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1. INTRODUCTION

The Floquet theory of a differential equation

@ Y =q@)y, qeC°(®R),

(R = (— 0, ©)), describes the properties of solutions of (q) when the function ¢
is periodic, usually with period n: q(¢ + n) = g(¢t) for ¢t eR. The whole theory is
based on the fact that with every solution u(f) of (q) also u(¢ + =) is a solution of
this equation.

By the Floquet theory there is (uniquely) associated a quadratic algebraic equation
to every equation (q) possessing a n-periodic coefficient ¢ whose roots —the so-called
characteristic multipliers of (q) — play an important role in investigating the properties
of solutions of (q). In [2—5, 10, 11, 15, 16] are expressed the characteristic multipliers
of (q) by means of phases and central dispersions of (q) under the assumption that (q)
is bothside oscillatory (on R). There are also investigated the bothside oscillatory
equations of the type (q) with given characteristic multipliers. Under the assumption
that (q) is nonoscillatory (then necessarily disconjugate) on R, the characteristic
multipliers of (q) are expressed in [17] by means of hyperbolic and parabolic phases
of this equation.

Boriivka [1] investigated all functions X — the so-called dispersions (of the 1st kind)

of (q)—characterized by a property that the function ?X(t)—

VX'
cquation (generally on a subinterval of R) for every solution u of (q). On this basis
the Floquet theory was genzralized by Laitoch [9] even for equations of the type (q),
whose coefficient is not generally a m-periodic function. To every bothside oscillatory
equation (q) and to every dispersion X of (q), X # idy, may be uniquely associated
a quadratic algebraic equation, whose roots are called the characteristic multipliers

- is a solution of this
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of (q) relative to the dispersion X. These roots are expressed by means of phases and
dispersions of (q) in [12, 13].

Our object is now to express the characteristic multipliers of (q) relative to the
dispersion X in assuming that (q) is disconjugate on R, making use of dispersions
and hyperbolic and parabolic phases of (q). There is also described a structuse of
disconjugate equations of type (q) with given characteristic multipliers relative to
the same dispersion X. Finally, there is described a structure of dispersions of (q)
relative to which this equation has given characteristic multipliers. This article
generalizes the results of [17] where the ccefficient g of the disconjugate equation (q)
is supposed to be a w-periodic function and X = ¢ + =.

2. BASIC DEFINITIONS, NOTATIONS AND RELATIONS

In what follows we investigate equations (q) disconjugate on R, that is, every
nontrivial solution of (q) has at most one zero on R. Trivial solutions are excluded
from our considerations.

Convention.

" will denote the inverse function (if any) to f. Lei S = R. Then idg will denote
the identity mapping of S. Composite functions such as S[X(¢)], B,(#) will be written
in short BX(t), B,A.

In accordance with [1, 5] we say that a function o : R —» R, a € C°(R) is a (first)
phase of (q) if there exist independent solutions u, v of (q) satisfying

tg a(t) =i;—((% forteR — {teR; v(t) = 0}.

Any phase « of a (disconjugate) equation (q) has the following properties:

acC3R), o« ()*0, |lima(t)—lima(t)| =,

t—+—ow t— o
= {a,t} = %) = q(0),
"m " 2
where {o, t} = 1o 3 (a0 is the Schwarzian derivative of the function a.
ORI ANA0)

€ denotes a set of the phases of the differential equation y” = —y. The set € is
a group with respect to the composition of functions. It holds for every ¢ € € that
e(t + m) = &(t) + m.sign¢’. The function ¢ e CO°(R) belongs to € exactly if there
exist numbers a;; (7, j = 1, 2), det (a;;) # 0, such that

ay + a, tgt

tge(t) =
ga() asy + a,, tgt

for t e R, where the expressions on both sides of the last formula are meaningful.
If « is a phase of (q), then €u := {ex; ¢ € €} is the set of phases of (q).
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A function X e C¥(S), X'(t) # 0 for te S = R which is a solution (on S) of the
nonlinear differential equation

(a@ —{X 1} + X2 . q(X) = q()
is called the dispersion (of the st kind) of (q). If X is a dispersion of (q) defined

on S, then the function —\/j-X———: is for every solution u of (q) a soluiion of (q)
[ X'(0)]

(on S). The function X(¢):= ¢t + n, teR, is a dispersion of (q) exactly if g is

a m-periodic function. The dispersions of (q) are not generally defined on R. Let us

say that the dispersion X of (a) is complete if it defined on R and X(R) = R.

