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Closed embeddings into complements of Σ-products

A.V. Arhangel’skii, M. Hušek

Abstract. In some sense, a dual property to that of Valdivia compact is considered,

namely the property to be embedded as a closed subspace into a complement of a
Σ-subproduct of a Tikhonov cube. All locally compact spaces are co-Valdivia spaces
(and only those among metrizable spaces or spaces having countable type). There are
paracompact non-locally compact co-Valdivia spaces. A possibly new type of ultrafilters
lying in between P-ultrafilters and weak P-ultrafilters is introduced. Under Martin axiom
and negation of CH, no countable nowhere dense space is a co-Valdivia space.

Keywords: Σ-product, Tikhonov cube, Valdivia compact, locally compact space

Classification: 54B10, 54C25, 54D35, 54D45

1. Introduction

All topological spaces are supposed to be Tikhonov (Hausdorff completely re-
gular spaces).

A Valdivia compact space X can be embedded into a Tikhonov cube in such
a way that its intersection P with a Σ-product is dense in X . Thus, X is a
compactification of P (in fact, X = βP ) and the remainder X \ P is a closed
subspace of the complement of a Σ-product in the Tikhonov cube. One may ask
what spaces are remainders of those Σ-parts of Valdivia compacts. For a survey
on Valdivia compacts see [3] or [4] for other results.

Another motivation for the investigation of closed embeddings into comple-
ments of Σ-products is to look for spaces having nice remainders in a compactifi-
cation. Every remainder of a closed subspace of the complement of a Σ-product in
a Tikhonov cube (in its closure in the cube) is a normal, Fréchet and ω-bounded
(thus countably compact) space.

So, it may be interesting to know which topological spaces can be embedded
into complements of Σ-products in Tikhonov cubes as closed subspaces. If those
spaces are nowhere locally compact, then their closures in Tikhonov cubes are
Valdivia compacts.

The present paper was written while the second author stayed at Ohio University; his stay was
also supported by the grants MSM 0021620839 and GAČR 201/06/0018 of the Czech Republic.
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The symbol I denotes the closed real interval [0,1]. By ΣaXκ we denote the
Σ-product in Xκ determined by a point a = {aα}κ ∈ Xκ, i.e.,

ΣaXκ = {{xα}κ ∈ Xκ; |{α ∈ κ;xα 6= aα}| ≤ ω}.

We shall denote the complement Xκ \ ΣaXκ simply by Xκ \ Σa. It is known
that ΣaI

κ is a Fréchet ([5]) collectionwise normal space ([2]) and is closed under
closures (in I

κ) of its countable subsets. Every continuous function defined on
a closed subspace of ΣaI

κ continuously extends onto the whole product I
κ (it

depends on countably many coordinates — [2]).
It is not clear how homeomorphs of closed subspaces of complements of Σ-

products should be called, also from the reason that it is not clear whether such
spaces will be shown useful. For the purpose of the present paper we shall call
them cV-spaces, which comes from co-Valdivia spaces.

Definition 1. A topological spaceX is said to be a cV-space (or to have property
cV) if it can be embedded as a closed subspace into the complement of a Σ-product
in a power of I.

It is convenient to realize that a Σ-product ΣaI
κ in the previous definition can

be always chosen with a = 0 (having all its coordinates equal to 0). Indeed, for
every α ∈ κ there is an embedding of I into I × I that maps the point aα 6= 0
into (0,0) (mapping homeomorphically, e.g., [0, aα] onto {0} × I and [aα, 1] onto
I×{0}). So, a space X can be embedded as a closed subspace into a complement
of ΣaI

κ in I
κ iff it can be embedded as a closed subspace into the complement of

Σ0I
κ in I

κ.
In the previous paragraphs we were speaking about embeddings into Tikhonov

cubes. Valdivia compacts can also be defined by embeddings into powers of reals.
That would give a different concept in our case, which follows from the following
fact: every realcompact space can be embedded as a closed subspace into the
complement of a Σ-product in a power of reals R — we shall see later that not
all realcompact spaces have cV (e.g. the space of rational numbers has not cV —

see Corollary 5). Indeed, R can be embedded into R
R \Σ as a closed subspace of

R
R (e.g. by the map r → {s → r+ s}). It follows that every power R

κ embeds as

a closed subspace into R
2ω ·κ \ Σ.

