 〈q〉. So Q is nilpotent-by-nilpotent, and hence
Q is a TA- but not a CA-group. Moreover, Q is a #U -group. Indeed, since a
subgroup of index 2 is normal in a group, every proper abnormal subgroup of Q
is a direct product of Z(Q) =

〈

s21
〉

=
〈

s22
〉

and a conjugate to 〈q〉 subgroup. This
implies that Q is a #U -group.

The following simple examples of metabelian groups that are not a CA-groups
are interesting in connection with this.

1. Let G = P∞

2 ⋉ 〈x〉, P∞

2 be a Prüfer 2-subgroup, x
2 = 1, p transfers every

element of P∞

2 into its inverse. Then G is a 2-group, G is locally nilpotent (even
hypercentral), and 〈p〉 is a counternormal but not abnormal subgroup.

2. Let G = P∞

2 〈x〉, P∞

2 be a Prüfer 2-subgroup, x
4 = 1, x2 ∈ P∞

2 , x transfers
every element of P∞

2 into its inverse. Then G is a 2-group, G is locally nilpotent,
and 〈x〉 is a counternormal but not abnormal subgroup. This is an example of
a metabelian locally nilpotent group which is not a CA-group (even though 〈x〉
contains Z(G)). Note that P∞

2 contains infinitely many G-central chief factors.

3. Let G = R⋉〈x〉, b2 = 1, where R be an additive group of rational numbers, x
transfers every element ofR into its inverse. Then G is an non-periodic metabelian
group with the counternormal but not abnormal subgroup 〈x〉.

4. G = L ⋉ 〈x〉, x2 = 1, where L is an infinite cyclic group, x transfers every
element of L into its inverse. Then G is a ZD-group with the counternormal but
not abnormal subgroup 〈x〉.

5. G = (〈x〉 × P∞

2 ) ⋉ 〈b〉, where P∞

2 is a Prüfer 2-group, x
3 = 1, y2 = 1, y

transfers every element from 〈x〉 × P∞

2 into its inverse. In this metabelian non-
locally nilpotent #U -group the subgroup 〈x〉×P∞

2 is an abelian derived subgroup,
〈b〉 is a counternormal but not an abnormal subgroup.

Recall that a subgroup A is called a supplement to a subgroup B in a group
G if G = AB (see, for example, [LR, p. 220]).

The following proposition is interesting in connection with above examples.

Proposition. Let G be a soluble group, A an abelian normal subgroup of G
having no central chief G-factors and defining the quotient group G/A with no
proper counternormal subgroups. Then:

(1) a subgroup B is abnormal in G if and only if B is a supplement to A in G;
(2) G is a CA-group.
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Proof: (1) Let G be a soluble group, A its abelian normal subgroup having no
central chief G-factors, and the quotient group G/A does not have counternormal
(and therefore no abnormal) subgroups. Let B be a supplement to A in G,
i.e. G = AB. For any subgroup M ≤ B, we can write M = AMB, where
AM = A ∩M . Since A is an abelian normal subgroup in G and G = AM , AM is
normal in G. Since A does not have central chief factors, [M, AM ] = AM . Indeed,
if K = [M, AM ] 6= AM , then AM/K is a G-central factor. This contradicts the
conditions of our proposition. So [M, AM ] ≤ M ′ andM =M ′B. By Lemma 0(ii),
B is abnormal in G.
(2) is a direct consequence of (1). �

Following [RD, p. 429], we will call a maximal p-subgroup of an infinite group
G a Sylow p-subgroup of G.

Lemma 5. Let a soluble group G be a #U -group and let 〈b〉 be a proper ab-
normal proper cyclic subgroup of G. Then G = G′〈b〉 and one of the following
assertions holds.

(i) b is an element of order pn, n ≥ 1, 〈b〉 is a Sylow p-subgroup of G, and
Z(G) ≤

〈

bp
〉

⊳ G. If the center Z(G) is trivial, then bp ∈ G′, i.e. G′

has index p in G. If the center Z(G) is nontrivial and G is periodic, then
Z(G) =

〈

bp
〉

.

