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ON A CERTAIN BOUNDARY VALUE PROBLEM 
FOR A FOURTH-ORDER ITERATED 

D I F F E R E N T I A L EQUATION 

V L A D I M I R VLCEK 

(Received March 30, 1980) 

Consider a fourth-order linear homogeneous differential equation of the form 

Y,v(0 + 10[>(0 Y'(0]' + 3[3<?2(0 + q"(t)-\ Y(t) = 0 (1) 

with a function q(t)e C2(—oo} -foo), q(t) > 0 on the interval I = (— co, + oo), 
arising by iteration of the differential equation of the second order 

J"(0 + <7(0X0 = o (2) 

(therefore the differential equation (1) will be also referred to as iterated equation). 
As we know the basis of this equation is formed by a quadruple of functions 

[u3(t), u2(t) v(t), u(t) v2(t), v3(t)], 

where [u(t), v(t)~] is the basis of (2). Thus the system of all solutions of (1) constitutes 
a four-parametric space of functions of the form 

Y(t, C,, ..., C4) = £ C^-\t) v'-l(t), (3) 
i = l 

4 

where Ct eR, i =- 1, ..., 4, are arbitrary parameters and £ C? > 0 (trivial solution 
i = l 

not being considered). 
Suppose the basis \u(t\ v(t)~] of (2) to be oscillatory, which means that any (non-

trivial) solution y(t) of (2) on the interval I = (— co, + oo) is oscillatory in the sense 
of [2]. Thus for brevity, we also speak of an oscillatory equation instead of the 
differential equation (2). It follows from the oscillatority of the basis [u(t)9 v(t)"] 
of (2) that any solution Y(t) of (1) is oscillatory, i.e. equation (1) is oscillatory. We 
understand under the oscillatority of any nontrivial solution y(t) [or Y(t)~] of (2) 
[of (1)] a solution with infinitely many zeros both on the left and on the right from 
an arbitrary point te(-~oo, +oo). 
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In what foilows we mean by "a solution of the differential equation" a nontrivial 
solution, only. 

The homogeneous Sturm —Liouviile boundary vaiue problem has for the general 
(oscillatory) linear homogeneous differential equation of the fourth order 

2>.(Or(4~°(0 = o, 
i = 0 

where pt(t) e C ( - oo, + oo), i = 1, ..., 4, p0(t) # 0, the following form 

a,Y(t0) + bxT(t0) + cxT(t0) + dxY"f(t0) = 0, 

a2Y(h) + b2T(tx) + c2Y\tx) + d2Y
tr,(tx) = 0, 

a3Y(t2) + b3T(t2) + c3T(t2) + d,Y"'(t2) = 0, (SL°) 

a*Y(t3) + b4T(t3) + c4Y"(t3) + </4r"(*3) = 0, 
where ai9 bi9 ci9 dx e R, of + bf + c? + df > 0, i = 1, ..., 4 and where l,- e 
e ( -oo , +oo),j = 0, ..., 3, tj # tk for/ # k; j , k = 0, ..., 3. 

Thus we obtain the simpliest four-point boundary value problem for bf + cf + 
+ d£

2 = 0 (which af 7-= 0, i = 1, ..., 4), which can be written in one and only one 
way as 

Y(t0) = 0, Y(tx) = 0, Y(t2) = 0, Y(l3) = 0. (s)4 

The one-point up to the three-point boundary value problem of the above type are 
always solvable for (1). However, this assertion generally fails in case of the four-
point boundary value problem. 

And yet we sill now show that (s)4 is always solvable for (1) if at least for one pair 
of mutually distinct points tj e (— oo, + oo), j = 0, ..., 3, from the given quadruple 
(t0, tl9t2913) the relative boundary value problem 

y(tj) = 0, y(tk) = 0, (s)2 

j # k9j9 k = 0, ..., 3, is solvable for (2). 
For completeness, let us first go through some more special cases, where with 

respect to the given quadruple of points t0, ..., t3, the boundary value problem 
for the corresponding n-tuples, n e {2, 3, 4}, elected from the above quadruple, is 
solvable even for the differential equation (2) and all these cases will obviously be 
sufficient for the solution of (s)4 relative to (1). 

Let us recall only that in all what follows we need not keep to the ordering of 
points in such a quadruple (or //-tuples considered). 