Let o be a phase of (q). A function X is a dispersion of (q) on S if there exists
ee®: X(t) = a ten(t) for teS and conversely, for every e€€ the composite
function o~ 'ex is a dispersion of (q) (on an interval, where the composite function
o~ tex is defined). Let X be a dispersion of (q) and let X(¢) = ¢ on an interval S. Then
it follows from the existence and uniqueness theorem of solutions of (qq) that
X = idg.

We say that (q) is generally (specially) disconjugate (on R) if for a (and then for
every) phase « of (q) is | lim a(t) — lima(?) | < n (] lim a(t) — lim a(t) | = =). The

t= - t—= t=> - t= o
equation (q) is specially disconjugate exactly if there exists a unique (up to the multi-
plicative constant) solution u of (q) satisfying u(t) # 0 for eR.
All the foregoing definitions and results are given in [1, 5].
Say (in accordance with [6]) that a function g € C°(S), S = R, is a (first) hyperbolic
phase of (q) on S if there exist independent solutions u, v of (q) satisfying | u(t) | <
< |v(t)| for teS and

tgh () = & for teS.

u(t)
Then Be C3(S), p(t) #0, —{B,t} + B*(t) = q(t) for teS. The equation (q) is
generally disconjugate exactly if there exists a hyperbolic phase B of (q) on R for
which B(R) = R.
Say (in accordance with [7, 8]) that a function ye C°(S), S = R, is a (first)
parabolic phase of (q) on S if there exist independent solutions u, v of (q) satisfying
v(t) #0forteS and

() = EQ forteS.

v(t)
Then y € C3(S), y'(t) # 0 and —{y,¢} = q(¢) for t € S. The equation (q) is specially
disconjugate exactly if there exists a parabolic phase y of (q) on R for which p(R) = R.
Let ® be a set of functions f such that fe C3(R), f(R) = R and f'(¢) # O for teR.
The set G is a group with respect to the composition of functions and € is a sub-
group of G.
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3. PREPARATORY, LEMMAS

Let X # id be a complete dispersion of the disconjugate equation (q) and let u, v

be its independent solutions. Then _uX@ ——v—_.{g:

NP0
solutions of (q) on R and there exist therefore real numbers a;; (i, j = 1, 2), det g, j 7
# 0:

are also independent

X
_u_I(Q__ = ayu(t) + ap0(t),
VIX®]
X(t
0 f ) = a,u(t) + a,u(t).
VIX(@]
. . zX(1) .
Let a solution z of (q) exist such that —=—>2_ = 1. z(¢t) for teR, where 1 is
VX0

a (generally complex) number. Then 1 is a root of equation
0% — (ay; + azy) 0 + det a;; = 0. M

The coefficients of (1) are independent of the choice of the independent solutions u, v
of (q). Equation (1) is called the characteristic equation of (q) relative to the disper-
sion X and its roots are called characteristic multipliers of (q) relative to the disper-
sion X (see [12]). If there does not exist any solution z of (q) possessing the above
properties, we say that (q) does not possess any characteristic multipliers relative
to the dispersion X. Analogous to the proof of Lemma 4 [12] we may show: det a;; =
= sign X'.

Let 9_;, 0; be the characteristic multipliers of (q) relative to the dispersion X.
Then it follows from [9] the existence of the independent solutions u, v of (q) satisfying
either

——“E-——X(t)— =g_y.u(l), -22g24 =gy . (1), 0-y.0; =signX" (2
JIX 0| JIX'(1)]
or
“XO o w, —ED o), 0=, =1 )
N0 VIX(@0)]
Lemma 1.

Let X +# idg be a complete dispersion of (q). Then the equation (q) relative to the
dispersion X has the characteristic multipliers only if sign X' = 1. These roots are
then real and positive. If 1 is a characteristic multiplier of (q) relative to the disper-
sion X, then there exist independent solutions u, v of (Q) satisfying (3).

Proof. Let X # idg be a complete dispersion of (q). Let (q) has characteristic
multipliers relative to the dispersion X denoted by ¢-1, ¢;. Let sign X’ = —1. Then
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0-1 .01 = —1. Hence there exist independent solutions u, v of (q) for which (2)
holds and consequently also

uX(t) . vX(t) = X'(t) . u(t).v(t), teR. @

Let t, be an arbitrary number for which X{(¢,) # t,. Now, by our assumption,
X'(t,) < 0 and from (4) follows the existence of at least one zero of the function u . v
on the closed interval with the boundary points t, and X(#,). We deduce, using our
assumption X s idg, that X(¢) == ¢ on any interval—thus (q) is oscillatory, which
contradicts our assumption,.

