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It is well known, that there is a correspondence between framed projective planes 
and planar ternary rings (PTR), called sometimes ternary rings only (see [6], 
chap. 9.). Further, every homomorphism of a framed projective plane to another 
framed projective plane induces a place (Stelle, T-homomorphism) of corresponding 
ternary rings and conversely, every ternary rings' place induces a homomorphism 
of corresponding projective planes. Consequently, homomorphisms of projective 
planes can be investigated as places of ternary rings. The first definition of a place 
of PTR is due to Skornjakov ([5], 285). If PTR is linear, the definition of a place 
can be expressed by means of addition and multiplication defined in PTR. 1) If 
such a linear PTR is one of the known algebraic structures, coordinatizing special 
types of projective planes, the definition can be simplified. Cartesian groups were 
investigated by J. Andre in [1], In the case of semifields (see [5]), alternative rings 
([2]), skew-fields ([1], [4]) and fields (e.g. [3]), the corresponding necessary and 
sufficient conditions are known. Moreover, a place of fields in our sence is identical 
with a notion of place (tocka) used in algebraic geometry. 

In the following text, we shall establish characteristic properties of places of 
quasifields and nearfields. 

Definition. 
The algebraic system (T, + , .) is called a planar ternary ring, if the following 

conditions are satisfied (see [6], p. 276): 

*) Let t be a ternary operation in a ternary ring T, The condition of linearity can be expressed 

as so: 
t(a, b, c) = a . b + c, 

where 
a + b : = t(l,a,b) 

and 
a.b : = t(a,b, 0) 

for a, b, c e T. 
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(i) (T, + ) and (T --- {0},.) are loops with natural elements 0 and 1 respectively, 
(ii) for all a e T, a . 0 = 0 . a = 0, 

(iii) V a, b, c, d e T, a T- c, there exists a unique xe T such that x . a + b = x . c + d, 
(iv) V a, b, c G T there exists a unique x e T such that a . b + x = c, 
(v) V a, b, c, d e T, a =£ c, there exists a unique pair (x, y) e T x T such that 

a. x + y = b and c . x + j = d. 

Definition. 
A mapping 6) from a planar ternary ring (T, + , . ) to a planar ternary ring ( F , + ' , / ) 

is called a place, if it satisfies: 
(PI) if a0 9- oo, b° 7- oo, then (a + b)0 = a0 + 'b 0 and (a. bf = a0 . 'b0, 
(P2) if a0 # 0', b0 = oo, then (a . b)0 = (b . af = oo,, 
(P3) if a° # oo, b0 = oo, then (a + b)0 = (b + a)0 = oo, 
(P4). if x0 = y° = oo, b0 ^ oo, where >> = a.x + b = a*.x, then a0 = a*0, 
(P5) if a0 = b0 = oo, (a . x + b)0 # oo and a. x* + b = 0, then xe = x*0, 
(P6) if y = a . x + b = a* . x, a . x* + b = 0 and a0 = b0 = x0 = ye = oo, 

then either a*0 = oo or x*0 = oo, 
(P7) the image T 0 of T under 0 has at least two elements. 
Our notation x0 # oo (or x0 = oo) means, that an element x belongs (or does not 

belong) to the domain of 0. Hence to those elements that have no image under 0 
we give a common image, the symbol oo $ T\ and we can shortly write 0 : T -> T u 
u {oo} to express that 0 is a place of (T, + , . ) to ( F , + ' , / ) . 

Proposition 1. 
Let 0 : T -> T u {oo} be ap/ace ofPTRs. Then O0 = 0' and l 0 = 1'. 
Proof. Let m ' e T 0 and let us choose meT such that m0 = m' 9- oo. Then 

m
0 _. ( m _|_ Q^& _ QQ by (P3)? a contradiction. Thus O0 # oo and we have m° = 

= m0 + O0 by (PI). But an equation m0 + x = m0 has a unique solution x = 0', 
so it must be O0 = 0'. 

