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On a characterization of normal and countably

paracompact spaces via set-avoiding selections
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Abstract. We give a characterization of normal and countably paracompact spaces via
continuous set-avoiding selections.
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1. Introduction

Throughout this note all spaces are assumed to be T1-spaces and B stands for
a Banach space. We often denote by (B, ρ) the Banach space B with the metric ρ
generated by the given norm on B. In order to state our main result let us set up
some of the terminology. If Y is a space, then 2Y denotes the set of all non-empty
subsets of Y . For a space B we denote

E(B) = {A ∈ 2B : A is convex and dimA <∞}.

Let φ : X → 2Y be a map. Then φ is lower semi-continuous (LSC for short)
if {x ∈ X :φ(x) ∩ U 6= ∅} is open in X for every open U in Y . A map f : X → Y
is called a selection for φ if f(x) ∈ φ(x) for every x ∈ X . An open ball with a
radius ε > 0 and a center x in a given metric space will be denoted by B(x, ε).
All other definitions and concepts are introduced at the end of this section.

Now, we formulate our main theorem.

Theorem 1. For a T1-space X the following are equivalent.

(i) X is normal and countably paracompact.
(ii) For every separable Banach space B and for every LSC map φ : X → E(B)
such that dimφ(x) = dimφ(y) for every x, y ∈ X there exists a continuous
selection f for φ such that f(x) ∈ [φ(x)]◦.

(iii) For every separable Banach space B and for every LSC map φ : X → E(B)
such that dimφ(x) = dimφ(y) for every x, y ∈ X there exists a continuous
selection f for φ such that for every x ∈ X there exist a neighborhood Vx

of x and an εx > 0 with B(f(y), εx) ∩ φ(y) ⊂ [φ(y)]◦ for every y ∈ Vx.
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In the case when B is the real line the equivalence (i)⇔(ii) in the above theorem
was virtually shown by Dowker [4] and Katětov [6]. By [7, Theorem 3.1′′′], we
have that (ii) with the dimension requirement being removed is equivalent for X
to be perfectly normal. The following example also shows that we cannot remove
the dimension requirement for φ in the above theorem.

Example 1. Let X be normal and countably paracompact which is not perfectly
normal and let F ⊂ X be closed but not a Gδ-set in X . Define a LSC map

φ : X → 2[0,1] as follows:

φ(x) = {0} if x ∈ F, and

φ(x) = (0, 1) if x /∈ F.

Clearly, dimφ(x) 6= dimφ(y) if x ∈ F and y ∈ X \ F . On the other hand, φ
does not have a continuous selection since otherwise, we would have that F is a
Gδ-set in X .

Let A be a subset of B. Let aff A denote the affine hull of A, 〈A〉 the convex
hull and A the closure of A in B. ∂A means the relative boundary of A, that
is, the boundary with respect to aff A, and we define A◦ = A \ ∂A. Recall
that if A is convex in R

n, n ∈ N, then A◦ 6= ∅. A set {a0, a1, . . . , ak} in B

is called a geometrically independent set (see, for example, [1], [8]) if the set
{a1 − a0, a2 − a0, . . . , ak − a0} is a linearly independent set.

If δ > 0 and A ⊂ (B, ρ) then B(A, δ) is the open ball around A with radius δ,
i.e.

B(A, δ) = {x : ρ(x,A) < δ}.

If x ∈ (B, ρ) then we always write B(x, δ) instead of B({x}, δ).

Further, if A,C are nonempty compact subsets of a normed linear space (Y, ‖·‖)
then dH(A,C) stands for the Hausdorff metric between A and C (see [5] for more
details).

We conclude this section with one more definition. For a map φ : X → 2Y we
define the following condition.

(*) for every x ∈ X there is a neighborhood Ux of x such that dimφ(x) ≥
dimφ(y) for every y ∈ Ux.

We see later on that Theorem 1 remains valid if we replace the dimension
requirement for φ everywhere in the theorem with the requirement for φ to satis-
fy (*).