Let sign X' = 1. If g_,, ¢, are complex numbers, then analogous to [12] we
can prove that they are equal to e**™, where 0 < @ < 1 and there exists a phase o
of (q) and an integer n: aX(t) = a(t) + (2n + a) n, t e R. However then o(R) =R
and therefore (q) is oscillatory. Consequently the equation (q) relative to the disper-
sion X may have real characteristic multipliers only.

Suppose ¢_; <0, ¢, < 0. Then there necessarily exists a solution u of (q):

uX(tm,: = g0 .u(t), teR, where g(< 0) is one of the numbers g_,, 0,. Let ¢, be

JIX()
an arbitrary number, X(#,) # t,. Then the solution u has at least one zero in the
closed interval with end points ¢, and X{(¢,), which conflicts with our assumptoin

on disconjugacy of (q).
Let us assume finally that ¢_; = ¢, = 1 and that there exist independent solutions
zX(1)
VIX'(0)]
= z(t) for teR. Let X(ty) # t, and let z; be a solution of (q), z,(¢;) = 0. Then
z,X(to) = 0, hence z, has at least two zero, which is a contradiction.

u, v of (q) satisfying (2). Then we have for every solution z of (q) that

Remark 1.

Let X # idg be a complete dispersion of (q). It becomes evident from Lemma 1
that the investigation of the characteristic multipliers of (q) is meaningful only in
increasing complete dispersions. The characteristic multipliers of (q) relative to the
given dispersions are expressable in the form g, 9~ !, where ¢ = 1.

In the following two lemmas we investigate a set of all increasing complete
dispersions of (q). We show that this set is always dependet on at least one para-
meter and is therefore “sufficiently rich”.

Lemma 2.
Let (q) be a generally disconjugate equation. Then the set of increasing complete
dispersions of (qQ) form a group dependent on one parameter.
Proof. Let (q) be a generally disconjugate equation. Then, by the
n
2

L= {s €C, e0) =0, ¢ (%) = —;—} Since «~ '@ is the set of dispersions of (q), it

Theorem [, p. 82], there exists a phase o of (q): a(R) = (O, ) . Letus put €, :=
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is obvious that o™ '€, « is the set of increasing complete dispersions of (q). It follows
from the definition of group € and from the set €,;: if ¢€ €, then there exists
a number k > 0 and

tge(t) =k.tgt, teR—{%+jn,j=0,i1,i2,...} 5)
and conversely: if £ > 0 is a number, e € C°(R) meets (5) and &0) = 0, then ¢ € €,.
Consequently the set of increasing complete dispersions of (q) is dependent on one
(positive) parameter. It remains to prove that the set ™ '€« is a group. It suffices
to show that €, is a subgroup of the group €. Let ¢, ¢, € €;. Then there exist
positive numbers kq, k,: tge(t) =k, .tgt, tge,(t) = k,.tgt. From ige,e,(t) =
=k, .tge,(t) = kk,.tgt, tge;1(t) = k;'.tgt then it follows el ¢, € €,
which was to be proved.

Corollary 1.

Let X #idg is an increasing complete dispersion of a generally disconjugate
equation (q). Then X(t) # ¢t for teR.

Proof. Let « be a phase of a generally disconjugate equation {q), «(R) =

2
exists ¢ € €, such that X = o~ 'ex. Evidently X(t,) = #, exactly if &(¢,) = ¢, for

= (0, _n_) and let €, be similarly defined as in the proof in Lemma 2. Then there

t1:=oc(t0)e(0, —g—) Since tg e(t) = k. tg ¢ for a positive number k, k # 1, we obtain
tgt, = tge(ty) = k. tgt,, which is a contradiction.

Lemma 3.

Let (q) be a specially disconjugate equation. Then the set of increasing complete
dispersions of (Q) form a group depending on two parameters.

