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LATTICE-VALUED BOREL MEASURES III

Surjit Singh Khurana

Abstract. Let X be a completely regular T1 space, E a boundedly complete
vector lattice, C(X) (Cb(X)) the space of all (all, bounded), real-valued
continuous functions on X. In order convergence, we consider E-valued,
order-bounded, σ-additive, τ -additive, and tight measures on X and prove
some order-theoretic and topological properties of these measures. Also for an
order-bounded, E-valued (for some special E) linear map on C(X), a measure
representation result is proved. In case E∗n separates the points of E, an
Alexanderov’s type theorem is proved for a sequence of σ-additive measures.

1. Introduction and notation

All vector spaces are taken over reals. E, in this paper, is always assumed to be
a Dedekind complete Riesz space (and so, necessarily Archimedean) ([1], [15], [14]).
For a completely regular T1 space X, υX is the real-compactification, X̃ is the
Stone-Čech compactification of X, B(X) is the space of all real-valued bounded
functions on X, C(X) (resp. Cb(X)) is the space of all real-valued, (resp. real-valued
and bounded) continuous functions on X; sets of the form

{
f−1(0); f ∈ Cb(X)

}
are

called zero-sets of X and their complements positive subsets of X, and the elements
of the σ-algebra generated by zero-sets are called Baire sets ([20], [19]); B(X) and
B1(X) will denote the classes of Borel and Baire subsets of X and F(X) will be the
algebra generated by the zero-sets of X. β1(X)(β(X)) are, respectively the spaces
of bounded Baire (Borel) measurable functions on X. It is easily verified that the
order σ-closure of Cb(X) in β1(X), in the topology of pointwise convergence, is
β1(X) and the order σ-closure, in β(X), of the vector space generated by bounded
lower semi-continuous functions on X, is β(X) ([3], [4]).

In ([21], [23]), the author discussed the positive measures taking values in
Dedekind complete Riesz spaces and proved some basic results about the integration
relative to these measures; he also proves some Riesz representation type theorems;
it was proved there that when X is a compact Hausdorff space and µ : C(X)→ E is
a positive linear mapping then µ arises from a unique quasi-regular Borel measure
µ : B(X) → E which is countably additive in order convergence (quasi-regular
means that the measure of any open set is inner regular by the compact subsets
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of X). In ([7], [8]) new proofs were given for these Riesz representation theorems
for positive measures and then the study was extended to completely regular T1
spaces and σ-additive, τ -additive and tight positive measures were studied on
these spaces. In ([17], [18]), some decomposition theorems for measures, which take
values in Dedekind complete Riesz spaces and are not necessarily positive, were
proved. In [16], the authors proved some results about the countable additivity of
the order-theoretic modulus of a countable additive measures taking values in a
Banach lattice.

In the present paper, we consider measures, not necessarily positive, on com-
pletely regular T1 spaces, taking values in Dedekind complete Riesz spaces. In
Section 2, some order-theoretic and topological properties of σ-additive, τ -additive
and tight measures are proved. In Section 3, a well-known result about the measure
representation of real-valued, order-bounded linear map on C(X) is extended to the
case when the order-bounded linear map on C(X) takes values in C(S), S being a
Stone space. In Section 4, assuming that the continuous order dual E∗n separates
the points of E, an Alexanderov’s type theorem is proved about a sequence of
σ-additive measures.

For locally convex spaces and vector lattices, we will be using notations and
results for ([15], [1], [13]). For a locally convex space E with E′ its dual, with an
x ∈ E and f ∈ E′, 〈f, x〉 will stand for f(x). For measures, results and notations
from ([21], [10], [2]) will be used, and for lattice-valued measures, results of ([17],
[18]) will be used.

2. Order-bounded measures on completely regular T1 space in order
convergence

We start with a compact Hausdorff space X and an order-bounded, counta-
bly additive (countable additivity in the order convergence of E) Borel measure
µ : B(X)→ E. Further assume that for any decreasing net {Cα} of closed subsets
of X, µ(∩Cα) = o− limµ(Cα) (if µ has this property then we say µ is τ -smooth).
We first prove the following theorem.