SOLVABILITY OF PROBLEM (s)4 

Statements L —IV. presented at the end of this article immediately follow from 
our considerations in [3] or and [4] for finding out all possible bundles of solutions 
from (3) relative to the oscillatory differential equation (1), and their corresponding 
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distribution of zeros (respecting the multiplicities). There is also shown that ayn 
solution Y(«0 from the corresponding bundles of solutions of such an equation may 
have either all triple zeros or the zeros will be alternately of multiplicity v = 2 and 
v = 1. Or all zeros of such a solution are simple without exception. 

First and foremost we want utilize following theorems (or definitions): 

Lemma. 
Let t0 6 ( — oo, +oo) be an arbitrary firmly chosen point. Then any solution Y(t) 

of (1) vanishing at the point t0 is the form 
1) Y(t) = Ciu3(l) + C2u

2(t)v(t) + C3u(t)v2(t), C3 # 0, exactly if t0 is a simple 
zero of the solution Y(t), 

2) Y(t) = C!u3(t) + C2u
2(l) v(t), C2 ^ 0, exactly if t0 is a double zero of the 

solution Y(t), 
3) Y(t) = C!u3(t), C! 7-- 0, exactly if t0 is a triple zero of the solution Y(t), 

where \u(t), v(t)~] is such a basis of (2) that u(t0) = 0. 

Definition 1. 
Let t0 e (— oo, + oo) be an arbitrary firmly chosen point and let Y(t)be an arbitrary 

solution of the oscillatory differential equation (1), vanishing at the point t0 (we 
shall use the symbol vt0 to denote that the point t0 is of multiplicity v = 1, 2, 3). 

Then the nth (n = 1, 2, ...) zero of Y(t) lying on the right [on the left] from the 
point vt0 (v = 1, 2, 3) will be called the nth conjugate point from the right [from 
the left] to the point vt0. We indicate this by writing *tn [or Ml_„], where lx = 1, 2, 3 
denotes an appropriate multiplicity of this point. 

Theorem 1. 
Let vt0 e ( - co, + oo), v = 1, 2, 3, be an arbitrary firmly chosen point and let Y(f) 

be such a solution of (1) where the point % is its v-multiple zero. 

Then it holds: 
1) Any | k \-th conjugate point % (k = +1, ±2, ...) to the point % is uniquely 

determined, whereby \i = 3. At the same time there holds the inequality 

h < tk+1. 

2) Any 2 | k \-th conjugate point *t2k (k = +1, +2,...) to the point 2t0 is uniquely 
determined, whereby /i = 2 and the set of all | 2/c + 1 \-th points "l2fc+1 (k = ±1, 
+ 2, ...), conjugate to the point 2t0 forms an open interval (2t2k,

 2t2k+2) where ^ = 1 
and there hold the inequalities 

hk < hk+i < t2k+2-

3a) If the first conjugate point fitl to the point 1/0 is uniquely determined, then any 
arbitrary | k \-th conjugate point % (k = +1, +2, ...) is uniquely determined as 
well, whereby fi = 1. There holds the inequality 
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b) If a set of all first conjugate doints % to the point 1t0 forms an open interval, 
where jx = 2, then any arbitrary 2 | k \-th point et2k (k = + 1 , + 2 , ...), conjugate 
to it0 is uniquely determined, whereby 6 = 1 . The set of all | 2k + 1 \-st points 
£*2fc+i (k = ± 1 , +2 , ...) conjugate to the point 1t0 forms an open interval Chic* 
lr2fc+2)? whereby 8 = 2 and there hold the inequalities 

tlk < *2fc+l < t2k + 2 . 

c) If a set of all first conjugate points % to the point 1t0 forms an open interval 
where \x = 1, then any arbitrary 3 | k |-lh conjugate point et3k (k = + 1 , + 2 , ...) 
to the point 1t0 is uniquely determined, where 8 = 1 and the set of all | 3k + 1 |-sf 
conjugate points et3k+l (k = + 1 , +2 , ...) to the point 1t0 forms an open interval 
Ct3k,

 1t3k+2), where 8 = 1 , and the set of all | 3k + 2 \~nd conjugate points et3k+2 

(k = ± 1 , + 2 , ...) to the point lt0 forms an open interval C ^ + i , 1t3k+3), where 
e = 1 and there hold the inequalities 

t?>k < ^3fc+l < 3̂fc + 2 < t3k+3. 

Definition 2. 
Let the points vt0 , fltke(~00, +00), where v, JUG {1,2, 3}, k = + 1 , + 2 , . . . , 

be conjugate points of a solution Y0(l) relative to (1). 
We say that the point Mtk is a strongly conjugate point to the point vt0 exactly if 

all solutions Y(t) relative to (1) vanishing v-times at the point % , a r e vanishing at 
the point % as well. 