Proof. Let (q) be a specially disconjugate equation. By the Theorem [, p. 82]
there exists a phase « of (q) from which a(R) = (0, ). Let us put €, := {¢e€,
e(0) = 0, signe’ = 1}. Then o™ '€,x is the set of increasing complete dispersions
of (g). If e € €,, then there exist numbers k, > 0, k,:

tgt

tge(t) =
(for all eR where the expressions on both sides of (6) are meaningful) and also
reversely: if k; > 0, k, are arbitrary numbers and ¢ € C°(R) meets (6) and &0) = 0,
then ¢ € €,. Therefore the set of increasing complete dispersions of (q) depends on
two parameters. Let ¢;, ¢, € €,. Then there exist numbers k, > 0, k;, k3 > 0,

tgt tgt "
kgt t) = ——7———,t t)y= —2=2——_F th lities tg ¢ t)=
citgen) = B tges) = B From the cqualiies tge,e.(1)
t
- tg &,(1) _ tgt , tgell(r) = gt )
ky + k; tgex(t) kiks + (kiky + ky)tgt kit —kit'k, tgt
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£162(0) = £,(0) = 0,£;'(0) = O then follows that &7 !, &;¢, € €, and consequently
€, is a subgroup of the group € and a~'€,u is a group.

Corollary 2.

Let (q) be a specially disconjugate equation. Then the set of increasing complete
dispersions X of (qQ), for which X(t) # t for t € R, depends on one parameter.

Proof. Let (q) be a specially disconjugate equation and « be one of its phases,
a(R) = (0, n). Let €, be similarly defined as in the proof of Lemma 3 and ¢ € G,.
Then there exist numbers k,; > 0, k,, for which (6) holds and X := o~ !ex is an
increasing complete dispersion of (q). It is easy to see that X(¢) # ¢ for ¢ € R exactly
if &(t) # t for t € (0, n) which obviously occurs if and only if k; = 1 and k, # 0.

Corollary 3.

Let X # idg be an increasing complete dispersion of a specially disconjugate
equation (q). Then the equation X(¢t) — t = 0 has at most one root onR.

Proof. Let o be a phase of a specially disconjugate equation (q), «(R) = (0, n)
and let X = o« 'ex, where ¢ € €,. Then for 7,eR we have X(t,) = t, exactly if
e(t)) = t, for t; := a(ty) € (0, ™). To prove our assertion of Corollary 3 it suffices
to show that the equation &(f) = ¢ has at most one root on interval (0, ). Since
e e €,, there exist numbers k; > 0, k, such that (6) holds. If k; = 1 and k, # 0,
then it follows from the proof of Corollary 2 that &(t) # ¢ for te (0, n). Let ky > 0,
k, = 0. By our assumption X # idg and therefore k; # 1 and &(t) = ¢ exactly for
t= —;— Let 0 < k, # 1, k, # 0. Then the equation &(t) = ¢ has the solution ¢,
ontheinterval (0, n)ifand onlyiftg #; = (1 — k;) k; *. Thus the equation X(¢) — t=
= 0 has at most one root on R.

4. THEOREMS ON THE EXPRESSION OF THE
CHARACTERISTIC MULTIPLIERS OF A DISCONJUGATE
EQUATION (q) RELATIVE TO THE DISPERSION X

Theorem 1.

Let X be an increasing complete dispersion of a disconjugate equation (q), X(t) # ¢
for teR. Then:

@) numbers 9, 0, where ¢ > 1, are the characteristic multipliers of (q) relative to
the dispersion X precisely if (q) is generally disconjugate and there exists a hyperbolic
phase B of (q) on R:

BX(t) = B@t) + a, teR, @)
where a = In o(> 0),

b) the equation (Q) relative to the dispersion X has a double characteristic multiplier

(= 1) precisely if (Q) is specially disconjugate and there exists a parabolic phase y
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of (@) on R:
PX(@) = y(t) + 1, teR. - ®)

Proof. Let X be an increasing complete dispersion of a disconjugate equation (q)
and let X(t) # t for teR. Let next g, 0~ ! (o0 = 1) be the characteristic multipliers
of (q) relative to the dispersion X.

a) (=) Let ¢ > 1. Then there exist independent solutions u, v of (q) satisfying

uX(t) vX(1)

VX' JX'(0)
Evidently the solutions u, » do not have any zero and we may without any loss of
generality suppose that u(r) > 0, v(t) > 0 for teR and | uv' — w'v| = 2. Then the
equation (q) is generally disconjugate and according to Lemma 2 [17] there exists
a hyperbolic phase B of (@) on R, so that

B(t) =B()
‘ ot) = ————,  teR. (10)

=T = (
VI1B®) JIB®]

=071 (), teR. 9)

o .u(t),

u(?)