Theorem 1. Suppose X is a compact Hausdorff space and µ : B(X) → E be an
order-bounded, countably additive (countable additivity in the order convergence
of E) Borel measure on X, having the propety that for any decreasing net {Cα}
of closed subsets of X, µ(∩Cα) = o− limµ(Cα). Let {fα} be a net of [0, 1]-valued,
usc (upper semi-continuous) functions on X, decreasing pointwise to a function f
on X. Then o− limµ(fα) = µ(f).

Proof. Since µ is order-bounded, we can take E = C(S), S being a compact
Stone space and

∣∣µ(B(X)
)∣∣ ≤ 1 ∈ C(S); this implies, that for any Borel function

h : X → [−1, 1], |µ(h)| ≤ 1. Fix a k ∈ N and let Ziα = f−1
α

[
i
k , 1
]

and Zi =
f−1[ i

k , 1
]
, for i = 1, 2, . . . , (k − 1). By hypothesis, o− limα µ(Ziα) = µ(Zi), ∀i. We

have 1
k

∑k−1
i=1 Z

i
α ≤ fα ≤ 1

k + 1
k

∑k−1
i=1 Z

i
α and 1

k

∑k−1
i=1 Z

i ≤ f ≤ 1
k + 1

k

∑k−1
i=1 Z

i.
This implies

∣∣fα − 1
k

∑k−1
i=1 Z

i
α

∣∣ ≤ 1
k and

∣∣f − 1
k

∑k−1
i=1 Z

i
∣∣ ≤ 1

k . This gives
∣∣µ(fα)−

1
k

∑k−1
i=1 µ(Ziα)

∣∣ ≤ 1
k and

∣∣µ(f) − 1
k

∑k−1
i=1 µ(Zi)

∣∣ ≤ 1
k . So − 1

k + 1
k

∑k−1
i=1 µ(Ziα) ≤
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µ(fα) ≤ 1
k + 1

k

∑k−1
i=1 µ(Ziα). Putting p = 1

k

∑k−1
i=1 Z

i and taking order limits, we get
|o− lim supα µ(fα)− p| ≤ 1

k and |o− lim infα µ(fα)− p| ≤ 1
k . Combining these two,

we get o− lim supα µ(fα)− o− lim infα µ(fα) ≤ 2
k . Letting k →∞, o− limµ(fα)

exists. Using the fact that |µ(f)−p| ≤ 1
k , we get |o− limµ(fα)−µ(f)| ≤ 2

k . Letting
k →∞, we get the result. �

We denote byM(o)(X,E) the set of all order-bounded linear mappings µ : C(X)→
E. Now we come to the next theorem.

Theorem 2. Suppose X is a compact Hausdorff space and µ : C(X)→ E be an
order-bounded, linear mapping.

(i) Then there is a unique countably additive Baire measure, which again we
denote by µ, on X, such that the corresponding linear mapping µ : β1(X)→
E extends the given mapping. Further µ can also be uniquely extended to a
countably additive τ -smooth Borel measure.

(ii) The modulus of the Baire measure µ, determined from µ : C(X) → E
and µ : β1(X) → E are equal and also modulus of the Borel measure µ,
determined from µ : C(X)→ E and µ : β(X)→ E are equal. Thus µ can
be written as µ = µ+ − µ−. For every τ -smooth Borel measure µ on X,
there is the largest open set V ⊂ X such that |µ|(V ) = 0; C = X \ V is
called the support of µ and has the property that any open U ⊂ X such
that U ∩ C 6= ∅, we have |µ|(U) > 0.

(iii) M(o)(X,E) is a Dedekind-complete vector lattice.

Proof. (i) Since µ is order-bounded and E is a boundedly order-complete, we
can write µ = µ+ − µ− ([13, Theorem 1.3.2, p. 24]). Now µ+ and µ− can be
uniquely extended to E+-valued, countably additive Baire measures and also to
E+-valued, countably additive τ -smooth Borel measures ([7], [21], [24]). Thus we
get a countably additive Baire measure µ : β1(X)→ E and a countably additive
τ -smooth Borel measure µ : β(X) → E. Since the order σ-closure, in β1(X), of
C(X) is β1(X), for Baire measure, the uniqueness follows. Now we consider the
case of Borel measure. Suppose two τ -smooth Borel measures µ1, µ2 are equal on
C(X). By Theorem 1, they are equal on bounded lower semi-continuous functions
and so they are equal on the vector space generated by lower semi-continuous
functions. Since the order σ-closure, in β(X), of the vector space generated by
lower semi-continuous functions is β(X), by countable additivity they are equal on
β(X).