Suppose that l 0 = oo. Then for all x e T, x0 is either 0; or oo, in contrary to (P7). 
Really, if x0 # 0', then x0 = (1 . x)0 = oo by (P2). Thus l 0 # oo. Let m', m are 
chosen as above. Then m' = m0 = (m . I ) 0 = m0 . I 0 = m'. I0 . An equation 
m! . x = m' is uniquely soluble, thus l 0 = 1'. 

It can be verified that an image T 0 of a planar ternary ring T under a place 6> 
forms a planar ternary ring under operations + ' , / defined on T. Thus those 
elements of F , which are not images, can be omitted and we can suppose that a place 
is surjective. 

Definition. 
A ternary ring (T, + , . ) with the properties 
(i) (T, + ) is a group (i.e. T satisfies the associative law of addition), 

(ii) V a, b, c e T, a . (b + c) = a . b + a . c (i.e. the right distributivity law holds) 
is called a right quasifield. 
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Ill a similar way, a left quasifield can be defined. It suffices to investigate right 
quasifields only, since by means of a new operation x o y := y . x, from a right 
quasifield can be obtained a left one and conversely. In the following text, under 
a quasifield we shall always understand a right one. 

It can be proved that in a quasifield, a . ( — b) = —a.b and a + b = b + a. 
Thus the additive group of a quasifield is Abelian. It can be easily shown the follow
ing: 

Proposition 2. 
Let * 9 : T - > T ' u { c o } b e a place of ternary rings and let (T, + , .) be a quasifield. 

Then (T', + ' , .') is also a quasifield. 

Theorem 1. 
Let (T, + , . ) , (Tf, + ', .) are quasifields. A mapping Q : T —> T' u {co} is a place, 

if and only if it satisfies 
(Ql) if a& # co, b0 # co, then (a - bf = a* - 'b 0 and (a . b)0 = a. 'b0, 
(Q2) if ae # 0', b0 = co, then (a . bf = (b . a)0 = co, 

(Q3) if x0 = co and (-a . x + a* . x)0 # co, then a0 = a*0, 
(Q4) if a* . x = a . x — a . x*, a0 = x0 = co and a*0 # oo, 

then x*0 = oo. 
To prove this theorem, we first establish several propositions. 

Proposition 3. 
A place (9 : T - > T ' u { c o } of quasifields satisfies: 

(i) (-bf = co«^b0 = co, 
(ii) b9 # ooo(-bf = - 'b 0 , 

(iii) if <20 # oo, b0 # oo, then (a - b)0 = a0 - 'b0. 
Proof. If b0 = co, ( — b)0 # co (or b0 # co, ( —b)0 = co), we conclude according 

to (P3) and Prop. 1, that 0' = O0 = (b + ( - b ) ) 0 = co, which is a contradiction. 
This proves (i). Let b0 # co. Then ( - b ) 0 # oo and 0' = O0 = b0 + ( - b ) 0 by (PI). 
Thus (ii) is true. The property (iii) is an immediate consequence of (PI) and (ii). 

Proposition 4. 
Let T, T be quasifields and 0 : T -> T u {co} be a mapping with a property 
(*) If a0 # oo, b0 # co then (a - bf = a0 - 'b0, (a . b)0 = a0 . 'b0. 

Then 6 satisfies: 
(i) O0 = 0', 

(ii) b° = ODo(-bf = CO, 
(iii) if b0 # oo then ( - b ) 0 = - ' b 0 , 
(iv) if a0 # oo, b0 # co, then (a + b)0 = a0 + 'b0, 
(v) if a0 # oo, b0 = co, then (a + b)0 = (b + af = co. 

The proof is not difficult. We can now return to our theorem. 
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Proof of Theorem 1. 
Let 0 be a place of quasifields. Then 0 possesses the properties (Pl)-(P6). 