Clearly, the converse is true: every cV space can be embedded as a closed
subspace into the complement of a Σ-product in a power of reals R. And if a
space can be embedded as a closed subspace into the complement of a Σ-product
in a Cantor space 2κ, it is a cV space. In all the cases, the Σ-products may be
considered determined by the point 0.

2. General results

If X has cV then its closure in the corresponding I
κ is a compactification of

X with its remainder lying in ΣaI
κ. According to the previous paragraph, the
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remainder is a Fréchet ω-bounded space (i.e., every its countable subset has a
compact closure in the remainder) that is C-embedded in X (in fact in I

κ). We
shall call that compactification a cV-compactification of X .

We shall now transform the definition of cV spaces into a form more convenient
for applications.

Proposition 2. A topological space X has cV iff it there exist families G =
{Gi}I ⊂ cozero (βX) and Z = {Zi}I ⊂ zero (βX) having the following properties:

1. for every i ∈ I, either Zi ⊂ Gi or Zi ∩ Gi = ∅;
2. {Gi ∩ X ; i ∈ I} is an open subbase of X ;
3. {βX \ Zi; i ∈ I} is point-countable on βX \ X ;

4. {Gi \ Zi; i ∈ I} is point-uncountable at every x ∈ X .

Proof: The conditions are necessary. Indeed, if X embeds as a closed subspace
into I

κ\Σ and γX is the closure of X in I
κ one may take for G all the preimages of

a countable open base in I, under the compositions of the natural map βX → γX

and all the projections γX → I. The family Z is formed by preimages of 0 under
the same maps.

Suppose now that the conditions are fulfilled for some families G and Z. For
every Gi ∈ G find cozero sets Gi,n in βX with Gi,n ⊂ Gi,n ⊂ Gi,n−1, G =

⋃

Gi,n.
Then find continuous functions fi,n : βX → I such that

fi,n(x) =

{

0 for x ∈ βX \ Gi

1 for x ∈ Gi,n

if Zi ∩ Gi = ∅,

fi,n(x) =

{

0 exactly for x ∈ Zi

1 for x ∈ βX \ Gi
if Zi ⊂ Gi.

Denote by ϕ the mapping βX → I
I·ω determined by all fi,n. According to

the second condition, ϕ is homeomorphic on X . The third condition gives the
inclusion ϕ(βX \ X) ⊂ Σ0 and the fourth condition gives the inclusion ϕ(X) ⊂
I
G×ω \Σ. Since ϕ(βX) is compact, ϕ(X) is closed in I

G×ω \Σ and, consequently,
X is a cV space. �

It follows directly from the definition that the class of cV spaces is closed
hereditary. The previous characterization helps to show that the class of cV spaces
is closed under disjoint sums. It will follow from Corollary 5 that cV spaces are
not closed under countable products (for instance, the space of irrationals is not
a cV space), and under quotients (fan with ω2 spikes).

Although it seems that the previous characterization is too complicated to be
useful, it gives several interesting consequences. The first one describes a big class
of cV spaces.
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Theorem 3. Every locally compact space X is cV.

Proof: Let X be a locally compact space. Take for G in Proposition 2 the open
base of X composed of cozero sets having compact closures, repeating each of it
uncountably many times. The family Z is composed of complements in βX of
those corresponding cozero sets. �

Clearly, there are nowhere locally compact spaces having cV; for instance, the
complements of Σ-products in Tikhonov cubes have cV. In the next section we
shall describe some classes of non-locally compact spaces having cV.
Another consequence of Proposition 2 gives a necessary condition for a space

to have cV.

Proposition 4. If X is a cV space then for every compact set in X there exists

a family {Uα}ω1 of its neighborhoods in βX such that

⋂

S

Uα ⊂ X for every uncountable S ⊂ ω1 .

Especially, every compact set in X is contained in a compact set K ⊂ X with

χ(K, X) ≤ ω1.

