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1. Introduction

O. Boravka in [3] and the author in [5] investigated a structure of the inter-
section of the groups of the first kind dispersions of two oscillatory differential
equations having the form

" =q)y, qeC°R). (@
In [1] O. Boriavka introduced the accompanying equation (q) to (q). This paper
investigates a structure of the intersection of the groups of dispersions relative
to (q) and (q), i.e. a structure of the intersection for the first and second kind
dispersions of (q).

2. Basic concepts and relations

Equation (q) is called oscillatory (on R) if +oco are cluster points of the roots
for every solution of (q). We elimirate from consideration the trivial solutions of (q).
Let (q) be an oscillatory equation. A function X = C3(R), X'(t) # 0 for teR
is called a dispersion of the first kind of (q) if it is a solution of the nonlinear

differential equation

—{X. 1} + X7 q(X) = q(),
n " 2

L X" - i X (t)) is Schwarz’s derivative of X at the

where {X, t}: = 2 x@u 4 (X'(')»

point z. The set of the first kind dispersions of (q) forms a group with respect to the
composition of functions. ,Sf; stands for the group of increasing first kind disper-
sions of (q). A function X e C3(R), X'(t) # 0 for t e R, is a first kind dispersion
of (q) exactly if to every solution y of (q) there exists only one solution u of this

equation, such that l[—X.__(i—)l = u(t), teR.
JIX'(1)]
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Let & be a subgroup of the group &% ; . In accordance with [3] we say that &
is a continuous planar group if and only if there exists for each (¢y, Xo) € RxR
only one element X € & such that X(z,) = x,.

Lemma 1. ([3], [5]). Let (p), (q) be oscillatory equations, ¢ — p € C*(R). Then
Ly =% exactlyifp=q.Ifp # q, then £, 0 .S:”; is either a continuous planar
group or an infinite cyclic group or £; n L = {idg}.

Lemma 2. ([3]). Let (p), (q) be oscillatory equations. Then .S,P;' N 2; is a conti-
nuous planar group exactly if there exist X € C3(R), k(< 0), k,(< 0), X'(1) # 0
forteR, XR) = R, k, # kj:

—{X,t} + k. X2 = p(1),
—{X,t} + ky . X(t) = q(t), teR.

A function o € C°(R) is called a first phase of (q) if there exist independent
solutions u, v of (q):

tgo(t) = % for teR — {t; v(t) = 0}.

A function « is a first phase of (q) exactly if it is a solution of the equation
—{o, 1} = o0*(1) = q(1).

Let ge C2(R), q(t) < O for t € R. Letus put 4(¢) := q(t) + \/'__é(f)(_ql__..)”,
NE0)

t € R. Equation (q) is called the accompanying equation to (q). Between the solutions
v is a solution
—-q(t)
of (q) and vice versa; if z is a solution of (q), then the function z(r) \/—q(¢) is the
derivative of a solution of (q).

The first phase of (§) and the first kind dispersion of (q) are called the second
phase of (q) and the second kind dispersion of (q), respectively.

Let « and B be increasing (decreasing) first and second phases of (q), respectively.
Then the function a(t) — B(¢) is bounded on R.

All the above definitions and properties are presented in [1] and [2].

of (q) and those of (§) there holds: If uis a solution of (q), then

3. Main results

Theorem 1. Let (q) be an oscillatory equation and (q) be its accompanying
equation, § — qge C*(R). Then &7 = &% exactly if q(t) is a constant (< 0)
If q(t) is not a constant, then & n £} is either an infinite cyclic group or
L5 nLF = {idg}.

Proof. From Lemma 1 it follows that 2; = .?3 exactly if ¢ = ¢ which is true
only if ¢(t) = a constant (< 0) (cf. [4]).
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Let g # §. With reference to Lemma 1 it suffices to show that .9; N .Sf}; is
not a continuous planar group. In the contrary case there exist function X € C3(R),
X'(t) £ 0 for te R, X(R) = R, and the numbers k; (< 0), k, (< 0), k; 5 k;:

—{X,t} + k. X2(t) = q(0),
—{X,t} + ky. X2(t) = 4(0), teR.