From (9) it follows
uX() 5 u(®)
oX() ¢ o)
and further
ePXO — 226 = Q2(B)+a)

where a = ln g(> 0). Thus fX(¢) = B(¢) + a for teR.

(<«=) Let a hyperbolic phase 8 of (q) exist satisfying (7), where a =Ing > 0.
Then (q) is generally disconjugate. Let the functions u, v be defined (10). Then u, v
are independent solutions of (q) and

uX(t) X SPX® IORY . PO "
- = - - = = = ¢ — = Q u t s
VX VIgxox ol JIexe)y ! V1B JIBW]
vX(t) e"ﬂx(!) e—ﬂX(t) e—ﬂ(()-a e_.p(,) _
= - R ()

= = —_ :e =
Jx@o o JIFxox) VIpEe)l VI JIB®

From the above it follows that g, o~* are the characteristic multipliers of (q) relative
to the dispersion X, ¢ > 1.

b) (=>). Let ¢ = 1. According to Lemma 1 there exist then independent solutions
u, v of (q):

t
“XO _uw,  XO o+, teR
VX'(1) VX'(1)
Hereby necessarily u(t) # 0 for teR. Let us put y(t) : = —ZL(?)— Then y is a parabolic

vX(@) _ u(®) +o(t) o)

phase of (qQ) on R, yX(¢) = SO o =20

+1=9(t)+ 1. The
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parabolic phase y of (q) meets (8) and since p(R) = R, itis evident that(q)is a specially
disconjugate equation.
(=) Let a parabolic phase y of a specially disconjugate equation (q) exist, satisfying

(8). Let us put u(t) := vIONS —, teR. Then u, v are independent

A} , o(t) =
NIPTOY NEPTOY

solutions of (q) and it follows from

uX(t) yX(1) PX(1) (1) 1
Bl U = = e = u(l) + 0(1),
X Niyxox el VIexe) T Jivol vy

vX(f) 1 1 - o(1)

1
JX'0 Niyxmx ) NJiexe)y) VIrol
that (q) relative to the dispersion X has a double characteristic multiplier (= 1).

Theorem 2.

Let X # idg be an increasing complete dispersion of a disconjugate equation (q)
andlett, eR: X(t,) = t, exist. Then (q) is specially disconjugate and JXx "(to)s 1 /\/ X'(ty)
are the characteristic multipliers of (q) relative to the dispersion X and X'(ty) # 1.

Proof. Let X # idg be an increasing complete dispersion of a disconjugate
equation (q) and let ¢, e R: X(¢,) = t, exist. By Corollary 1 the equation (q) is then
specially disconjugate and by Corollary 3 there exists a single number #,, of the above
property. There exists at the same time one and only one (up to a multiplicative

constant) solution u of (q): u(¢) # O for t e R. Since uX( is also a solution of (q)
VX'(t)
without any zero on R, there exists a number b:
XD o, rer an
VX'(t)

The number b is necessarily equal to one of the characteristic multipliers of (q)
relative to the dispersion X. Since u(t,) # 0, it follows, writting ¢, for ¢ in (11), that
b=+X "(t,) and therefore Vx "(to)s l/\/ X'(t,) are characteristic multipliers of (q)
relative to the dispersion X. Suppose that X'(#,) = 1, which implies that (q) relative,
to the dispersion X has the double characteristic multiplier (= 1). There exists then
according to Lemma 1, a solution v to the solution u, for which

uX(t)

—= = u(t),
JX'(t)
2XO . _ o) + o).
JX'(0)

Writting ¢, for ¢ in the last equality, we obtain v(t,) = u(t,) + v(to), thus u(t,) = 0,
which is a contradiction.
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5. THE STRUCTURE OF THE DISCONJUGATE EQUATIONS (q)
WITH GIVEN CHARACTERISTIC MULTIPLIERS RELATIVE
TO THE DISPERSION X

Let X be an increasing complete dispersion of a disconjugate equation (q). Let
us put &y := {x € G, X = Xa}. Similarly as in Lemma 2 [13] we can prove that &y
is a subgroup of the group 6.

Definition 1.
Let X +# idg be an increasing complete dispersion of a disconjugate equation (q,).
Say that equations (q,) and (q,) relative to the dispersion X have the same behaviour if:
(i) they have the same dispersion X,
(i1) both are either specially or generally disconjugate and
(iii) they have the same characteristic multipliers relative to the dispersion X.