Proof: Let X have cV and C be a compact set in X . Take families G and Z from
Proposition 2. For every point x ∈ C take some Gix ∈ G with x ∈ Gix\Zix . There
is a finite set F ⊂ I such that

⋃

F (Gix \ Zix) ⊃ C. Denote W0 =
⋃

F (Gix \ Zix)
and I0 = I \ F . Suppose that we have already constructed open sets Wα ⊃ C

and collections Iα ⊂ I for all α < δ for some 0 < δ < ω1 such that

1. Iα ⊃ Iβ and |Iα \ Iβ | ≤ ω for α < β < δ;
2. Wα is a union of sets Gi \ Zi for a finite number of indices i ∈ I \ Iα.

We shall construct Wδ and Iδ. For every x ∈ C there is an ix ∈
⋂

α<δ Iα with
x ∈ Gix \Zix , because only at most countably many elements were removed from
the uncountable family Gi \ Zi containing x. There is a finite set F ⊂

⋂

α<δ Iα

such that
⋃

F (Gi \ Zi) ⊃ C. Denote Wδ =
⋃

F (Gi \ Zi) and Iδ =
⋂

α<δ Iα \ F .
Both conditions above are satisfied for {Wα;α ≤ δ} and {Iα;α ≤ δ}.
The family {Wα;α < ω1} is point-countable on βX\X . Indeed, if x ∈ Wα then

x ∈ (Gi \ Zi) for a finite number of indices i, and those finite sets of indices are
disjoint (by our construction of Wα). Consequently, if x belongs to uncountably
many of Wα’s, it belongs to uncountably many of Gi \Zi’s and, thus, x ∈ X . So,
⋂

S Wα ⊂ X for any uncountable set S of countable ordinals.

For any α ∈ ω1 take cozero sets Uα,n with C ⊂ Vα,n ⊂ Vα,n ⊂ Vα,n−1 ⊂ Wα.
Then the family {Vα,n;α ∈ ω1, n ∈ N} is the requested family and its intersection
is the requested compact set K ⊃ C. �

The previous proposition has interesting consequences. We remind that a point
x is said to be a weak P-point in a space if it does not belong to closures of
countable sets not containing x.
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Corollary 5. 1. If X is a cV space then every its point x is a weak P-point in

{x} ∪ (βX \ X).
2. If X is a cV space then every its compact set having countable character

has a compact neighborhood.

3. If X is a cV space having a point with countable π-character then X has

a point with a compact neighborhood.

4. If X is a cV space then every its open set is a union of compact Gω1 -sets

(i.e., compact Gω1 -sets form a network of X).

Proof: 1. Let x ∈ X be an accumulation point of a countable set {pn} ⊂ βX \X

not containing x. By Proposition 4, there is a family {Gα}ω1 of neighborhoods
of x in βX such that every intersection of uncountably many of them is a part
of X . Every Gα contains some pn, thus there is a pk belonging to uncountably
many Gα’s, which is impossible.
2. Let C ⊂ X be a compact space having a countable base {Un} of neighbor-

hoods. By Proposition 4, there is a family {Gα}ω1 of neighborhoods of C in βX

such that every intersection of closures of uncountably many of them is a part
of X . Since uncountably many of Gα’s must contain some Uk, the closure Uk is
a compact neighborhood of C in X .
3. Let {Un} be a countable π-base at some x ∈ X . Taking a family {Gα} as

in the previous part, some Uk must belong to uncountably many of Gα’s and so,
every point of Uk has a compact neighborhood, namely Uk.
4. Let H be an open subset of X containing a point x. Again, there is the

above family {Gα} for x. It suffices to take open Uα,n such that x ∈ Uα,n ⊂

Uα,n ⊂ Uα,n−1 ⊂ H ∩ Gα. Then
⋂

{Uα,n;α < ω1, n ∈ N} is the requested
compact Gω1 -set. �

An easy consequence of Corollary 5 says that if ξ is not a weak P-point of
βX \ X , then X ∪ {ξ} has not cV (regarded as a subspace of βX).
In Corollary 5, item 4, one can write Gω1 -set instead of open set.

Because of its importance we shall state the next corollary as a theorem. Recall
that a space is said to be of countable type if every point is contained in a compact
set having countable character.

Theorem 6. A space of countable type is cV iff it is locally compact.

In particular, a metrizable space or a space with countable local character is a

cV space iff it is locally compact.

3. Special spaces

We shall now look at two special classes of non-locally compact spaces, namely
at those having a unique accumulation point, and at dense-in-itself spaces.
By the previous results, if in a spaceX its compact sets coincide with finite sets,

thenX has cV only if χ(X) ≤ ω1. One type of such spaces are non-locally compact
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spaces with one accumulation point. Denote those spaces as X ⊕ 1 = X ∪ {ξ},
where X is a discrete open subset of X ⊕ 1 and ξ is its accumulation point.
A necessary condition for non-locally compactX⊕1 to have cV is that χ(ξ) ≤ ω1.
If χ(ξ) = ω then X ⊕ 1 has cV iff ξ has a compact neighborhood. So it remains
to consider the cases when χ(ξ) = ω1.

