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ON LIMIT PROPERTIES OF THE REWARD
FROM A MARKOV REPLACEMENT PROCESS

PAVLA KUNDEROVA
(Received March 31st, 1980)

This paper is a close continuation of [7] and extends the validity of assertions
proved there on replacement processes.

1. BASIC DEFINITIONS AND NOTATIONS

Let a homogeneous Markov process with rewards {X,, ¢ = 0} describing the
evolution of a system in a state space I = {l, ..., r} be defined by exit intensities
D), ..., u(n), 0 < u(j) £ o, j=1,...,r and by a matrix P = || p(i,/) ||, j=1 of
transition probabilities in the moment of exit. Let us denote by M = || u@i,j) I}, ;=1
the matrix of transition intensities of the process, where

u(i,j) = (@) p(i,j) for i # j, uGi, i) = —pQ) = —.;_ R, J)-
J#i

Consider a situation, where the development of the process may be influenced
by an action called replacement. According to [5] we mean under a replacement of
type (i, -+j) the instantaneous shift of the system f ‘om state i into state j. The complete
history of this process is given by the following sequence

@ = {ig, tos 005 I1> t15 015 «oes iny bys O3 o}y

where iy, i, ..., i,, ... are the states visited, ¢y, 1y, ..., ,, ... the corresponding
sojourn times and g, &y, ..., 0, ... is the sequence of zeros and units, where 6, = 0
in case of i, — i,,, without interference and 6, = 1 in case of i, — i,+ being the
replacement. We use in accordance with [5] the notation

w, = {i()’ vesln—1s a1, 5n—1; I

for the history up to the n-th state change.
A replacement policy (see [5]) is a decision for all possible sequences w, for how
long time the system will be left in i, without shifting (maximal sojourn time) and
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in what state it is to be shifted. Since we do not to exclude the random choice of
these quantities, we identify a replacement policy with a sequence of functions

F = {"F(t/o,)}, k=1,....,r;n=12,..

where "F,(t/w,) is a probability that the maximal sojourn time in #, will be less than ¢
and the eventual shift will be into k # i,.

Assumption 1.

Consider such replacement policies F only, where

a) there exists only a finite number of replacements in every finite interval,

b) there are neither two or more replacements in the same moment, with probability 1.

According to Assumption 1 there is assigned a trajectory {Y,, t = 0} not left
continuous at the time of transition and not right continuous at the time of replace-
ment to almost every o.

In what follows we denote by

gy =0, 0y, 05, ... such moments in which the trajectory is discontinuous,

Y, =Y, ,t>0, Y, =Y; Y, ' =Y,,120;

B, = oa {(Y, = j),jel,se0,t); events of zero probability},
'@t+ = m ‘@s’

ET a mathematical expectation in a replacement process under the replacement
policy F,
D a set of couples (i, +j) meaning admissible replacements,

D; = {j: (i, +j)e D}.

The reward from the process is defined by the following sets of numbers:

¢(i), i€ I, the reward per a time unit in state i,

r(i,j), i,je I, the reward from the transition (i, j); we set r(i,i) = 0,

v(i,), i, j eI, the reward from the replacement (i, +j); we set v(i, i) = 0.

A stationary replacement policy f is given by a function f(j) defined on a subset
I; = I and taking values in I such that f(j) € D; for je I, f(j) # j. The replacement
policy f is the prescription to realize instantaneously the replacement j — f(j)
whenever there occurs a transition in state j. No replacements occur in states j¢ I,.

Assumption 2.
G, +))eD,(j, +k)e D= (i, +k)e D or i=k,
v(i, j) + v(j, k) £ v(i, k).

Let Ry be a reward from the process up to the time T In accordance with our previous
definitions

T N
RT = jQ(Yt)dt + Z [r(Ya—,.’ Ycr,.) + V(Yu,., Y::,)]s UN é T < UN+1'
0 n=0
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2. LIMIT PROPERTIES OF A REWARD

We demonstrate first some auxiliary assertions.