Theorem 3.
Let X # idg be an increasing complete dispersion of a generally disconjugate equa-
tion (q,) and let B, be a hyperbolic phase of (q,) on R:

B X(t) = p,(t) + a, a >0, teR. (12)

Then (q,) and (q,) relative to the dispersion X have the same behaviour precisely if
a hyperbolic phase f, of (q,) is expressable in the form

B = Bih,
where he .

Proof. Let X # idg is an increasing complete dispersion of a generally disconjugate
equation (q,) and let a hyperbolic phase 8, of (q,) satisfy (12).

(=) Let (q,) and (q,) relative to the dispersion X have the same behaviour. Accord-
ing to Theorem 1 there exists a hyperbolic phase f8, of (q,) onR: 8, X(t) = f,(t) + a
teR. Putting h:= B7'B,, then sign A’ =1, hX = 7', X = 1 (B, + a) =,
= XB:'B, = Xh and consequently /€ Fy.

(«=) Let he &y and B, := B,h be a hyperbolic phase of (q,). Then B,X(t) =
= BhX(t) = B Xh(t) = Bh(t) + a = By(t) + a and g,(1) = —{B,, t} + B () =
= —{BX, 1) + BEO) = —{By, X} . XP(0) = (X, ¢} + BE() = [4:X()) —
— BEX(M] X'*(t) — {X,t} + B2(t) = —{X,t} + X'%(t). ¢,X(t). Thus (q,) has the
dispersion X and (q,) and (q,) relative to the dispersion X have the same behaviour.

Theorem 4.
Let X be an increasing complete dispersion of a specially disconjugate equation (q,),
X(t) # t for teR. Let y, be a parabolic phase of (q,) on R such that

Y X(@) = y,(6) + 1, teR. (13)

Then (q,) and (q;) relative to the dispersion X have the same behaviour exactly if
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a parabolic phase vy, of (q2) is expressable in the form

Y2 = y1h,
where he L.

Proof. Let X be an increasing complete dispersion of a specially disconjugate
equation (q;), X(t) #t for teR. Let y, be a parabolic phase of (q;) on R
satisfying (13).

(=) Let (q,) and (q;) relative to the dispersion X have the same behaviour. Accord-
ing to Theorem 1 there exists then a parabolic phase y, of (q;): 7.X(t) = y,(t) + 1
for teR. Putting & := 97 1y,, then hX = y{ '9,X = y{ (v, + 1) = X1 'y, = Xh
and consequently 1 €% y.

(<) Let he &y and y, := y,h be a parabolic phase of (q,). Then y,(R) = R and
therefore (q,) is a specially disconjugate equation. It follows from y,X = yhX =
=i Xh = ly, + Land q,(t) = —{p,, 1} = = {0 X, 1} = —{p2, X(O} . X*() —
— {X,t} = X'X(t). ¢, X(t) — {X,t} that (q,) has the dispersion X and that (q,)
and (q,) relative to the dispersion X have the same behaviour.

Theorem 5.

Let X # idy be an increasing complete dispersion of a specially disconjugate equa-
tion (q,) and let there exist a number t, such that X(t,) = t,. Then (qy) and (qz)
relative to the dispersion X have the same behaviour if and only if q; = q,.

Proof. Let the assumptions of Theorem 5 be satisfied. According to Corollary 3
X(t) # tforteR — {1,}. Let (q,) and (q,) relative to the dispersion X have the same
behaviour. Then

—{X,t} + X%(t). ¢, X(t) = q,(2),
—{X,t} + X*(1) . ¢, X(1) = q,(0).

Herefrom X" *()[q,X(1) — ¢,X()] = q,(t) — ¢»(r) and X'() /| . X(1) — ¢, X(1) | =
= /1 4,(1) — g,() |. Integrating the last equality from ¢, to t we get

’f\/l 4, X(s) — 4, X(s)| X'(s)ds = 'f JVI41(s) = ax(s) [ ds

and on making use of the substitution method in the integral on the left side of the
last formula we obtain
X(t)

[ VTa:6) — a2 1ds = [ /1a:(5) — q2(5) | ds

and
X(t)

I\/l‘ll(s)“‘12(3)ld5=0, teR.

Since X is not identically equal to 7 on any interval, it follows from the last equality
that g, = q,.