Theorem 7. For a space X ⊕ 1 with χ(ξ) = ω1, each of the following conditions

implies the next one:

1. ξ is a P-point;

2. ξ is a P-point in β(X ⊕ 1) \ X ;

3. X ⊕ 1 has cV;
4. ξ is a weak P-point in β(X ⊕ 1) \ X .

Proof: The implication 1→ 2 follows from a general fact that if A ⊂ Z is dense
in Z and a point z ∈ Z \ A is a P-point of A ∪ {z} then it is a P-point of Z \ A.
The implication 3 → 4 follows from Corollary 5. It remains to prove the

implication 2→ 3. Let {Uα}ω1 be a basis of cozero neighborhoods of ξ in β(X⊕1)
such that, for every α < ω1, Uα+1 ⊂ Uα and Uα \ X ⊂

⋂

β<α Uβ . Let Uα =

f−1
α (0, 1] for some continuous fα : βX → I. Define G = {{x}ω1 ;x ∈ X}∪ {Uα}ω1

and the corresponding zero sets Zi = β(X ⊕1)\Gi if |Gi| = 1 and Zi = f−1
α (0) if

Gi = Uα. It is easy to see that the families satisfy the conditions of Proposition 2.
�

We may now apply Theorem 7 to several examples of spaces having exactly one
accumulation point: the subspace of the ordered space of ordinals κ + 1, where
κ is a regular cardinal, composed of isolated ordinals and of the largest element
κ, or the subspace of the Čech-Stone compactification of a discrete infinite set D

composed of the set D and of a one point ξ of the remainder. We shall denote
the former space by κ ⊕ 1 and the latter space by Dξ .
The space κ ⊕ 1 has character κ and so, only for κ ≤ ω1 the space may

have cV. The space ω⊕ 1 is compact and it has cV. It remains to consider ω1⊕ 1.
By Theorem 7 we have:

Corollary 8. The space κ ⊕ 1 has cV iff κ ≤ ω1.

So, there exists a space that is not locally compact, has a unique accumulation
point (and is thus paracompact) and has cV.

If a space Dξ has cV, then χ(ξ) = ω1 (it cannot have countable character). It
implies that ξ belongs to a closure of a countable subset of D and, consequently,
Dξ may be considered as a disjoint sum of a discrete space and Nξ. So, it remains
to consider Nξ .

Corollary 9. Let ξ be a free ultrafilter on a discrete set D.

1. If Dξ has cV then ξ is a weak P-ultrafilter containing a countable set and

χ(ξ) = ω1.
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2. If ξ is a P-ultrafilter on N and χ(ξ) = ω1 then Nξ has cV.

We do not know whether there is a weak P, non-P-ultrafilter ξ on N such that
Nξ has cV. Denote by (V ) the following property of free ultrafilters on N:

(V) the ultrafilter has a base A such that {A
βN

}A is point-countable on βN \Nξ.

So, Nξ has cV iff ξ has character ω1 and satisfies (V) and, thus, every P-
ultrafilter on N having character ω1 has (V). Clearly, every ultrafilter with (V) is
a weak P-ultrafilter. We do not know any other relation among those concepts
and may formulate the following question (the best situation is under CH, when
the assumption on characters may be omitted).

Question 10. Is it true that either every ultrafilter having (V ) and character ω1
is P-ultrafilter or that every weak P-ultrafilter has (V )?

Other interesting spaces having a unique accumulation point are fans Fκ, κ ≥ ω

regular (quotients of disjoint union of κmany converging sequences sewed together
at their limit points). The spaces Fκ are never locally compact and their character
is bigger than κ. Therefore, only Fω may be a cV space.
The fan Fω has character d, the minimal cardinality of a cofinal set of functions

N → N in the order f ≺ g if f(n) ≤ g(n) for almost all n (up to finitely many).
It is known that ω1 ≤ d ≤ 2ω. If d = ω1 then a cofinal set {fα}ω1 may be found
to be a scale: if α < β then fα ≺ fβ .
In our notation, X = N × N, Fω = X ⊕ 1 and the accumulation point ξ has

basic neighborhoods Uf = {ξ} ∪ {(n, k); k ≥ f(n)} determined by f : N → N.