The paper is arranged as follows. In the next section we establish some lemmas
that we need in the sequel. In Section 3 we prove our main results.
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2. Some lemmas

In this section we state and prove several lemmas that are needed for proving
our main results. Let us point out that some of the lemmas are of independent
interest.

The proof of the next lemma directly follows from [3, Lemma 2]. For reader’s
convenience we give the proof.

Lemma 2. Let k ∈ N, and let {a1, . . . , ak} be a linearly (geometrically) inde-
pendent set in a normed linear space (Y, ‖ · ‖). Then there is a δ > 0 such that
every subset {b1, . . . , bk} of Y with ‖ai − bi‖ < δ for every 1 ≤ i ≤ k is also a
linearly (geometrically) independent set.

Proof: Let

M =

{

(t1, . . . , tk) ∈ R
k :

∥

∥

∥

∥

k
∑

i=1

tiai

∥

∥

∥

∥

≤ 2

}

.

Since {a1, . . . , ak} is a linearly independent set we have that M is compact.

Indeed, let us consider a map f : Rk → span{a1, . . . , ak}, defined by the formula

f((t1, . . . , tk)) =
k

∑

i=1

tiai for (t1, . . . , tk) ∈ R
k.

Then f is bijective because {a1, . . . , ak} is a linearly independent set. In addi-
tion, f is a continuous linear function between two finite dimensional Banach
spaces and hence f is a linear homeomorphism (see, for example, [8, Corol-
lary 1.1.14]). Therefore, M is compact as an inverse image of a compact set
under a homeomorphism. Thus, we can take an α to be an upper bound for the

set {
∑k

i=1 |ti|: (t1, . . . , tk) ∈M}. Further, we can choose a δ such that 0 < δ < 1
2α .

Let {b1, . . . , bk} ⊂ Y with ‖ai − bi‖ < δ for every 1 ≤ i ≤ k. For (t1, . . . , tk) ∈M
we have that

∥

∥

∥

∥

k
∑

i=1

ti(ai − bi)

∥

∥

∥

∥

≤
k

∑

i=1

|ti|‖(ai − bi)‖ <
k

∑

i=1

|ti|δ ≤ δα ≤
1

2
.

Define

D =

{

(t1, . . . , tk) ∈ R
k :

∥

∥

∥

∥

k
∑

i=1

tibi

∥

∥

∥

∥

≤ 1

}

.

Now, we are going to show that D ⊂ M . Indeed, let (t1, . . . , tk) ∈ D. Set

a′ =
∑k

i=1 tibi and notice that ‖a
′‖ ≤ 1. Consider a′′ =

∑k
i=1 tiai. We need
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to show that ‖a′′‖ ≤ 2. Clearly, we may assume that ‖a′′‖ 6= 0, so we consider
a′′/‖a′′‖. Obviously, (t1, . . . , tk)/‖a

′′‖ ∈M and therefore,

‖a′ − a′′‖/‖a′′‖ =

∥

∥

∥

∥

k
∑

i=1

ti
‖a′′‖

(ai − bi)

∥

∥

∥

∥

≤
1

2
.

So, ‖a′′‖ − ‖a′‖ ≤ ‖a′ − a′′‖ ≤ ‖a′′‖/2 and therefore, ‖a′′‖ ≤ 2‖a′‖ ≤ 2. Hence
(t1, . . . , tk) ∈M .
Next, being a subset of the compact set M , D is bounded. That implies that

{b1, . . . , bk} is a linearly independent set. Indeed, if we assume that {b1, . . . , bk}
is a linearly dependent set then there is (t1, . . . , tk) ∈ R

k, not all entries equal to

zero, such that
∑k

i=1 tibi = 0. Thus, (βt1, . . . , βtk) ∈ D for every real β. That
means that D is unbounded — a contradiction. Consequently, {b1, . . . , bk} is a
linearly independent set. The result for the geometrically independent sets follows
easily from that of linearly independent sets. That completes the proof. �

Lemma 3. Let A = {a1, . . . , ak} and C = {c1, . . . , ck} be two sets of points in a
normed linear space (Y, ‖ · ‖) such that ‖ai − ci‖ < δ for every 1 ≤ i ≤ k. Then
dH(〈A〉, 〈C〉) < δ.