(ii) Let µ1, µ2 be the µ+’s coming from µ : C(X) → E and µ : β1(X) → E
respectively. Evidently µ2 ≥ µ1. Fix a g ∈ C(X), g ≥ 0 and take an h ∈ β1(X),
0 ≤ h ≤ g. Since µ(h) ≤ µ1(g), taking sup0≤h≤g, we get µ2(g) ≤ µ1(g). By ([18],
Theorem 2.3, p.25 ), µ2 is countably additive. Since µ1 = µ2 on C(X), we get
µ1 = µ2 on β1(X). The result follows now. The other result about the support of
µ is easily verified.

(iii) It is a simple verification. �
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Now we consider the case when X is a completely regular T1 space and
µ : F(X)→ E a finitely additive, order-bounded measure. Because of order-boun-
dedness, order modulus |µ| exists. µ will be called regular if for any A ∈ F(X),
there exists an increasing net {Zα} of zero-sets in X, Zα ⊂ A, ∀α, and a deceasing
net {ηα} in E such that ηα ↓ 0 and |µ|(A \ Zα) < ηα, ∀α.
Theorem 3. Suppose X be a completely regular T1 space and µ : Cb(X)→ E be an
order-bounded, linear mapping. Then there is unique, finitely additive, order-bounded
measure, regular measure ν : F(X) → E such that µ(f) =

∫
fdν, ∀f ∈ Cb(X).

M(o)(X,E) is a Dedekind-complete vector lattice.

Proof. When µ is positive, then result is proved in ([12], p. 353). Since µ = µ+−µ−,
using the result ([12], p. 353), we get a ν with the required properties. We denote
ν by µ also

Uniqueness: Let µ : F(X)→ E be an order-bounded, finitely additive, order-boun-
ded measure, regular measure such that µ = 0 on Cb(X). Denoting by S(X) the
norm closure of F(X)-simple real valued functions on X, we have S(X) ⊃ Cb(X).
Thus µ extends to µ : S(X)→ E, is linear and order-bounded. Split µ = µ+ − µ−.
By the definition of regularity, |µ| is regular and so µ+, µ− are regular and µ+ = µ−

on Cb(X). Since both are regular, there is unique extension to F(X). This means
µ+ = µ− on F(X) and consequently µ+ = µ− on S(X). This proves uniqueness.
It is easy to verify that M(o)(X,E) is a Dedekind-complete vector lattice. �

We come to countably additive (in order convergence), of order-bounded Baire
measures on a completely regular T1 space X. A countably additive, order-bounded
µ : B1(X)→ E is called an order-bounded Baire measure on X. The collection of
all such measures will be denoted by M(o,σ)(X,E).

Theorem 4. For a be a completely regular T1 space X, M(o,σ)(X,E) is a band in
M(o)(X,E).

Proof. Take a µ ∈ M(o,σ)(X,E). By ([18], Theorem 2.3, p.25 ), |µ|, µ+, µ− are
also in M(o,σ)(X,E). so M(o,σ)(X,E) is a vector sublattice of M(o)(X,E). Let
{µα} be positive, bounded, increasing net in M(o,σ)(X,E) and µ = supµα in
M(o)(X,E). Then µ, defined for every A ∈ B1(X), µ(A) = supµα(A), is finitely
additive. Take an increasing sequence {An} ⊂ B1(X) and let A = ∪An. Now
µ(A) = o − limα µα(A) = o − limα

(
o − limn µα(An)

)
≤ o − limn µ(An) ≤ µ(A).