Lemma 1.
Let g(i, k) be a function defined on Ix1, g(i,i) = 0,iel. Let

N
Gr= 2 Y, Y,), oy =T <oyyy,
n=1

introduce

(i) = 3, ui, k) g(i, k), va(D) = Y udi, k) (gGi, k).
k#i k#i
Then it holds under an arbitrary replacement policy F for 0 <t = T
T
E"{Gr — G/} = E*{[ y(Y,) ds/#/}, 0]
t
T T
E*{(Gy — G, — [ y(Y) ds)*/#} = E{[ 72(Y) ds/B,"}. @
t t

Proof: a) Since the conditicnal distribution describes a Markov replacement
process under common replacement policy, the proof of (1) icduces to the verification
of

T
EF(Gp) = EV{[y(¥)ds}, T=0,
0

for an arbitrary initial probability distribution and an arbitrary policy F".
The proof of the above assertion proceeds similarly to that of Lemma 1 in [6].
b) Taking instead of g(i, k) the function g2(i, k) throughout the proof of (1) we
show that

N T
EF (Y g%(Y,, Y,)) = EF’(Q 72(YDds), oy ST <oyyy,
n=1

Then (2) will be established by proving

T N
E"(Gr = [1(¥) 49" = E"( L 8°(Y,,, Yo,)

0

under an arbitrary policy F’ and an arbitrary initial distribution. The proof proceeds
analogous to that of Corollary 1 in [6].

Lemma 2.
There exist constants K, such that
EF|Gp|™ £ Kyrlmax (1 gG, DDI", m=1,2, .., 3)
i,jel

Jor an arbitrary replacement policy F.
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Proof: We denote by p = max (u(1), ..., u(r)), o, the moment of the n-th
‘transition (the n-the left discontinuity of the trajectory). We prove by induction

P(o, £ 1) < H™(1), @)

where H®™(t) is the n-multiple convolution HM(f) = 1 — e™#. We denote by Ny
the number of transitions in <0, T). According to (4) it holds

o
Ef(Np" = ¥, n"[PT(0, £ T) = P(0,+1 S D] £

n=1
© ] uT
Y ("= —-DHYT) =Y (0" =@ —-1") - [x" e dx =
CES
& m (l—tT)" ~uT
=n=1n e B = Kr.
Thus

N Nt
EFIGrl" = BT ¥ 8V, Vo) ") = B 8 8(V53, Vo) ") <
< Ef[(N »'r)"'(n};v; {leti, D] = (r.r;a)li {lgli, ) IN" . Kyr.O

Let /" be a fixed chosen stationary replacement policy such that under it exists one
recurrent class and eventually a transient class only. Let the constant @, w(1), ..., w(r)
be defined by the following equations

v @) + w(f@) = w(i) =0, iely, ®
o(i) +k§4 u(i, D [r(i, k) + wk) —w(i)] —© =0, i¢l,.

According to [2] the system (5) uniquely determines the number @ (@ is the mean
reward per a time unit from the process in using the replacement policy f),
w(1), ..., w(r) except for adding an arbitrary constant.

Denote for ie?

o) = e() + 3, i W [r(i, k) + w(k) = w(i] - ©,
Vi) = 3 u, D[, k) + w(l) = w(D)],
Vo) = 3w D [r(i, k) + w(l) = w(®T
Let us introduce an auxiliary random process (see [3])

T
My =Ry — OT + w(Y{) — w(¥o) — [ o(¥;) dt —
0
N
- Y (Y., Yo) + w¥)) —w¥,)], T20,0y<T<oy,;.
n=0
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Lemma 3.