Any conjugate point to the point vt0, being not a strongly conjugate point to vt0 

will be called a weakly conjugate point to vt0 . 
R e m a r k . It holds by the above definition: The point t*e(—00, +00), k = 

= ± 1 , ± 2 , .... is a weakly conjugate point to yt0 e ( — 00, +oo), where v e {1, 2, 3}, 
exactly if among all solutions Y(t) relative to (1) vanishing v-times at vt0 there exist 
at least two solutions such that one of these vanishes at tk, while the other does not. 

Theorem 2. 
Let % , % € ( - 0 0 , + 00), where v, \i e {1,2, 3}, k = + 1 , + 2 , ..., be two conjugate 

points of the solution Y(t) relative to (1). 
Then the point *tk is a strongly conjugate point to vt0 exactly if 
1) either v = ju = 3, k = ± 1 , ± 2 , . . . , 
2) or v = ft = 2 and k = 2m, m = + 1 , + 2 , ..., 
3) or v = 11 sa 1 and 
a) k = 3m, 0 = ±1, + 2 , ..., if there exist simple weakly conjugate points to 

the points v*>0j ^ , 
b) k = 2m, fit = + 1 , + 2 , ..., if there exist double weakly conjugate points to 

the points %, Hki 

c) k = m, fy ^ + 1 , + 2 , ..., if there does not exist weakly conjugate points to 

the points vt0i Hk. 
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Theorem 3. 
Let v/*5

 V/**G(—oo, +00), where v = 1, 2, 3, be two arbitrary neighbouring 
strongly conjugate points of the solution Y(t) relative to (1). 

Then there may between v/*, vt** lie at most two weakly conjugate points of the 
solution Y(t), i.e. either none or exactly one or exactly two: 

1) if v = 3, then there lies no weakly conjugate point of the solution Y(t) 
between 3/*5

 3t**5 

2) if v = 2, then there always lies exactly one and namely a simple weakly conjugate 
point of the solution Y(t) between 2t*5

 2/**5 

3) if v = 1, then there lies either no weakly conjugate point between */*, 1/**, 
or there lies exactly one and namely double weakly conjugate point, or there lie 
exactly two distinct points and namely simple weakly conjugate points of the solu
tion Y(t). 

A fuller account of the distribution of all weakly conjugate points of an arbitrary 
solution Y(/) (together with the corresponding bundle of such solutions) relative 
to (1) vanishing either at simple or at double points v/e(—oo, +oo), v = 1, 2, is 
given by the following 

Theorem 4. 
Let k = 0, ±1 , ±2, ... 
1) Let Y(t) be a solution relative to (1) vanishing at double strongly conjugate 

points. Then we can write for an arbitrary simple weakly conjugate point at which 
this solution vanishes 

*2fc+l e ( t2k, t2k + 2), 

where 2/2fc, 2t2k+2 are two neighbouring mutually strongly conjugate points of this 
solution. 

2) Let Y(t) be a solution relative to (1) vanishing at simple strongly conjugate 
points. Then 

a) it holds for an arbitrary double weakly conjugate point at which this solution 
vanishes that 

*2fc + 1 e ( t2k> t2k + 2 ) 9 

where 1t2k>
 1t2k+2 are two neighbouring mutually strongly conjugate points of this 

solution, 
b) it holds for a simple weakly conjugate point at which this solution vanishes 

either 

^ 3 f c + l G ( *3fc> 3̂fc + 2) C : ( 3̂fc> t3k+3) 

or 

^3fc + 2 6 ( *3fc+l> ^3fc + 3) C : ( ^3fc> *3fc + 3)> 

where t3k9 t3k+2 a r e two neighbouring mutually strongly conjugate points of this 
solution. 
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The general survey of zeros of the three-parametric bundle Y(t, Clt C2, C3) of 
solutions relative to (1) arising from the analysis of its algebraic structure is given by 

Theorem 5. 
Let t0e(—oo, +00) be an arbitrary firmly chosen point. Consider the bundle 

Y(t, CUC2, C3) = u(0 [ClU
2(t) + C2u(0 v(t) + C3v

2(0], (S3) 

Ct eR, 1 = 1, 2, 3, C3 7̂  0, of all solutions relative to (1), where [u(t), v(0] is a basis 
of the oscillatory differential equation (2) satisfying the condition 

u(*0) = 0, v'(t0) = 0 (P) 

at the point t0 [so that uf(t0) ^ 0, v(t0) 7-= 0 and thus the point t0 is a simple zero of 
the function w(0]- Let Tx denote the neighbouring zero of the function u(0 lying 
on the right from t0 [so that t0, Tt are neighbouring strongly conjugate points of 
an arbitrary solution Y(t) relative to (1) from the bundle (S3)]. 