Proof: Let m = max{‖ai − ci‖: 1 ≤ i ≤ k} and notice that m < δ. Then, by the
assumptions, we have that C ⊂ 〈A〉+B(0, δ). Next, since 〈A〉+B(0, δ) is convex
we get that 〈C〉 ⊂ 〈A〉 + B(0, δ). Hence 〈C〉 ⊂ B(〈A〉, δ). Finally, by symmetry
we have that 〈A〉 ⊂ B(〈C〉, δ) and that completes the proof. �

Lemma 4. Let X be a topological space and (Y, ‖ · ‖) be a normed linear space.
Let φ : X → E(B) be LSC satisfying (*). Then Pn = {x ∈ X : dimφ(x) = n− 1}
is clopen for every n ∈ N.

Proof: Clearly, we have that X =
⋃

∞

n=1 Pn with Pi ∩ Pj = ∅ if i 6= j. We are
going to show that each Pn is open. Let n ∈ N and x ∈ Pn. Since φ satisfies
(*) it suffices to show that there is a neighborhood Wx of x such that dimφ(y) ≥
dimφ(x) for every y ∈Wx. Indeed, if n = 1 then it is a triviality. So, we assume
that n ≥ 2. We find a geometrically independent set {a1, . . . , an} ⊂ φ(x). By
Lemma 2, we find a δ > 0 such that if ‖bi − ai‖ < δ for each 1 ≤ i ≤ n then
the subset {b1, . . . , bn} of Y is also a geometrically independent set. For every
1 ≤ i ≤ n let

Ui = {y ∈ X : φ(y) ∩B(ai, δ) 6= ∅}.

Since φ is LSC we have that each Ui is open in X . Set Wx =
⋂n

i=1 Ui. Take
y ∈Wx. Observe that φ(y) ∩B(ai, δ) 6= ∅ for every 1 ≤ i ≤ n. By the choice of δ
we get that φ(y) contains at least n geometrically independent vectors and hence
dimφ(y) ≥ dimφ(x) = n− 1. Consequently, each Pn is open. Furthermore, each
Pn is closed since the complement of each Pn is open as a union of open sets.
That completes the proof. �
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Remark 1. Observe that, in the proof of Lemma 4, we show that if φ : X → E(B)
is LSC then for every x ∈ X there is a neighborhood U of x such that dimφ(y) ≥
dimφ(x) for every y ∈ U .

Lemma 5. Let X be a topological space and (B, ρ) be a Banach space. Let
φ : X → E(B) be LSC such that dimφ(x) = dimφ(y) for every x, y ∈ X . Then
for every x ∈ X there are a neighborhood Wx of x, a µx > 0 and a LSC map
ψx : Wx → 2B such that each ψx(y) is convex and compact and B(ψx(y), µx) ∩
φ(y) ⊂ [φ(y)]◦ for every y ∈Wx.

Proof: Let x ∈ X . If dimφ(x) = 0 then the lemma is trivially satisfied by
setting Wx = X , ψx = φ and taking µx to be any positive number. So, we may
assume that n− 1 = dimφ(x) > 0.
We find a geometrically independent set {a1, . . . , an} ⊂ [φ(x)]◦ and set

F = 〈{a1, . . . , an}〉.

Pick p ∈ F ◦. By Lemma 2, we can find a δ such that if ‖bi − ai‖ < δ then
{b1, . . . , bn} is also a geometrically independent set. Let

δ∗ = ρ(p, ∂F ),

µx = min{
1

3
δ∗, δ}, and

Ui = {y ∈ X : φ(y) ∩B(ai, µx) 6= ∅}.

Notice that every Ui is open in X since φ is LSC. Set

Wx =

n
⋂

i=1

Ui.

Further, we are going to construct a LSC map ψx : Wx → 2B such that each
image is compact and convex and

ψx(x) = {p} and

B(ψx(y), µx) ∩ φ(y) ⊂ [φ(y)]
◦ for every y ∈ Wx.