{Mr, T = 0} is a martingale with respect to {2+ | T > 0} under an arbitrary policy F.
It holds for 0 £t £ T

Ef{(My — M)}|8} = Ef{ i; V(Y ds/@,") F-almost everywhere.
Proof: By substituting instead of Ry and w(Y7) — w(Y,) = ‘Z[W(Yau) -
- w(Y;) +w(¥,) — w(Y,)], oy £ T < oy, into the expression for ](I/;Towe obtain
My = —Tg ¥y (Y)dt +é‘o[r(Y;"’ Y,) + w(Y,,) — w(Y,)].
The substitution of g(7, k) = r(i, k) + w(k) — w(i) in (1) of Lemma 1 gives

T
E'{My — M,|#} = E"{Gr — G, — [y(Y,) ds/®} =0, =T,
t
and thus

Ef{My/B}}=E"{M,/8}} =M, forallt<T

The other assertion proved follows analogous from (2), Lemma 1. [J

Corollary.
Under an arbitrary replacement policy F
.1
lim T M;=0 F-almost everywhere. 6)

Proof: 1. We can write M, = Z (M, — M,_,). According to Lemma 3
1

INgk]

k=
1 M 2
_nTE( n'—Mn—-l) =

]

n
0 1 @

=Y E( y,(Y)ds) £ Y %(max {¥.(D)),
n=1 N n—1 n n iel

=1

1
and {M,,n = 1,2, ...} being a martingale, it is by [4], page 407
lim ,LM,, =0 F-almost everywhere. ©)
n—+oo 1
2.letn £ T <n+ 1, then

1
e

1 1 .
< —_ —
- sup | M1 Mn\+n|Mn|.

n<T<n+1

According to (7) it suffices to prove that

lim— sup |M;— M,{=0  F-almost everywhere. ®)

n-so M nsT<n+1
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Denote by
¢ = max Y.}, k= max {l7(i, ) + w(j) — w(i) I},

i,je
X, the number of transitions during the time (n, n + 1). Then

Sup IMT“Mn|§c+an (9)

n<T<n+1

o]
. U |
As the series E( Y %Xﬁ) couverges, it is lim —- X} = 0 F-almost everywhere.
n=1n n—>o N

Hence

lim 1 (c+kX)=0 F-almost everywhere.

n= o0

This due to (9) proves (8). O

Theorem 1.
Let the optimality equation (see [2]) for the replacement policy f hold, i.e.

max {(j, k) + w(k) — w(j), k€ D;; e(j) +k§_#(i, k) [r(j, k) + w(k) — w(j)]— 6} =0,

jelL (10
Then under an arbitrary policy F

lim sup -IT,RT <0 F-almost everywhere.

Proof:
It follows from assumption (10) that ¢(j) < 0 for all je I, i.e.

T
—fo(Yydrz0.
0
Likewise, we have from (10)

N
=Y WY, Yo) + w(Ys) —w(Y,)] 2 0.
n=0

Thus
My Z Ry — OT + w(Y7) — w(¥o).
Since
lim % [W(Y) — w(¥o)] = O, (11
T-wo
it holds

lim sup 1 M = lim sup 1 Ry — @ F-almost everywhere
Tow T Too T

whence the statement follows from Corollary 3. O
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Definitions.
We call the state i e I consistent with the policy f, if (i) = 0. We call the replace-
ment i — k consistent with f, if v(i, k) + w(k) — w(i) = 0.
Denote by
Q7 the whole sojourn time in the inconsistent states in <0, T,
Oy the whole sojourn time in states I, in the interval <0, T,
Oy the whole number of inconsistent replacements in <0, T,
O the whole number of replacements diferent from i — f(i)in <0, T').