Then 
1) the sub-bundle of all solutions relative to (1) (up to an arbitrary nonzero 

multiplicative constant) exactly of the form 

Y(t,Ci,C2) = u(0y2a,Ci,C2), (S31) 

where yt(t, C[, C2) = C[u(t) + C2v(t), C;eR, 1 = 1, 2, C2 ^ 0 stands for the 
double-parametric system of all solutions relative to (2) on the interval (—00, +00) 
linearly independent of the function u(t) corresponds to the condition 

C2 - 4C !C3 = 0. 

Any solution from this system has in interval (t0, Tt) exactly one zero, which is the 
double weakly point of the sub-bundle (S31) of the solutions relative to (1), 

2) the sub-bundle of all solutions relative to (1) (up to an arbitrary nonzero multi
plicative constant) exactly of the form 

Y(t, C\,C2, C[, CD = ii(0y,(t, Ci, C2)y2(t, C[, CD, (S32) 

where yx(t, C[, C2) = C[u(t) + CM0, y2(t, C[, CD = C[u(t) + C2'v(t), C\, C! e R, 
1 = 1, 2, C1C2 # 0, C1C2 — C2C1 7- 0, stand for two double-parametric systems of 
all solutions relative to (2) such that any two functions from the three functions u(0, 
yi(0, y2(0 a r e o n t a e interval (-co, +00) linearly independent corresponds to the 
condition 

C2 ~ 4C!C3 > 0. 

Each of the two solutions yx(t), y2(t) [from the systems yx(t, C[, C2), y2(t, C[, C2) 
respectively, in an arbitrary choice of the constants C/, Cf eR, i = 1, 2, satisfying 
the given conditions] has exactly in the interval (t0, F0 one zero, each of which is 
a simple weakly conjugate point of the sub-bundle (S32) of the solutions relative 
to (1), 
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3) the sub-bundle of all solutions relative to (1) (up to an arbitrary nonzero multi
plicative constant) exactly of the form 

Y(t, Ci9C29 C[, CD = ii(0y*(t, C;, C2, Ci, CD, (S33) 

where the four-parametric system of functions y*(t, C[, C2, C[, C2) stands for 
the sum of squares of the two linearly independent double-parametric systems of 
solutions yi(t, C[, C2') = CMO + C2v(t),y2(t, C[, C2') = Ciu(0 + C2'v(t), C\, C/'e 
GR, / = 1, 2, C/C2 - C1C2 ^ 0 (so that C;2 + C,"2 > 0, 1 -= 1, 2), relative to (2) 
having no zero on the interval (—00, +00) corresponds to the condition 

C\ - 4CXC3 < 0. 

In such a case the sub-bundle (S33) of the solutions relative to (1), whose single and 
namely simple strongly conjugate points are the zeros of the function u(t) has no 
weakly conjugate points. 

STATEMENTS ON SOLVABILITY OF THE PROBLEM (s4) 

Statement I. 
Let there be a solution y0(t) of the differential equation (2) for which 

yo('o) = yo('i) = yo(^) = yo(^) = 0 

holds [so that the four-point problem (s4) is solvable even for (2)]. 
Then the problem (s4) is solvable for (1) by means of any arbitrary function Y(t) 

of the form 
0 Yt(t) = y0(0> whose all zeros t0, ..., t3 are always triple, 
2) Y2(0 = yo(Oyi(0> where y\(t) is an arbitrary solution of (2) linearly indepen

dent of the solution y0(t) on the interval ( - 00, +00) [hereafter in short: yx(t) N y0(0]-
All points t0, ..., t3 are here double zeros of the solution Y2(0 and (according to 
the Sturm's theorem) they are separating themselves with the simple zeros of the 
function yi(0-