(Ql) follows from (PI) and Prop. 3. (iii). (Q2) is identical with (P2). (Q3) can be 
proved by means of (P4) and (P2). Really, suppose that — a. x + a* . x = b, 
b& ^ oo, x° = oo. Let y = a* . x = a. x + b. If ye — oo, we use (P4) to obtain 
ae = a*& jf ^ -̂  c0? i>e# (a* . Xys> _£ 00j t h e n a*O = 0^ b y (p2). Since a. x = 

= y - b, it holds (a. x)0 = j 0 - ' b@ =£ oo and therefore a0 = 0'. To prove (Q4), 
we suppose b = - a . x*, y = a. x + b = a* . x. Let all assumptions of (Q4) are 
satisfied. Now suppose x*G ^ oo. Then (a* . x)e = (a. x*)0 = oo. Let us prove it. 
Suppose (a* . x)0 7- oo. Then (a . x - a . x*)0 = (a . x + by9 ^ oo, where a . x* + 
+ b = 0 and x0 = a& = oo. If b0 = oo, we use (P5) to obtain the identity x& = 
= x*0 — oo, in contrary to our assumption. If b& ^ oo, then ( — b)° = (a. x*)0 ^ 
^ oo, according to Proposition 3. (ii). By (P2), x*0 = 0', which is also a contradic
tion. Hence (a* . xf = oo. Now suppose (a . x*)0 #= oo. Then ( - a . x + a* . xf = 
= ( - a . x*)° ^ oo and a® = a*0 by (Q3), in contrary to the assumptions of (Q4). 
Thus (a . x*)e = oo. Hence all assumptions of (P6) are satisfied and since a*9 ^ oo, 
we conclude x*0 = oo. This contradiction establishes (Q4). 

Conversely, let 0 be a mapping of quasifields with the properties (Q1)-(Q4). 
Since (PI), (P3) follow from Prop. 4. and (P2), (Q3) are identical, it remains to show, 
that (P4)-(P6) are true. So let the assumptions of (P4) are satisfied. Then b® = 
= ( - a . x + a* . x)0 # oo and a0 = a*® by (Q3). This proves (P4). The assump
tions of (P5) imply, that b = -a. x* and (a. x — a . x*)0 ^ oo. Thus (a. x + 
+ a. ( —x*))0 = (a. (x — x*))0 =£ oo and we conclude (x - x*)0 = 0', according 
to (Q2). If x0 = oo, then x*0 = oo, too. If x0 # oo, then x*0 # oo and x0 - ' x*0 = 
= 0' by (Ql). In any case, x0 = x*0. Suppose now, that the assumptions of (P6) 
are satisfied. Then either a*0 = oo, or x*0 = oo, according to (Q4). 

Note that (Q3) can be substitued by a weaker condition 
(Q3) ' i f(-a .x + a*.x)0 7- oo, x0 = oo, a0 # oo, then a0 = a*0. 
Let a0 = oo and suppose that a*0 # oo. Let —c = - a . x + a* . x. Then 

c® = ( - ( - a . x) - a* . x)0 = (a . x - a* . x)0 =£ oo. Since a ^ 0, the equation 
a . z = c has a unique solution. Let us note it x*. Then a . x* = a . x — a* . x, a* . 
. x = - a . x* + a. x = a . x - a . x*. This implies x*0 = oo by (Q4) and since 
a0 i=- 0', we conclude c0 = (a. x*)0 = oo, a contradiction. Thus a*0 = GO and the 
equality a0 = a*0 holds. 

Definition. 
A nearfield (more precisely, a right planar nearfield) (T, +, .) is a quasifield with 

associative multiplication, i.e. (T — {0},.) is a group. 

In a nearfield, ( - a ) . b = - a . b. It can be verified that (T, +, .) is a right planar 
nearfield if and only if (T, +) and (T - {0},.) are groups, a . 0 = 0 . a = 0 for all 
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a e T, (a + b). c = a . c + b . c for all a, b, c e T and —x.a + x.b = c has 
a unique solution x for given a, b, c e T, a =£ b. 

An image of a nearfield under a place is again a nearfield. Note, that a0 = oo o 
ofa-1)0 = 0'. 