Obviously
QT g QTa aT g OT'
Theorem 2.
Let F be a replacement policy. If
lim i,QT = lim LOT =0  F-almost everywhere (F-in probability) (12)
T-wo :I T—© T
then
.1
lim T Ry =0 F-almost everywhere (F-in probability). (13)
T—

If the equation of optimality (10) is valid, then (12) is necessarly for the validity of (13)
as well.
Proof:

T
My =Ry — OT + w(Y1) — w(¥o) — [ o(¥)dt —
0
N
- Z (Y, Y:,,) + W(Y:,.) - w(Y, )] oy=T <oyn+1-
n=0

a) The function ¢(.) is constant in any interval {o;_,, g;). If i is a consistent state
with £, then ¢(i) = 0 and thus

T
min {o(i)} Or < g ¢(X) dt < max {g(i)} Or.

There are nonzero addends in the last sum of the expression M in those moments o,
only, where an inconsistent replacement with f occurs, hence

N

min {v(i, j) + w(j) — w(i)} O £ ¥ | W(Y,,, Y3) + w(Y3) — w(¥,)] £
i,jel n=0

< max {v(i, j) + w(j) — w(i)} Or.

Ljel

The above relations prove together with (6) and (11) that (12) follows from (13).
b) Let (13) hold and let f fulfils (10). If i is the state consistent with f, then ¢(i) = 0.
In the opposite case then i € I, and according to (10) ¢(i) < 0.
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Denote by I, the set of inconsistent states with f. According to (13)

9

1 T
0 = max {o(i)} TT > —7—,£<p(Y,)dt—+0 for T — co.

iely

The nonzero expressions are in the sum

N
zo[V(Yan, Yo) +w(Y,) = w(¥,)]

in those moments a,, if there is in F a transition or a replacement consistent with f.
If (10), (13) hold, then

0= max {v(i, k) + w(k) — w(i)} -—OTI >

i—+k replacements inconsistent with f
N
= —11,— Y Y, Yo) +w(Ys)—wY,)]»0  for T— .
n=0
Hence, if (10) holds, then (12) is necessary for (13) to be fulfilled. O

Theorem 3.
Let F be a replacement policy. Let

lim —1_— Or=0=lim —1_— O  F-in probability (14)
T-x \/T T—wo N
then R;— OT

has for T — oo asymptotically normal distribution N(0, (), where { is determined by
equations

wo(f(D)) — wy() = 0, ielp,
¥, (i) + k;-#(i’ k) [wa(k) — wy(i)] = ¢ =0, i¢ly,

containing auxiliary constants wy(1), ..., w,(r).
Proof: We prove this theorem in several steps.
I. We prove first that it follows from (14)

(kRL"ﬁe’L — M") =0 F-in probability.

lim =
Jn Jn

n—>w
According to definition

M,=R, — On+w¥}) — wY,) — gqo(Y,)dt -

N
- XY, V) +w(Y,) —wY,)], OnSn<Oyip
j=0

i=
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Obviously
iim —‘-1: [w(Y.}y — w(Yy)] = 0.

n=oo (/1

Since
min {p(D)} @ < J (%) dt < max {p()} O,

min {v(i, k) + w(k) — w(i)} 0, < % W(Y,,, Y) + w(Y,)) — w, )] <
i=0

kel
< max {v(i, k) + w(k) — w(i)} O,,
ikel

(see the proof of Theorem 2)
assertion I follows from (14) by using 0, < 0,, O, £ O,.
M, has for n —» oo asymptotically normal distribution N(0, ().

II. —=
Jn
The proof of the above statement lies in the verification of assumptions of the

central limit theorem for martingales below (see [1], [7]):
n—1
Let {M, =Y 7Y,, n=12, ..} be a martingale with respect to the class of
m=0

c-algebras {F,,n =1,2,..}. Let
n—1
- Y E{Y} . X(vmizc)y/Fm} =0 in probability for all & > 0,
4]

(i) lim
T Gt 2 . - .
@ii) lim - Y E{Y./#,.} = { in probability, where { is a constant,
n— o m=0
then I/{'« is asymptotically normal N(0, {) for n - oo.
n
n—1
In our case we have M, = Y, (M4, — M,). By Lemma 3 {M,,n=1,2,...} is
m=0

a martingale with respect to the class of o-algebras {#,,n=1,2,...}.
1. Let ¢ > 0 be an arbitrary number. Then