This proves µ is countably additive. This proves the result. �

We denote by M(o,τ)(X,E) those µ ∈ M(o,σ)(X,E) which can be extended to
µ : B(X)→ E and are τ -smooth, in the sense, that for any increasing net {Vα} of
open subsets of X, µ(∪Vα) = o− limµ(Vα) (extension will obviously be unique if
it exists).
Theorem 5. For a completely regular T1 space X, M(o,τ)(X,E) is a band in
M(o,σ)(X,E).

Proof. Take a µ ∈M(o,τ)(X,E). This gives a µ̃ ∈M(o)(X̃, E), µ̃(B) = µ(B ∩X)
with the property that µ̃(B) = 0 if B ∩X = ∅. It is a routine verification that (µ̃)+,
(µ̃)−, |µ̃| all are = 0 on those Borel sets B for which B ∩X = ∅. For this it easily
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follows that, for any Borel set B ⊂ X, µ+(B) = (µ̃)+(B0), where B0 is any Borel
subset of X̃ with B0∩X = B; similar result for µ− and |µ|. To prove τ -smoothness
of |µ|, take a collection {Vγ ; γ ∈ I} of open subsets of X and select open subsets
{Uγ ; γ ∈ I} in X̃ such that Uγ ∩X = Vγ . Let J be the collection of all finite subsets
of I and order them by inclusion; also denote by α a general element of J . By the
τ -smooth property of |µ̃| (Theorem 2), we have, |µ̃|(∪Uγ) = o− limα |µ̃|(∪γ∈αUγ).
This means |µ|(∪Vγ) = o − limα |µ|(∪γ∈αVγ). This proves |µ| in τ -smooth. In a
similar way µ+ and µ− are also τ -smooth.

Now the proof that it is a band in M(o,σ)(X,E) is very similar to what is done
in Theorem 4. �

We denote by M(o,t)(X,E) those µ ∈ M(o,τ)(X,E) which have the property
that, for the measure |µ|, open sets are inner regular by the compact subsets of X.
From this definition it follows that if µ ∈M(o,t)(X,E) then µ+, µ−, |µ| are also in
M(o,t)(X,E).

Theorem 6. For a completely regular T1 space X, M(o,t)(X,E) is a band in
M(o,τ)(X,E).

Proof. M(o,t)(X,E) is already seen to be a vector sub-lattice of M(o,τ)(X,E).
Let {µα} be positive, bounded, increasing net in M(o,t)(X,E) and µ = supµα in
M(o,τ)(X,E). Let V be an open subset of X. Let {Cβ} be the family of all compact
subsets of V ; this is filtering upwards. µ(V ) = o − limα µα(V ) = o − limα

(
o −

limβ µα(Cβ)
)
≤ o− limβ µ(Cβ) ≤ µ(V ). This proves µ ∈M(o,t)(X,E). This proves

the result. �

If µ ∈M(o,τ)(X,E), then it is easily seen that there is a smallest closed subset
Y ⊂ X such that |µ|(Y ) = |µ|(X). This Y is called the support of µ.

The following two theorems are well-knowm for scalar-valued measures ([20],
[19]). We prove some extensions.

Theorem 7. Let (X, d) be a metric space and E super Dekekind complete ([14,
p.78]) and µ ∈M(o,τ)(X,E+). Then the support of µ is a separable subset of X.

Proof. Let the support of µ be Y . Fix an n ∈ N and let A =
{
A ⊂ Y : d(x, y) ≥

1
n , ∀x ∈ A, ∀y ∈ A, x 6= y

}
. By Zorn’s Lemma, A has a maximal element, say

An. It is easily verified that that for any x ∈ (Y \ An), there is a y ∈ An such
that d(x, y) < 1

n . We claim that An is countable. Suppose not. Thus there is an
uncountable collection

{
B(x, 1

2n ) : x ∈ An
}

of mutually disjoint open subsets of
Y and µ

(
B(x, 1

2n )
)
> 0, ∀x ∈ An. Using τ -additivity of µ and the hypothesis

that E is super Dekekind complete, we get, that except for countable x ∈ An,
µ
(
B(x, 1

2n )
)

= 0. Since Y is the support of µ, this is a contradiction. Thus An is
countable and so ∪An is dense in Y . This proves the result. �

Theorem 8. Let (X, d) be a complete metric space and E super Dekekind complete
and also weakly σ-distributive ([25]). Then M(o,τ)(X,E) = M(o,t)(X,E).