If g; = q,, it becomes evident that (q;) and (q,) relative to the dispersion X have
the same behaviour.
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6. THE STRUCTURE OF DISPERSIONS OF THE CONJUGATE
EQUATION (q) RELATIVE TO WHICH THIS EQUATION
HAS GIVEN CHARACTERISTIC MULTIPLIERS

Let 9 > 1 and let (q) be a generally disconjugate equation. Then there exist exactly
two increasing complete dispersions X, X_, (s idg) of (q), X, # X_,, relative to
which the equation (Q) has the characteristic multipliers o, 0~ .

Proof. Let the assumptions of Theorem 6 be satisfied. Then there exists a phase o
of (q) meeting «(R) = (0, n/2). Let &, € C°(R), e_; € C°(R), £,(0) = &_,(0) =0,
tge,(t) = o . tgt,tge_((t) = o7 % . tgt. Letusput X, 1= o tejor, X_ t= o Ye_, a.
Then X; and X_, are increasing complete dispersions of (q). If we put () :=.

= _s_m__oc(t_)’ o(t) .= _cosa®), , te€R, then @, 7 are independent solutions of (q)
Ve Via(®)]

and it follows from
aX(1) _ sin aX (1) _ sin gor) g _sinof(r) — o ()
X Nlex@oxiol  Vieaw)yl V@] ’
X (1) _ __ CosaX(1) _ _cos go(t) o cos a(t) — o .50
Vxi)  Niexomxiol Vi) | NIETO) ’

(i=-1L1),

that (q) relative to the dispersion X; and X_, has the characteristic multipliers
gand o™ L.

Let Y be an increasing complete dispersion of (q) and let g and ¢ ! be the character-
istic multipliers of (q) relative to the dispersion Y. Then there exist independent

solutions u, v of (q) satisfying

uY(t) Y (1)

—Z =g.u(t), =2 ="' (1), teR, (14)
JY'() VY1)
and thus also
-1 -1
4&:0"1.u(_1), ——v}_j‘;-(_l—)::—o.v(t), teR.
VY TY(1) VY ()

Therefore g, 0~ * are the characteristic multipliers of (q) relative to the dispersion Y ™.
1t follows from (14) and from Corollary 1 that Y(¢) # ¢ and u(t) v(z) # O for teR.
We can assume without any loss of generality that u(f) > 0, v(t) > 0. Let «, € C°(R),

0 <o) < % and tgo,(t) = Z—g)l for teR. Then a, is a phase of (q) and we get
from (14):
tgo, Y(t) = o* . tgoy(t),  f€R, 15)
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Lemma 2) and a number k& > 0 such that «; = ¢g,0, tge,(t) = k. tgt. Since ¥ =
= ay 'eso, for an ey € €, we see that ¥ = o™ e, where ¢ := & ‘e36,. For the proof
of Theorem 6 it suffices to show that e = ¢. Since tg o, ¥ = tg g,00 " tear = tg e 60 =
=k.tgeu, o>.tga, = 0. tgex = ko® . tga, it follows from (15) that tge =
= g% .tgt. From the last formula and from the equalities &(0) = ¢,(0) = 0 we get
¢ = g;, which was to be demonstrated.

o (R) = (0, _n_) . Hence, there exist ¢, € €, (the set €, was defined in the proof of

Theorem 7.

Let ¢ > 1 and (q) be a specially disconjugate equation. Then there exists a set of
increasing complete dispersions of (q) dependent on a single parameter relative to which
(q) has the characteristic multipliers o, 0™ *.

Proof. Let ¢ > 1 and (q) be a specially disconjugate equation. Let a be a phase
of (q), &(R) = (0, m). Let the set €, be defined analogous to the proof of Lemma 3.
Let finally g, ¢~ ! be the characteristic multipliers of (q) relative to an increasing
complete dispersion X # idg. According to Theorem 2 there exists then a number #4:
X(t,) =ty and Jx "(to), l/\/ X'(t,) are the characteristic multipliers of (q) relative
to the dispersion X. Our object now is to find all the increasing complete dispersions
Y of (q) having such a property that Y(¢,) = ¢, and \/Y’(t,) is equal to one of the
numbers g, ¢~ ' in a number ¢; = ¢,(¥). According to Corollaries 2 and 3 and by
their proofs, Y is a increasing complete dispersion of (q) and there exists (a single)