1
E{(Mm+1 - M,")Z X{]Mm+1"Mml§81/'_;)/‘@:'} é '8_”';’ E{I Mm+1 - Mm lslg;}.

To the proof of
E{| M, — M, 13/%,} < ¢, cconstant, (15)

it is sufficient to show that under an arbitrary replacement policy F’ and under an

arbitrary distribution
EF(IM; = My < e

As M, = 0, we have (using the notation of the proof in Lemma 3)

1
EY(IM; P) = EF(1G, — [y(Y)ds ) £ Ky 5 + 3kK, 5 + 3K°K, ; + K =,
0
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where k& = max {| y({) |} and where according to Lemma 2 EF(| G, |™) = Ky m,
iel

m = 1,2, ... The realization of (i) follows then from (15).
2. Let the numbers w,(1), ..., w,(r), { be solutions of the system of equations
from the statement of the theorem. Let us define to the verification of (ii)

@2(D) = ¥,(0) +k§'ﬂ(i, k) [wa(k) —w,(D] = (, el

a) We prove that under an arbitrary policy F

T T N
Ur= i’;‘pz(Yr) dt — (T + Wz(Y}L) — wy(Yp) — g @, (Y)dt — Zo[“’z(Y:,.) - WZ(Ya,.)])
T=0, oy ST < oyyq,s

is a martingale with respect to {#;, T = 0} satisfying the law of large numbers.
Denote

¢i() = k;_u(i, k) [wa(k) = wy(D],  iel

On substituting and modifying we get
N T
Ur= ZO[Wz(Yg,.) - wy(Yg)] — (J;fx(Yr) dr.
Using Lemma 1 for y(i, k) = w,(k) — w,(i) gives
T
E(Ur — UJ#) = E(Gr — G, — [y(Y)ds/B) =0, =T, (16)
t

E{(Ur - U) 8/} = E{ITéz(Ys) ds/#}, =T, an

where

&) = ¥ u ) wak) = wa@)F, el

It follows from (16) that {Uy, T = 0} is a martingale with respect to {#,, t = 0}
and thus from (17) in the same manner as in the Corollary of Lemma 3

lim % Ur =0, F-almost everywhere. (18)
T+

We can prove sililarly as in the proof of Theorem 2 that under the validity of (14)
.1 + T ol . .
}‘lm T{WZ(YT) —wy(¥o) — g("z(Yz) dr — Zo[wz(Yan) - wyY, )]} =0,
F-in probability (19)
and thus from (18) and from the definition of Uy
T
lim % v(Y)de = ¢, F-in probability. (20)
T—+o o
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b) We shall prove further that {D,, n = 1,2, ...}, where (see [7])

Dy = [Wa(0)dt =% B{(Mes = M35),
m=0

is a martingale with respect to {#,, n = 1, 2, ---}, for which the law of large numbers
holds.
According to Lemma 3 we can write

m+1

D= [ VoW at =3 B | a(¥) 43}

m=0

For each m < n natural numbers

m m—-1 Jjt1
E{D,|%,} = (f)!!fz(lr) dr — Y E{ [ ¥a(¥) dt/B]"} = Dy

If we denote
m+1 m+1

Y= [ Y (Y)dt — E{ | ¥o(Y)dt/B,},

then
n—1

D=, Y.

m=0
As for arbitrary m =0, 1, ...

m+1
EYy S E( | y(Y)d)* < ¢,

where

¢ = max {2(1)},
is the series o
N o) ¢
m=0 (m + 1)
convergent and by [4], page 407

lim LD,, =0 F-almost everywhere. @21

It is obvious from (20) and (21) that

n—1
lim Ll Y E{(M,+1 — M,)’[B}={  F-in probability.
n— o m=0
it means the assumption (ii) for martingale {M,, n = 1,2, ...} is valid.
In parts I and II of the proof we have proved the following assertion: Let (14)
R, — On

be valid, then ——?/—;w— has for n -+ oo asymptotically normal distribution N(O, {).
n
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IIL. Analogous to part I of this proof we can verify that
lim (131;_QZ - ﬂl-) =0 F-in probability.