Proof. Take a µ ∈M(o,τ)(X,E+). By Theorem 7, we can assume X to be separable.
Let Z be a compact metric space which is a compactification of X. It is well-known
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that X is a Gδ set in Z. Define µ̄ : B(Z) → E+, µ̄(B) = µ(B ∩X). It is obvious
that µ̄ ∈M(o)(Z,E+). It is Baire measure. Since E is weakly σ-distributive, µ̄ is
inner regular by compact subset of Z. This means, since X is a Baire subset of Z,
µ(X) = sup{µ(C) : C compact and C ⊂ X. From this, it is a routine verification
that µ ∈M(o,t)(X,E) (cf. [5]). �

3. Representation theorem for C(X), X completely regular

It is well-known that a linear map µ : C(X)→ R, which maps order-bounded
sets into bounded sets, gives a unique ν ∈ Mσ(X) such that C(X) ⊂ L1(ν),
µ(f) =

∫
fdν, ∀f ∈ C(X) and supp(ν̃) ⊂ υX (the real-compactification of X) ([19,

Theorem 23]). We will extend it to the vector case.
In this section E =

(
C(S), ‖ · ‖

)
, S being a Stone space and X completely

regular T1 space. We will prove a representation theorem for a positive linear map
µ : C(X)→ E. B(X) denotes the space of all bounded real-valued functions. We
will use the following results.

(A). Suppose F is a locally convex space whose topology is generated by the
family

{
‖ · ‖p : p ∈ P

}
of semi-norms, Mσ(X,F ) the space of all F -valued Baire

measures on X, and µ : C(X) → F be a linear map such that order-bounded
subsets are mapped into relatively weakly compact subsets of F . Then:

(i) There is a unique ν ∈ Mσ(X,F ) such that C(X) ⊂ L1(ν) and µ(f) =∫
fdν, ∀f ∈ C(X);

(ii) for every p ∈ P , there is compact C ⊂ υX (the real-compactification of
X), depending on p, such that ¯̃νp(X̃ \ C) = 0 ([9, Theorem 7]), ¯̃νp being
the semi-variation of ν̃p.

(B). There is an order σ-continous positive linear map ψ1 : β1(S)→ C(S) such
that for every f ∈ β1(S), we get f −ψ1(f) = 0 except on a meager set ([7, Lemma
2, p. 379]).

In the following theorem countable additivity is taken in the context of order
convergence and integration and integrability in the sense of [21].

Theorem 9. Suppose µ : C(X) → E be a positive linear map. Then there is a
unique E-valued positive Baire measure ν on X such that every f ∈ C(X) is
ν-integrable and µ(f) =

∫
fdν, ∀f ∈ C(X). Also the supp(ν̃) ⊂ υX.

Proof. By taking the pointwise topology pt on B(S) and noting that C(S) ⊂ B(S),
we have a positive linear map µ : C(X) →

(
B(S), pt

)
with the property that

order-bounded subsets of C(X) are mapped into relatively weakly compact subsets
of
(
B(S), pt

)
. By (A) there is a Baire measure λ : B1(X)→

(
B(S), pt

)
such that

C(X) ⊂ L1(λ) ([10]) and µ(f) =
∫
fdλ, ∀f ∈ C(X). This measure is easily seen

to be positive. Fix an f ∈ C(X), f ≥ 0 and let fn = f ∧ n (n ∈ N). Put h = µ(f),
hn = µ(fn). Since f ∈ L1(λ), λ(fn) → λ(f) ([10]). From λ−1(β1(S)) ⊃ Cb(X),
we get λ−1(β1(S) ⊃ β1(X). Thus λ : B1(X) → β1(S). Using (B) and defining
ν = ψ1◦λ, we see that ν : B1(X)→ C(S) is countably additive in order convergence
and hn = µ(fn) = λ(fn) = ν(fn), ∀n. This means hn ↑ h pointwise in C(S)
and so o − lim hn = h in C(S). By ([21, Prop. 3.3, p.113]) f is ν-integrable
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and
∫
fdν = o − lim

∫
fndν = o − lim hn = h = lim hn pointwise. This proves

µ(f) =
∫
fdν. This proves the result.