Theorem 2. 
Let (T, +, .) , (T', +' , . ' ) be nearfields. A mapping 0 : T -> T' u {oo} is a place, 

if and only if it satisfies conditions (Ql), (Q2) and (Q3)'. 
Proof. One implication is trivial. To prove the other, we must show that (Q4) 

follows from (Ql), (Q2), (Q3)'. Suppose that the assumptions of (Q4) are satisfied. 
Then a* . x = a . x + a . ( — x*) = a . (x — x*). Since a0 = oo, we conclude a 7-= 0 
and (a~ 1)<9 = 0'. Now we shall express x*. From the previous equality, a"1 . (a* . x) = 
= x — x* and x* = x — a"1 . (a* . x). Suppose x*° # oo. Then (x — x*)@ = co 
and (a* . x)° = (a . (x — x*))° = oo. This implies a* / 0. Now x = a*"1 . (a* . x) 
and after a substitution, x*° = ( — a"1 . (a* . x) + a*"1 . (a* . x))° --£ oo. Substitu
ting a"1, a*"1, a* . x for a, a* and x in (Q3)', we obtain (a*"1)9 = (a -1)0. Thus 
(a* -1)0 = 0', i.e. a*0 = oo. This is a contradiction. Hence x*0 = oo and (Q4) holds. 

For completeness, let us mention other structures related to projective planes. By 
a similar way as above, it can be checked that a mapping 0 of Cartesian groups is 
a place, if and only if it satisfies (Ql) —(Q3) and (CI), (C2), where 

(CI) (a . x - a. x*)0 # oo, a0 = oo -> x0 = x*0, 
(C2) if a* . x + a . x* = a. x, a° = x0 = (a* . x)0 = oo, (a . x*)0 = oo then 

either a*0 = oo or x*0 = oo. 
A semifields" place is characterized by the properties (Ql), (Q2) and (S): if a . x* = 

= (a — a*). x, a0 = x0 = oo, a*0 ^ oo then x*0 = oo. 
In the case of alternative rings, skew fields and fields, (Ql) and (Q2) appear to be 

necessary and sufficient conditions for a mapping to be a place. Let us prove it for 
alternative rings. In the other cases, the proof is trivial. 

It suffices to show that (Ql), (Q2) imply (S). Let a . x* = (a — a*) . x, i.e. a . x — 
— a. x* = a* . x ... (A), a0 = x0 = oo and a*0 ^ oo. Then (a — a*)0 = oo and 
((a — a*) . x)0 = oo. It can be easily seen that x 7-= 0, x* ^ 0. Thus there exists 
x"1, x*"1 and the above formula (A) can be rewritten to the form (a . x — a . x*). 
. x"1 = a*, (a . x) . x"1 — (a . x*). x"1 = a*. According to the right inverse 
property, a — (a . x*) . x"1 = a* and further, (a . x*). x*"1 — (a . x*) . x"1 = a*. 
Thus (a. x*).^*"1 - x"1) = a*. This implies (x*"1 - x'1)9 = 0'. Here^""1)0 = 
= 0', since x0 = oo, and thus (x*"1)0 = 0'. Hence x*0 = oo. 

It can be verified that an analogy of Proposition 2. is true in remaining cases. Of 
course, an image under a place can have additional properties. For examples see 
e.g. [1]. 
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S H R N U T I 

H O M O M O R F I S M Y PROJEKTIVNÍCH ROVIN 
NAD KVAZITĚLESY A SKOROTĚLESY 

A L E N A VANŽUROVÁ 

V článku jsou nalezeny charakteristické vlastnosti umístění (T-homomorfismů) 
pravých kvazitěles a skorotěles. V závěru je podán přehled podmínek charakterizu
jících umístění některých dalších algebraických struktur, s nimiž se setkáváme při 
souřadnicování projektivních rovin, totiž kartézských grup, semitěles, alternativních 
těles, nekomutativních a komutativních těles. 

РЕЗЮМЕ 

ГОМОМОРФИЗМЫ П Р О Е К Т И В Н Ы Х ПЛОСКОСТЕЙ 
НАД КВАЗИТЕЛАМИ И П О Ч Т И Т Е Л А М И 

А Л Е Н А В А Н Ж У Р О В А 

В статье установлены характеристические свойства Т-гомоморфизмов пра
вых квазител и почтител. В заключении указаны условия, характеризирующие 
Т-гомоморфизмы некоторых других структур, встречающихся при коордана-
тызации проективных плоскостей, а именно картезских групп, семител, альтер
нативных тел, тел и полей. 
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