IV. To conclude the proof we establish —\A/i% having for T — oo asymptotically
normal distribution N(0, {).
Let n £ T < n + 1. We know (see the proof of Lemma 3) that
E(M;—M,)* < max {,(i)} = ¢,
iel

and thus
EM2 < cT.

2 o) ]
i [ e 5]

and thus
2
lim E(E_T— - M, ) =0

Tow \4/T \/;z

Hence

Using Chebyshev inequality we get

(A’I__[ - M_” ) =0 F-in probability
JT  n
and the assertion IV. follows from assertion II.

Theorem 3 is proved by IIL. and IV. O

In writing this article I have benefited from the advice and criticism given by

dr. Petr Mandl, DrSc. whom I wish to acknowledge my gratitude.

lim
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SOUHRN

LIMITNI VLASTNOSTI VYNOSU
Z MARKOVOVA PROCESU S OBNOVAMI

PAVLA KUNDEROVA

Clének tizce navazuje na [7] a rozsifuje platnost tam uvedenych tvrzeni pro procesy
s obnovami (viz [5]). Necht Ry je vynos z procesu za dobu <0, T, @ primérny
vynos na jednotku Casu pii uZiti staciondrni strategie f pfi niZ existuje pouze jedna
tfida rekurentnich stavil. Je dokdzano (véta 1), Ze je-li f optimdlni (viz [2]), je pfi
libovolné strategii obnovy F

lim sup %RT <0 F — skoro vSude.
T—w

Zavadi se pojem souhlasné obnovy a souhlasného stavu se strategii f. Véta 2 uvadi
podminky postacujici resp. nutné k tomu, aby

lim iTRT =0 F — skoro vSude (F — podle pravdépodobnosti).
T o0

. .v . Rp—0OT
Jsou formulovany podminky (véta 3), za nichz ma —*——— pro T — oo asympto-

N
ticky normalni rozdéleni N(O, {), kde { je jistda konstanta.

PE3IOME

INNPEAEJIBHBIE KAUECTBA JOXO/A
N3 MPOUECCA MAPKOBA
C BOCCTAHOBJIEHUAMMU

TTABJIA KYHIEPOBA

B pabote obobiuatorcs TeopeMb! GopMymipoBatitbie B [7] mns ynpasiiseMblX
nponeccoB Mapxosa. ITyctb Ry HoXox 13 mponecca B teyenue untepsaia {0, T,
© cpennuil JOXOX 3a €AUHUILY BPEMEHH, KOTIa MIOKECTBO COCTOSHUIN IrpoHecca npu
MCMOJIb30BAHUH CTAIMOHAPHOM CTPATEIUH f UMECT €AMHCTBEHK I KJIACC BOBPATHHIX
cocrosnuif. IToxazano nccraToynoe yclnoBue s Toro, 4TobObl Ajisi jiroGoli crpa-
Teruy F

lim sup lln Ry 26

T
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F — nourtn HasepHOe (TeopeMa 1). OmipesiesieHB! COrjlaCHOE BOCCTAHOBJIEHHE U CO-
TJIacHOE COCTOsIHUE co crparteruei f. Peinenie mpo6ieMsl 06 acCMMITOTHYECKOM

R;— OT

pacnpe/eseHIu — npu T — oo Haxomgutcs B Teopeme 3. Teopema 2 ycra-

HaBJIUBACT YCJIOBUA OJiA TOroO 4TOOBI

lim —1—RT =0 F — noutu HaBepHoe (F — 110 BEpOSTHOCTH).

T-
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