Uniqueness: If there is another E-valued positive Baire measure ν0 on X having
the above properties then µ(f) =

∫
fdν0, ∀f ∈ C(X). Thus ν0(f) = ν(f), ∀f ∈

Cb(X). Because of order countable additivity of ν0 and ν, we get ν0 = ν on Baire
subsets of X. This proves uniqueness.

Now we prove that supp(ν̃) ⊂ υX. Suppose z ∈ X̃ \ υX and z ∈ (supp)(µ̃).
Take an f ≥ 0, f ∈ C(X) with f̃(z) = ∞. Thus, for every n, µ̃(An) > 0 where
An = {x : f̃(x) > n}).

Suppose first that ∧∞n=1(µ̃(An)) = h > 0 and put fn = f ∧ n. Then f̃n =
f̃ ∧ n. Now µ(f) ≥ µ(fn) = µ̃(f̃ ∧ n) =

∫
(f̃ ∧ n)dµ̃ ≥ nµ̃(An) ≥ nh. Since E is

Archimedean, we get h = 0 which is a contradiction. Thus h = 0.
Since µ̃(An) > 0 for every n and h = 0, select a strictly increasing sequence

{ak} of positive integers such that ak+1 − ak > 4 ∀k and hk = µ̃
(
{x : ak+1 <

f̃(x) < ak+2}
)
> 0, ∀k. Let pk = ‖hk‖ > 0. Putting Bk = f−1([ak+1, ak+2]

)
,

Ck = f−1((ak+1 − 1, ak+2 + 1)
)
, we see that Bk and C ′k are two disjoint zero

subsets of X. Define a gk ∈ Cb(X), gk ≥ 0, gk ≡ 0 on C ′k and gk ≡ k 1
pk

on Bk. It
is a routine verification that g =

∑∞
k=1 gk ∈ C(X).

For A ⊂ X̃, A will denote its closure in X̃. Now Bk ⊃ V ∩X, where V =
{
x :

ak+1 < f̃(x) < ak+2
}

is an open non-void subset of X̃. Since X is dense in X̃,
V ∩X ⊃ V and so Bk ⊃ V . Also gk ≡ k 1

pk
on Bk implies g̃k ≡ k 1

pk
on Bk. So we

get

µ̃(g̃k) ≥
∫
Bk

g̃kdµ̃ ≥ k
1
pk
µ̃(V ) = khk

1
pk
.

We have, for every n ∈ N , µ(g) ≥
∑n
k=1 µ(gk) =

∑n
k=1 µ̃(g̃k) ≥

∑n
k=1 khk

1
pk

.
Now

∥∥khk 1
pk

∥∥ = k and so ‖µ(g)‖ = ∞ (note E is an AM space) which is a
contradiction. This proves that supp(ν̃) ⊂ υX. �

Corollary 10. Suppose µ : C(X)→ E be an order-bounded linear map ([13, p.24]).
Then there is a unique E-valued Baire measure ν on X such that every f ∈ C(X)
is ν-integrabe and µ(f) =

∫
fdν, ∀f ∈ C(X) and supp(µ̃) ⊂ υX.

Proof. By [13, Theorem 1.3.2, p.24], µ = µ+ − µ−. Now µ+ and µ− are positive
linear maps. Applying Theorem 9 to µ+ and µ− we get an E-valued Baire measure
ν on X such that every f ∈ C(X) is ν-integrabe and µ(f) =

∫
fdν, ∀f ∈ C(X).

As in Theorem 9, the uniqueness of ν and supp(µ̃) ⊂ υX can be proved.

4. The case of E with points separated by E∗n

For the order complete vector lattice E, let E∗ be its order dual and E∗n its
continuous order dual. In this section we assume that E∗n separates the points of E.
It is known that E∗n is a band in E∗ and order intervals in E∗n are σ(E∗n, E)-compact
and convex ([14], [13]). o(E,En) will denote the locally convex topology on E,
of uniform convergence on the order intervals of E∗n; in this topology the lattice
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operations are continuous and so the positive cone is closed and convex. Since this
topology is compatible with the duality < E,E∗n >, E+ is also closed in σ(E,E∗n).