. g . o1 _ _ tgt
number ¢;: Y(¢,) = t;ifand onlyif ¥ = a™'ex, where ¢(0) = 0,tg &(t) = IR
and there is either ky > 0,k, = 0or 0 < k; # 1, k, # 0. Hereby Y(¢,) = ¢, exactly
if e(t,) = £,(e (0, 1)) for t, = a(t,) and it holds: 1, = % fork, > 0, k, = Oand 1,

for 0 <k, #1, k #0 is one and only one solution of the equation tgt =
=(l—-ky) k{»‘ (on (0, m)). By a calculation we can verify that Y'(¢,) = ¢'(¢,) and

e'(t,) = ki fort, = —;t— and g'(¢,) = k, for t, # ;T— Let €; = € be a set of those &

satisfying
tgt
o +kytgt
where k, eRand i = +1. Then «~*€,x is the set of increasing complete dispersions

of (q) relative to which this equation has the characteristic multipliers g, ¢~ !.
Remark 1.

From Corollary 2 and from Theorem 2 then follows the existence of a set D of
increasing dispersions of the specially disconjugate equation (q) which is dependent
on one parameter relative to which (q) has a double characteristic multiplier (= 1).
If €, is a set of those ¢ € €, &(0) = 0 satisfying (6) with k;, = 1 and k, 5 O and if
is a phase of (q) such that a(R) = (0, 7), then D = o™ 'C4a.

tge(t) =
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SOUHRN

ZOBECNENA FLOQUETOVA TEORIE
DISKONJUGOVANYCH DIFERENCIALNICH
ROVNIC y" =¢4(t)y

SVATOSLAV STANEK

Jsou vySetfovdny rovnice typu

@ ¥y =q)y, qeC°’®),

které jsou diskonjugované na R(= (— oo, 0)). Necht X je disperse (1. druhu) rov-
nice (q), X(R) = R, X{¢) . Pak pro kaZdé FeSeni u tovaice (q) je také uX(0)/] X'(t) |2
fe¥enim této rovnice. Rekneme, Ze (obecnd komplexni) &islo A je charakteristickym
kotenem rovanice (q) pti dispersi X, jestliZe existuje netrividlni YeSeni z rovnice (q):
ZX())) X' ()12 = 2. z(t), teR. V praci je uvedeno vyjadfeni charakteristickych
kofentt rovnice (q) pfi dispersi X uZitim dispersi a hyperbolickych a parabolickych
fazi rovnice (q). Je popsdna struktura rovnic typu {(q), které pfi téZe dispersi X maji
predepsané charakteristické kofeny a dile je popsana struktura dispersi rovnice (q)
pii nichZ ma tato rovnice pfedepsané charakteristické kofeny.

PE3IOME

OBOBIEHHAS METOJA ®JIOKE
IUPOEPEHLMAJBHLIX VPABHEHUN y" = q(r)y
BE3 COMPSXEHHBLIX TOUEK

CBATOCJTAB CTAHEK

Usyuaerca ypaBHeHue Tuia

@ V'=a()y, g€ C(R)

Ge3 conpaxeitblx To4ek Ha R (=(— 00, 00)). ITycrs X — nucnepcust (1-ro pona)
ypasueuus (q), X(R) = R, X(¢) # t. Torna i nroboro peurennst « ypasuenus (q)
QynKuus z.'X(t)/\/ | X'(r)] sBaseTcs Toxe pelueHueM 3Toro ypaeitenus. (Boobme
KOMILJIEKCHOE) YUCI0 A HA3BIBACTCS XADAKTSPUCTHUECKMM KOpreM ypasHenus (q)
npu aucnepcd X, €CAM CYHIECTBYeT HETPUBHAJIBHOE peIlCHNe 2z ypaBHEHUSA
(q: zX(t)/\/]— X'(1)| = A.z(t), teR. B pabore mpuMBOISATCS BBIPAXKEHUS XapakTe-
PHCTHYECKMX KOPHEH ypaBHeHus (q) Hpu ALCHepCuH X ¢ TOMOMILIO AHCTIEPCHiA U FHIIEp-
Gomyeckux u napabosmmueckux a3 ypasuenis (q). IlpuBogurcst omucanue CTpykK-
TYpHl ypaBHenvii Tuna (q), KOTopble Py TaKoit ke mucHepcyii X HMEIoT Ipenucan-
Hble XapaKTePHCTHYECKHE KOPHU 1 AAJIbLLIE ONUCana CTPYKTypa JUCNEPCHii ypaBHEHUS
(9) Mpu KOTOPBIX 3TO ypaBHEHUE UMEET TPEANMCANHBIE XADAKTEPUCTHIECKHE KOPHH.
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