3) Y3(0 = yo(0yi(0y2v0> where y^t), i = 1, 2, are two arbitrary mutually 
linearly independent solutions of (2), each of them being a linearly independent 
of the function y0(t) on the interval ( — 00, +00), i.e. y0(t) N yi(0> yo(0N y2(t), 
yi(t)Ny2(t)9 so that all points t0, ..., t3 are simple zeros of the solution Y3(0-
Between any arbitrary two of these there always lies at least per one zero of each 
from both functions yj(0, i = 1,2, being also mutually separating, 

b) Y3(0 = y0(0yi(0 is an arbitrary solution of (2), linearly independent of the 
solution y0(t) on the interval (—00, +00) [i.e. yi(0Ny0(0]; a-- points t0,...,t^ 
are simple zeros of the solution Y3(t) and (according to the Sturm's theorem) they 
are mutually separating with the zeros of the function yi(0> which are the double 
zeros of the solution Y3(0 relative to (1). Let us observe that the case 3) b) is dual 
to the case 2). 
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c) ^ ( 0 = yo(0 [yi(0 + y2(0]> where y{(t), i « 1,2, are two arbitrary mutually 
independent solutions of (2) [i.e. yx(t) N y2(0], so that all points tQ, ..., t3 are simple 
zeros of the solution Y3(l). All zeros of the solution Y3(t) relative to (1) coincide 
exactly with all-simple-zeros of the solution y0(t) relative to (2) since for all 
t e (— 00, +00) there holds 

yi(0 + y2(0 > 0. 

Statement II. 
Let there be a solution y0(t) relative to (2) for which 

yo('o) = yo('i) = yo('2) = 0, y0(t3) # 0 

holds [so that there certainly exists the solution yx(t) relative to (2) — and even a whole 
bundle of such solutions mutually distinct by a multiplicative nonzero constant — 
such that there holds: yx(0Ny0(t) on (—00, +00) with yx(t3) = 0]. 

Then the problem (s4) is solvable for the differential equation (1) by means of an 
arbitrary function Y(t) of the form 

1) Yi(0 = yo(Oyi(0> f° r which all three points t0,tl9 t2 are double zeros, while 
the point t3 is its simple zero. All zeros of both functions y0(0» yi(0 a r e mutually 
separating on (— co, + +) [so that there always lies at least one simple zero of the 
function yi(0 between the double zeros as t09 tx as tl9 f2]. 

2) a) Y2(0 = yo(Oyi(Oy2(0> where y2(t) is a further arbitrary solution of (2), 
in which besides y0(0N^(t) also y0(0Nj2(0 and yx(0N>>2(0 holds. All points 
*o> ti> *2> *3 a r e simple zeros of the solution Y2(0- All zeros of the functions y0(f)> 
yi(0- y2(0 are mutually separating on the interval (-00, +00), so that between 
arbitrary two neighbouring zeros of each of these there always lies exactly one zero 
of the remaining two functions. Hence, there always lies at least per one zero of each 
from both functions yx(t) and y2(t) as between the points f0, fx as between tlt t2. 

b) Y2(0 = yo(Oyi(0> for which all three points t0f tl912 are simple zeros and the 
point t3 is its double zero [so that the case 2) b) is dual to the case 1)]. All zeros of 
both functions y0(t)9 yt(t) are mutually separating on (— 00, + 00). Thus there always 
lies at least one double zero of the solution Y2(0 relative to (1) between the simple 
zeros as t09 tt as ti9t2. Likewise, there lies at least one simple zero between two 
arbitrary double zeros of the solution Y2(0. 

Statement m . 
Let there be a solution y0(0 relative to (2) for which 

yo('o) - 0, y0(tx) = 0, y0(tt) * 0, 

1 = 2, 3, holds and a solution yx(t) relative to (2), ylv0N>>0(0 on (-co, +co) 

such that 
*i('2) = 0, y,(t3) = 0 

(so that yM + O'J-0'1* 
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Then the problem (s4) is solvable for (1) by an arbitrary function Y(t) as the solu
tion of (1) of the form 

0 ^i(0 = yo(Oyi(0- for which both points t0i t1 are double zeros, while both 
points t2, t3 are its neighbouring simple zeros. As all zeros of both functions y0(0> 
yx(t) are mutually separating on (-co, +co), there always lies at least one simple 
zero of the function yx(t) between the double zeros t09t1. At the same time there 
lies always one double zero of the solution Yx(t) relative to (1) between the simple 
zeros t2, t3, 

2) a) Y2(t) = yo(Oyi(Oy2(0> where y2(t) is a further arbitrary solution relative 
to (2) in which besides y0(t)N yx(t) also y0(0