�

The following theorem is well-known. We include a new proof.

Theorem 11 ([16, Theorem 3]). Suppose A be a σ-algebra of subsets of a set X
and µ : A → E a finitely additive measure. Then µ is countably additive in order
convergence iff µ is countably in the locally convex topology σ(E,E∗n).

Proof. Obviously countably additivity in order convergence implies countably
additivity in σ(E,E∗n). Assume that µ is countably in σ(E,E∗n); this means µ is
countably additive in o(E,En). We first prove that µ+ countably additive in order
convergence.

Fix a sequence Bn ↓ ∅ in A. Take a C ⊂ X,C ∈ A. From µ(C−C∩Bn) = µ(Bn∪
C −Bn), we get µ(C)−µ(C ∩Bn) ≤ µ+(X)−µ+(Bn). Let 0 ≤ z = infn(µ+(Bn)).
Thus z ≤ µ(C ∩ Bn) + µ+(X) − µ(C). Since µ(C ∩ Bn) → 0 in σ(E,E∗n), we
get, for every f ∈ (E∗n)+, 〈f, z〉 ≤ 〈f, µ(C ∩ Bn)〉+ 〈f, µ+(X)− µ(C)〉; using the
fact µ(C ∩ Bn) → 0 in σ(E,E∗n), this gives 〈f, z〉 ≤ 〈f, µ+(X) − µ(C)〉 for every
f ∈ (E∗n)+. Thus z ≤ µ+(X)− µ(C) for every C ∈ A. Taking inf of the right hand
side as C varies in A, we get z = 0. This proves µ+ is countably additive in order
convergence. Similarly µ− is countably additive in order convergence and so µ is
countably additive in order convergence. This proves the theorem. �

The next theorem extends the well-known Alexanderov’s theorem ([19], p. 195)
about the convergent sequence of real-valued measures to our setting.

Theorem 12. Suppose X is a completely regular T1 space, E is a boundedly
order-complete vector-lattice, E∗ its order dual and E∗n its continuos order dual.
Assume that E∗n separates the points of E. Let {µn} ⊂M(o,σ)(X,E) be a uniformly
order-bounded sequence such that, in order convergence, µ(g) = limµn(g) exists for
every g ∈ Cb(X). Then the order-bounded µ : Cb(X)→ E is generated by E-valued
order-bounded Baire measure on X.

Proof. Since the {µn} is uniformly order-bounded, we can assume that E has
an order unit. By taking the order unit norm ([13, p.8]), we assume E = C(S)
for some hyperstonian space S. Thus F = E∗n is a band in E′ and E = F ′. Note
the locally convex space

(
E, τ(E,E∗n)) = (F ′, τ(F ′, F )

)
is complete (Grothendieck

completeness theorem ([15, Theorem 6.2, p.148])).
For every g ∈ E∗n, g ◦ µn → g ◦ µ, pointwise on Cb(X) and g ◦ µn ∈ Mσ(X),

∀n. Fix a g ∈ E∗n and take a sequence {fm} ⊂ Cb(X), fm ↓ 0. By ([19, p.195]),
g ◦ µn(fm) → g ◦ µ(fm) as n → ∞, uniformly in m. Thus g ◦ µ(fm) → 0. By
([20, Corollary 11.16]), g ◦ µ : (Cb(X), βσ)→ R is continuous, βσ being the strict
topology ([20]). Thus the weakly compact map µ : (Cb(X), βσ)→ (E, τ(E,E∗n)) is
continuous in the weak topology σ(E,E∗n) on E (τ(E,E∗n) is the Mackey topology
in the duality 〈E,E∗n〉); since the topology βσ is Mackey ([20]), it is continuous.
Since

(
E, τ(E,E∗n)

)
is complete, by ([9, Theorem 2]), µ can be extended to an

E-valued Baire measure which is countably additive in τ(E,E∗n). This implies that
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µ is countably additive in σ(E,E∗n). By Theorem 11, µ is countably additive in
order convergence. �
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