Let y ∈ Wx be arbitrary. Take {b1, . . . , bn} such that bi ∈ φ(y) and ρ(ai, bi) < µx

for every 1 ≤ i ≤ n. Next, observe that {b1, . . . , bn} is a geometrically independent
set. Set

G = 〈{b1, . . . , bn}〉 and Gy = B(p, µx) ∩ φ(y).

Now, by Lemma 3, we have that

ρ(p,G) < µx ≤
1

3
δ∗.

In addition, we have the following claim.
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Claim 1. ρ(p, ∂G) ≥ 2
3δ

∗.

Proof: Let z ∈ ∂G. Then z =
∑n

i=1 tibi, where the right-hand side is a convex
combination of the bi’s with at least one coefficient zero. Consider z

∗ =
∑n

i=1 tiai.
Then we have that z∗ ∈ ∂F since at least one of the ti’s is zero and {a1, . . . , an}
is a geometrically independent set. Moreover, ρ(z, z∗) = ‖

∑n
i=1 ti(bi − ai)‖ ≤

∑n
i=1 ti‖bi − ai‖ <

∑n
i=1 tiµx = µx. Consequently, ρ(p, z) ≥ ρ(p, z∗)− ρ(z, z∗) >

δ∗ − µx ≥ 2
3δ

∗. �

Furthermore, we prove the following claim.

Claim 2. B(Gy , µx) ∩ φ(y) ⊂ G◦ ⊂ [φ(y)]◦.

Proof: Obviously, we have that dimφ(y) = n − 1 and dimG = n − 1. Con-
sequently, aff G = aff φ(y) and G◦ ⊂ [φ(y)]◦ since both G and φ(y) are convex
and finite-dimensional. Next, having in mind that ρ(p,G) < µx and B(Gy , µx) ⊂

B(p, 2µx) ⊂ B(p, 23δ
∗) we have that

∅ 6= Gy ∩G ⊂ Gy ⊂ B(Gy , µx) ∩ aff φ(y) ⊂

⊂ B(Gy , µx) ∩ aff G ⊂ B(p,
2

3
δ∗) ∩ aff G.

Further, applying Claim 1, we obtain that

B(p,
2

3
δ∗) ∩ aff G ⊂ G◦ ⊂ [φ(y)]◦.

Hence the claim results. �

Now, define ψx : Wx → 2B, as follows: ψx(x) = {p} and ψx(y) = Gy for
y ∈ Wx \ {x}. Let us verify that ψx is LSC. Indeed, let U be open in B and let
O = {z ∈ Wx:U ∩ ψx(z) 6= ∅}. We need to show that O is open. Observe that,
by the definition of ψx, we have that

O =
{

z ∈ Wx : U ∩ (B(p, µx) ∩ φ(z)) 6= ∅
}

=
{

z ∈ Wx:U ∩B(p, µx) ∩ φ(z) 6= ∅
}

.

Now, O is open since φ is LSC and U ∩B(p, µx) is open in B.
All other required properties of ψx are obvious. We are done. �

Remark 2. Considering Lemma 5, let us suppose that (B, ρ) is separable. Then,
without loss of generality, we can assume that the set Q = {Wx:x ∈ X} is
countable. Indeed, if dimφ(x) = 0 then we can take Q = {X}. If n − 1 =
dimφ(x) > 0 then we consider a countable base O for B. Then, observe that,
for every 1 ≤ i ≤ n, B(ai, µx) can be replaced by Ox,i ∈ O such that ai ∈
Ox,i ⊂ B(ai, µx). Further, we redefine Ui’s, i.e. Ui = {y ∈ X :φ(y) ∩ Ox,i 6= ∅}.
Thus, Wx is completely determined by (Ox,1, . . . , Ox,n). Since the set of all finite
subcollections of O is countable we may assume that Q is countable as well.
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3. Main results

First, we are going to prove Theorem 1.