(ii) |b| = ∞, and there are a prime number p and a natural number n such

that bpn−1

∈ G′, but bpn

/∈ G′;
〈

bpn〉

is a normal subgroup of G with the

factor-group G∗, p /∈ π([G∗, G∗]), and Z(G) ≤
〈

bp
〉

⊳ G. If the center

Z(G) is trivial, then at p 6= 2, bp ∈ G′, and at p = 2,
∣

∣G : G′
∣

∣ ≤ 4.

Proof: I. First of all, we will prove that G = G′〈b〉, where

(i) b is an element of order pn, n ≥ 1, 〈b〉 is a Sylow p-subgroup of G, or

(ii) |b| =∞, and there are a prime number p and a natural number n such that

bpn−1

∈ G′, but bpn

/∈ G′;
〈

bpn〉

is a normal subgroup of G with the factor-group
G∗ and p /∈ π([G∗, G∗]).

By Lemma 4, G/G′ is a cyclic subgroup of prime power order. It means that
either 〈b〉 is a primary subgroup itself, or 〈b〉 is infinite cyclic. Consider the first
case where 〈b〉 is a cyclic primary subgroup such that G = G′〈b〉, and therefore
it is a counternormal subgroup in G (see Lemma 0(ii)). It follows that 〈b〉 is
abnormal in a Sylow p-subgroup S of G, S ≥ 〈b〉. Since G is soluble, S is locally
nilpotent [RD, p. 363]. Lemma 0(iv) implies that there is no proper abnormal
subgroups in a locally nilpotent group. So S = 〈b〉.
Let |b| = ∞. Then 〈b〉 is counternormal and therefore abnormal in G, 〈1〉 6=

G′ ∩ 〈b〉, and by Lemma 4, there are a prime number p and a natural number n

such that bpn−1

∈ G′, but bpn

/∈ G′. By Lemma 1,
〈

bpn−1〉

as the intersection

of an abnormal subgroup 〈b〉 and a proper normal subgroup G′, is normal in G.
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Thus, G/
〈

bpn−1〉

is a group from case (i) above. By Lemma 3, the factor group

G∗ = G/
〈

bpn−1〉

= [G∗, G∗] ⋉ 〈b〉∗ is a #U -group from case (i). It follows that
〈b〉∗ is a Sylow p-subgroup of G∗, so p /∈ π([G∗, G∗]).
Note that in the first case under the additional restriction thatG being periodic,

all Sylow p-subgroups of G are conjugate. This is a direct consequence of [RD,
14.3.4].

II. Let us consider the case when b is an element of finite order. By the above,
G = G′〈b〉, b is an element of order pn, n ≥ 1, 〈b〉 is a Sylow p-subgroup of G. We
will show that

if the center Z(G) is trivial, then bp ∈ G′, i.e. G′ has index p in G;

if the center Z(G) is nontrivial, then Z(G) ≤
〈

bp
〉

.

First of all observe that 〈b〉 as an abnormal subgroup contains Z(G). Consider

the subgroup G′
〈

bp
〉

. If G = G′
〈

bp
〉

, then b ∈ G′
〈

bp
〉

and b = gbkpn

where

g ∈ G′, k, n ∈ N, n ≥ 1. Then g = b1−kpn

and (1 − kpn, p) = 1. So 〈b〉 ≤ G′.
This contradiction shows that G′

〈

bp
〉

is a proper subgroup in G. By Lemma 1,

the subgroup
〈

bp
〉

= 〈b〉 ∩ G′
〈

bp
〉

is a normal subgroup in G′
〈

bp
〉

.

If Z(G) is trivial, then there is an element x ∈ G such that
〈

(bp)xb−p
〉

=
〈

bp
〉

and therefore it is a subgroup of G′.
Let Z(G) 6= 〈1〉. Since

〈

bp
〉

is a normal subgroup in G and Z(G) ≤ 〈b〉, for any

element c of G such that 〈c〉∩〈b〉 = 〈1〉 the subgroup
〈

bp
〉

⋉〈c〉 is hypercentral and

even nilpotent. By I, if G is periodic, we come to the conclusion that
〈

bp
〉

= Z(G).