Theorem 11. The fan Fω is a cV space iff d = ω1.

Proof: The necessity follows from Proposition 4. For the sufficiency we shall
show that ξ is a P-point of β(X ⊕ 1) \ X and use Theorem 7. Take a cofinal
set {fα}ω1 of functions N → N in ≺ being also a scale (see above). Denote the
neighborhoods of ξ determined by fα as Uα. Take neighborhoods Gn, n ∈ N, of
ξ in β(X ⊕ 1) with Gn ⊂ Gn−1 for every n. It suffices to show that

⋂

n Gn ⊃

Uα
β(X⊕1)

\ X for some α.
There are αn such that Uαn

⊂ Gn. Take fγ following each fαn
in the order ≺.

Thus Uγ ⊂ Uαn
∪ Cn, where Cn is a compact subset of Fω (a finite number of

converging sequences). Consequently, Uγ
β(X⊕1)

\X ⊂ Uαn

β(X⊕1)
⊂ Gn ⊂ Gn−1

for every n, which was to be proved. �

The procedure of the previous proof can be used for connected fans obtained
by sewing together all points 0 in a disjoint union of intervals [0,1]. One gets the
same characterization of those fans belonging to cV.

We shall now look at spaces having no isolated points. It follows from the
previous results that they need not have cV even when they have small characters
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— e.g. irrationals or rationals. Are there countable spaces with cV having no
isolated points? No point of a countable dense-in-itself space has a compact
neighborhood. So, to have cV, it cannot have a countable basis of neighborhoods
at any point.
We can give a final solution under MA+¬CH only.

Proposition 12. Under [MA+¬CH], no countable space without isolated points
has cV.

Proof: By a result proved by Šapirovskii ([6], [7]) and Tall ([8]), every point-
countable collection of open sets in a Čech complete ccc space is countable, pro-
vided MA+¬CH holds.
Let X be a countable cV space without isolated points. No point of X has a

compact neighborhood in X and, thus, X is a countable remainder of γX \ X ,
where γX is the cV-compactification ofX . Consequently, γX\X is Čech complete
and has ccc.
Take x ∈ X and a family {Uα}ω1 of its open neighborhoods in βX such that

⋂

S Uα ⊂ X for any uncountable S ⊂ ω1. Then {Uα} is point-countable on βX\X

and, thus, a countable collection by the above theorem of Šapirovskii and Tall.
Consequently, there is an uncountable S ⊂ ω1 such that Uα \X = Uβ \X for any

α, β ∈ S. That implies
⋂

S Uα ⊃ Uα \ X and, therefore, Uα \ X = ∅ for α ∈ S.

Hence, Uα is a compact neighborhood of x in X , which is not possible. �

We do not know if Theorem 12 holds in ZFC (or, say, under CH).

Question 13. Is it true that no countable dense-in-itself space X is a cV space?

To answer the question, it may be useful to notice that the preceding proof
shows we need less than countability of point-countable open collections on βX \
X .

Definition 14. A space X is said to have property (P) if every uncountable and
point countable collection of open sets contains a countable subcollection with
empty intersection.

Under MA+¬CH, every Čech complete ccc space has (P). If βX \ X has (P)
then γX \ X has (P) for any compactification γX of X .

Proposition 15. If βX \X has property (P) then X is a cV space iff it is locally

compact.

Proof: Assume that X has (P). Take x ∈ X and a family {Uα}ω1 as in the
proof of Proposition 12. According to the property (P) there is a countable set
A ⊂ ω1 such that

⋂

A Uα \ X = ∅. Thus
⋂

A Uα is a compact set. Taking open

neighborhoods Vα,n with Vα,n ⊂ Vα,n ⊂ Vα,n−1 ⊂ Uα and their intersection (for
α ∈ A, n ∈ N), one gets a compact set in X having a countable local base.
Consequently, some of its neighborhood must be compact (see Corollary 5). �
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There are many other classes of spaces as candidates for cV spaces. It has been
recently shown that topological groups have as remainders Lindelöf or pseudocom-
pact spaces only [1]; so, the second possibility suggests they can be cV spaces.
Nontrivial cases are non-locally compact groups having character ω1 (they are
nowhere locally compact and their cV compactification is then Valdivia compact).
Another possibility is to look at P-spaces. Every P-space has finite compact

sets only. Thus, if it is a cV space, every its point is either isolated or has character
equal to ω1.
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