Proof of Theorem 1: (i)⇒(iii). For every x ∈ X we can find a neighborhood

Wx of x, a positive number µx and a LSC map ψx : Wx → 2B as in Lemma 5.
Next, by Remark 2, without loss of generality, we can assume that the set Q =
{Wx:x ∈ X} is countable. Further, for each W ∈ Q we fix an xW ∈W such that
W =WxW

. Then, we can arrange the countable set {(W,µxW
, ψxW

):W ∈ Q} in
a sequence {(Wi, µi, ψi)}

∞

i=1. Since X is normal and countably paracompact we
can find an open locally finite refinement (Oi) of (Wi) such that X =

⋃

∞

n=1Oi

and Oi ⊂ Wi for each i ∈ N. Moreover, by Michael [7, Theorem 3.1′′] (or, by [7,
Theorem 3.1′]), we find a continuous selection f

Oi
for ψi↾Oi. Further, for x ∈ X

we define
Ax = {k ∈ N:x ∈ Ok} and ε∗x = min{µk: k ∈ Ax}.

Now, we define a function θ : X → 2B as follows:

θ(x) = 〈{f
Ok
(x) : k ∈ Ax}〉 for x ∈ X.

Let us verify that θ is a LSC function. Let x ∈ X . Consider B(p, δ) with δ > 0
and p ∈ θ(x). For every k ∈ Ax we find a neighborhood Uk of x in Ok such that
f
Ok
(y) ∈ B(f

Ok
(x), δ) for every y ∈ Uk. Set U =

⋂

k∈Ax
Uk. Clearly, U is a

neighborhood of x in X . Observe that, for each y ∈ U and k ∈ Ax we have that
B(f

Ok
(x), δ) ∩ θ(y) 6= ∅. Now, by Lemma 3 and by the definition of θ, we have

that B(p, δ) ∩ θ(y) 6= ∅ for every y ∈ U . Hence θ is LSC.
Further, obviously, each image θ(x) is compact and is a subset of [φ(x)]◦.

Moreover, for each x ∈ X , we have that

B(θ(x), ε∗x) ∩ φ(x) ⊂ [φ(x)]
◦.

Now, again by [7, Theorem 3.1′′], we can find a continuous selection f for
θ. Let x ∈ X be arbitrary. Find a neighborhood Vx of x such that the set
{k:Ok ∩ Vx 6= ∅} is finite. Set

Cx = {k : Vx ∩Ok 6= ∅} and εx = min{µk : k ∈ Cx}.

Let us prove that Vx, εx and f are as required. Indeed, pick an y ∈ Vx. Then
Ay ⊂ Cx and therefore ε

∗
y ≥ εx. Thus,

B(θ(y), εx) ∩ φ(y) ⊂ B(θ(y), ε∗y) ∩ φ(y) ⊂ [φ(y)]
◦.

Now, since f(y) ∈ θ(y), we get that B(f(y), εx) ∩ φ(y) ⊂ [φ(y)]◦. Hence the
implication (i)⇒(ii) results.
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The implication (iii)⇒(ii) is obvious; we need to show that (ii)⇒(i). To show
that X is normal we use a very standard idea. Let F1, F2 be closed in X with
empty intersection. Define φ : X → E([0, 1]) as follows: φ(x) = [0, 13 ] for x ∈ F1,

φ(x) = [23 , 1] for x ∈ F2 and φ(x) = [0, 1] for x ∈ X \ (F1∪F2). Then, clearly, φ is
LSC. By the hypotheses, we can find a continuous selection f : X → [0, 1] for φ.
Then the open sets f−1([0, 12 )) and f

−1((12 , 1]), that have no common points,
contain F1 and F2 respectively. The fact, that X is countably paracompact,
follows from the proof of [2, Theorem 4] ((2)⇒(1)). That completes the proof of
the theorem. �

Now, we are in a position to state and prove the following variation of Theo-
rem 1.

Theorem 6. For a T1-space X the following are equivalent.

(i) X is normal and countably paracompact.
(ii) For every separable Banach space B and for every LSC map φ : X → E(B)
satisfying (*) there exists a continuous selection f for φ such that for
every x ∈ X there exist a neighborhood Vx of x and an εx > 0 with
B(f(y), εx) ∩ φ(y) ⊂ [φ(y)]

◦ for every y ∈ Vx.

Proof: It follows directly from Lemma 4 and Theorem 1. �
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