III. Let nowG be a soluble #U -group,G contains an abnormal proper subgroup
〈b〉, G = G′〈b〉, where |b| =∞. In this case we will also consider two possibilities
and prove that

if Z(G) is trivial, then if p 6= 2, bp ∈ G′, and if p = 2, then |G : G′| ≤ 4;

if Z(G) is nontrivial, then Z(G) =
〈

bp
〉

.

By II, there are a prime number p and a natural number n such that bpn−1

∈ G′,
but bpn

/∈ G′;
〈

bpn〉

is a normal subgroup of G with the factor-group G∗ and

p /∈ π([G∗, G∗]). Let us consider the subgroup G′
〈

bp
〉

. If G = G′
〈

bp
〉

, then

b ∈ G′
〈

bp
〉

and b = gbkpn

where g ∈ G′, k, n ∈ N, n ≥ 1. Then g = b1−kpn

and
(1−kpn, p) = 1. Therefore, there exist integers v and u such that up+v(1−kpn) =
1. So 〈b〉 ≤ G′. This contradiction shows that G′

〈

bp
〉

is a proper subgroup in G.

By Lemma 1, the subgroup
〈

bp
〉

= 〈b〉 ∩ G′
〈

bp
〉

is a normal subgroup in G′〈b〉.

Let Z(G) be trivial. Then there is an element x of G such that (bp)x = b−p;
so [x, bp] = b−2p ∈ G′. If p = 2, it follows that |G : G′| ≤ 4. If p 6= 2, then since

bpn

∈ G′ and b2p ∈ G′, bp ∈ G′, and |G : G′| = p.
Let now Z(G) be nontrivial. Since

〈

bp
〉

is the intersection of the proper nor-

mal subgroup G′
〈

bp
〉

and the abnormal subgroup 〈b〉 ≥ Z(G),
〈

bp
〉

is a normal

subgroup in G and Z(G) ≤
〈

bp
〉

. �
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Quite naturally, the next result will be a description of soluble CA-groups
having #U -property. From Lemma 5, we can easily derive the following theorem.

Theorem A. Let a soluble CA-groupG containing an abnormal proper subgroup
be a#U -group. ThenG = G′〈b〉, and one of the following assertions (1)–(2) holds.

(1) b is an element of order pn, n ≥ 1, 〈b〉 is a Sylow p-subgroup of G, and
Z(G) ≤

〈

bp
〉

⊳ G. If the center Z(G) is trivial, then bp ∈ G′, i.e. G′

has index p in G. If the center Z(G) is nontrivial and G is periodic, then
Z(G) =

〈

bp
〉

.

(2) |b| = ∞, and there are a prime number p and a natural number n such

that bpn−1

∈ G′, but bpn

/∈ G′;
〈

bpn〉

is a normal subgroup of G with the

factor-group G∗, p /∈ π([G∗, G∗]), and Z(G) ≤
〈

bp
〉

⊳ G. If the center

Z(G) is trivial, then at p 6= 2, bp ∈ G′, and at p = 2, |G : G′| ≤ 4.

Proof: By Lemma 4, G = G′〈b〉, where G/G′ is a primary cyclic subgroup. It
means that either 〈b〉 is a primary itself, or 〈b〉 is infinite cyclic. In any case, 〈b〉
is a supplement to G′ in a soluble group G. Therefore, 〈b〉 is counternormal in G.
Since G is a CA-group, 〈b〉 is an abnormal subgroup in G. The rest follows from
Lemma 5. �

Theorem B. A soluble periodic CA-group G containing an abnormal proper
subgroup is a #U -group if and only if G = G′〈b〉, b is an element of order pn,

n ≥ 1, 〈b〉 is a Sylow p-subgroup of G, Z(G) ≤
〈

bp
〉

⊳ G, and every abnormal

subgroup B of G intersects G′ by a normal in G′ subgroup.

Moreover, the following assertions hold.

(1) If the center Z(G) is trivial, then bp ∈ G′, i.e. G′ has index p in G.
(2) If the center Z(G) is nontrivial then Z(G) =

〈

bp
〉

.

In both mentioned cases, |G : G′Z(G)| = p.

Proof: Necessity.