Ny2(0 a n ^ yi(0Nya(0 holds. All 
four points t0, tl,t29t3 are simple zeros of the solution Y2(0 relative to (1). Ail zeros 
of the functions y0(t)9 yx(t), y2(t) are mutually separating on (-co, +oo), so that 
there always lies at least one zero as of the function yx(t) as of y2(t) between the 
points t09t1. Likewise, there always lies at least one zero as of the function >'0(0 
as of y2(t) between the points t2, r3, 

b) Y2(0 = yo(Oyi(0> f° r which both points t0> tt are simple zeros, while both 
points t2y t3 are its double zeros [both cases 1) and 2) b) are mutually dual again]. 
It follows from the mutual separation of all zeros of y0(0> yi(0 on ( — oo, + oo) that 
there always lies at least one double [or simple] zero between an arbitrary two simple 
[or double] zeros of the solution Y2(t) relative to (1). 

Statement IV. 
Let there be a solution y0(t) relative to (2) for which 

yo('o) = 0, y0(tx) =- 0, y0(td * 0, 

i = 2, 3, holds and a solution yx(t) relative to (2), yi(l)Nj0(r) on (-oo, +co) 
such that 

yi('2) = 0, yi(h) * 0 

[so that also yt(tj) # 0, j = 0, 1], 
Then there certainly exists a solution y2(t) relative to (2) such that y2(t)N y0(t) 

and at the same time y2(0Nyt(t) on (— oo, +co) for which 

y2(t3) = 0 [and of course y2(tk) ^ 0, k = 0, 1,2]. 

In the above case is the problem (s4) relative to (1) solvable by the function (up to 
an arbitrary non-zero multiplicative constant) exactly of the form 

n o = yo(oyi(oy2(o, 

so that all four points t0, tl9tl913 are its simple zeros. It follows from the fact that 
all zeros of the three functions ^0(0> yi(0> y2(0 [being in pairs linear independent 
solutions of (2)] are mutually separating on (— oo, + oo) that there lies at least one 
zero of each from both functions yi(0, y2(0 between the points t0> t\. At the same 

125 



time there lies at least one zero of the function y2(t) [or y^t), or y0(0] between the 
points t0, t2 [or t0,t3, or t2, f3]. 

Remark. In case that each of the points of the quadruple t0,t1,t2,t3e 
e (— oo, + oo), tt # tj, i9j == 0,..., 3, is a zero always of one out of the four in pairs 
mutually linearly independent solutions yt(t), i == 0, ..., 3, on (— oo, +co) relative 
to (2), i.e. if yMNyft), i &j, i, j = 0,..., 3, the problem (s4) relative to (1) is 
unsolvable. 
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SOUHRN 

POZNÁMKA K J E D N É OKRAJOVÉ ÚLOZE 
PRO ITEROVANOU D I F E R E N C I Á L N Í ROVNICI 

4. ŘÁDUJ 

VLADIMÍR VLČEK 

Práce se týká řešení homogenního čtyřbodového okrajového problému Sturm— 
Liouvilieova typu pro iterovanou obyčejnou lineární diferenciální rovnici 4. řádu. 

Ve čtyřech tvrzeních jsou ukázány všechny možné tvary svazků řešení, které se 
(s ohledem na násobnosti) anulují v dané čtveřici bodů za předpokladu, že se v těchto 
bodech anulují příslušná lineárně nezávislá řešení obyčejné lin. homogenní diferen
ciální rovnice 2. řádu, z níž uvažovaná rovnice vznikla iterací. 
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РЕЗЮМЕ 

ЗАМЕЧАНИЕ ОБ ОДНОЙ КРАЕВОЙ ЗАДАЧЕ 
ДЛЯ ИТЕРИРОВАННОГО Д И Ф Ф Е Р Е Н Ц И А Л Ь Н О Г О 

УРАВНЕНИЯ 4-го ПОРЯДКА 

В Л А Д И М И Р В Л Ч Е К 

Работа занимается решением однородной четырехточечной краевой задачи 
типа Штурма-Лиувилля для итерированного обыкновенного линейного диф
ференциального уравнения 4-го порядка. 

В четырех утверждениях показаны всевозможные пучки решений, которые 
(взглядом к насобностьям) аннулируются в заданной четверке точек только 
в том предположении, что в этих точках аннулируются надлежащие линейно 
независимые решения обыкновенного линейного дифференциального уравнения 
2-го порядка, из которого выше приведенное уравнение возникло после ите
рации. 
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