Let G be a soluble periodic #U -group having CA-property and containing an
abnormal proper subgroup. By Theorem A(1), G = G′〈b〉, b is an element of
order pn, n ≥ 1, 〈b〉 is a Sylow p-subgroup of G, and Z(G) ≤

〈

bp
〉

⊳ G. If the

center Z(G) is trivial, then bp ∈ G′, i.e. G′ has index p in G. If the center Z(G) is
nontrivial, then Z(G) =

〈

bp
〉

. Evidently, |G : G′Z(G)| = p. Since G′ is a proper
normal subgroup, Corollary from Lemma 1 implies that every abnormal subgroup
B of G intersects G′ by a normal in G′ subgroup.

Sufficiency.

Let G be a soluble CA-group containing an abnormal proper subgroup,G = G′〈b〉,
and assume that every abnormal subgroup B of G intersects G′ by a normal in
G′ subgroup, b is an element of order pn, n ≥ 1, 〈b〉 is a Sylow p-subgroup of G,
Z(G) ≤

〈

bp
〉

⊳ G and the following assertions hold.
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(1) If the center Z(G) is trivial, then bp ∈ G′, i.e. G′ has index p in G.

(2) If the center Z(G) is nontrivial then Z(G) =
〈

bp
〉

.

We will prove that G is a #U -group. Observe that since G is periodic, all Sylow
p-subgroups ofG are conjugate (this is a direct consequence of [RD, 14.3.4]). From
the equation G = G′〈b〉 and the property

〈

bp
〉

⊳ G, it follows that any abnormal

subgroup of G as a supplement to G′ contains 〈b〉 or some its conjugate. On the
other hand, since all Sylow p-subgroups are conjugate with 〈b〉 and hence abnormal
in G, we can state that any subgroup of G containing a Sylow p-subgroup is
abnormal in G. So, with respect to the choice of a Sylow p-subgroup of G, any
abnormal subgroup H in G can be viewed as a product H = L ⋉ 〈b〉, L = H ∩G′.
The latter is normal in G′ and in H ≥ 〈b〉. Therefore it is normal in G = G′〈b〉.
It is easy to see that every proper normal subgroup of G is contained in the

subgroup F = G′
〈

bp
〉

. In fact, if M is a normal subgroup in G and M � F, then

G = FM = G′(
〈

bp
〉

M). Since G is soluble, it is clear that there is no a proper

normal subgroup X ⊳ G such that G = G′X . So, it follows that G =
〈

bp
〉

M .

In the factor group G∗ = G/(
〈

bp
〉

∩ M) =
〈

bp
〉

∗
× M∗ the subgroup

〈

bp
〉

∗
is

complemented. It means that
〈

bp
〉

∗
is complemented in 〈b〉∗. It follows that

〈

bp
〉

∗
= 〈1〉 and M = G.

Let us consider two proper abnormal subgroups H and R in G. If they contain
the same Sylow p-subgroup of G, let say 〈b〉, then the intersection H ∩ R also
contains 〈b〉 and hence is abnormal in G. If the intersection of H and R does not
contain a Sylow p-subgroup of G, the subgroups H and R contain at least two
different conjugate Sylow p-subgroups of G, let say 〈b〉 and

〈

bx
〉

. Since
〈

bp
〉

⊳ G,

H ∩R ≥
〈

bp
〉

. So, we can write H = H1⋉ 〈b〉, R = R1⋉
〈

bx
〉

, H1 = H ∩G′ E G,

R1 = R∩G′ E G, H∩R ≥
〈

bp
〉

E G. It follows thatH∩R ≤ H2 = H1×
〈

bp
〉

E G,

H ∩R ≤ R2 = R1×
〈

bp
〉

E G, H ∩R ≤ H2∩R2. On the other hand, it is obvious
that H ∩ R ≥ H2 ∩ R2. So H ∩ R = H2 ∩ R2 and (H2 ∩ R2) E G.
Let now H be an abnormal subgroup in G andM be a proper normal subgroup

in G. Without loss of generality, we can write H = H1⋉〈b〉 andM =M1⋉
〈

bpk〉

,

k ≥ 1, H1 = H ∩ G′ E G, M1 =M ∩ G′ E G. Since 〈b〉 is a Sylow p-subgroup in

G, H ∩ M = H1 ⋉
〈

bpk〉

∩ M and H1 ⋉
〈

bpk〉

E G, M E G. Hence, H ∩ M E G.
�
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