Let us put a(t) := /—k; . X(2), B(t) := \/—k, . X(¢), t € R. Then « is a first phase
of (q) and B is its a second phase. In consequence of

lim [a(t) — B(1)| = lim | (/=k; = /=k2) X(1) | = o,

Jt] =0 It]=

we are led to a contradiction in that the function a(t) — f(t) must be bounded
on R.

Theorem 2. Let (q) be an oscillatory equation and (Q) be its accompanying
equation. Let X € .?;w‘ N .S,”qf. Then X(t) =t + a and a is a constant exactly if
X"(t) = X"(t;) = 0, X"(t;) = X"(t;) = 0 where t,,t, are not conjugate points
of (@

Proof. Let Xe £ n %} and X(t) =t + a, acR. Then X'(t) = X"(1) = 0
for t e R.

Let Xe £ n 27 and X'(t,) = X"(t,) = 0, X'(1;) = X"(1;) = 0, where ¢,, 1,
are not conjugate points of (q). Then there exists to every solution y of (q) only
one solution u of (q) and only one solution z of (q) such that

X0]
VX'(1)
4 E(U) I ORI Y
JX'OJ=X®] V-90
From (1) we obtain X'(t) y'[X(1)] = (\/X—(t-) u(?))’. Inserting this into (2) gives
WX@uoy 0
XONX WOV =aX(] V=490

=u(f), 1t€R, Q)

@

teR. )]

Thus there exists to every solution « of (q) only one solution z of (q) satisfying (3).
Relation (3) may be also written in the following form

u'(t) + 1 X"(®) u(t) o Z(

X0 J—aX®] 2 X*)J—qX®)] J-a0)

Let u # 0 be a solution of (q), ’(t;) = 0. According to our assumption X"(t,) = 0
and therefore it follows z'(t;) = O from (4). Then there exists a number k % Q:
u(t) = k. z(t) for t € R and we obtain

teR. (4
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1 ~ﬁ)_  X'(Mu®

2u B S el A R (5
(I)(\/ Q(t) X'(t)\/ —q[X(1] X'Z(t)\/ a[x®] "’ ‘ ©

Putting t =t, in (5), gives X'(¢,) \/:_q_[)_f(E)T=%\/tq(t2). The equalities
— (X, 1) + X0 q[X(O] = q(), X'(1) = X"(12) = 0 yield X'2(z,) . q[X(5,)] =
= q(¢,). Hence k = 1 and we have
u ()( 77777 P ) X"(t);_t(t)
J=a X0 J=aX(01) " X)) J=q[X®]

Let v # 0 be a solution of (q), v(t;,) = 0. Analogous to the above we can prove
, 1 1 X"(t) o(t)
2v(t)( — M)= - AR A teR. (1)
Va0 X0 =q[X(0]) X0y —q[X(D)]

The solutions u, v of (q) are independent, uv’ — u'v := w # 0. From (6) and (7)
follows

©)

X'(t)w _
X0 =q[X(1)]
Then X'(r) =0 for teR, hence X(t) = bt + a, where a, b are constants. In

consequence of the fact that either X = ic'g or X(¢) # ¢ for ¢ € R (cf. [3]), we see
that necessarily b =

teR.
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Souhrn

STRUKTURA PRUNIKU GRUP DISPERSIT
ROVNICE y" =¢(f)y A ROVNICE K NI PRUVODNI

SVATOSLAV STANEK

Necht ge C2(R), ¢(t) < 0 pro teR. Polozme 4(t) := ¢(t) + \/taﬁ- (-\—/-—_——L(_—T)”,
—q(t

t e R. Rovnice (q): y" = ¢(t) y se nazyva privodni rovnice k rovnici (q) :y" =
= q(1) y.
Necht (q) je oscilatoricka rovnice, ¢ # §. V praci je vySetfovana struktura pri-
niku mnoZiny rostoucich feferi dvou Kummerovych diferencidlrich rovnic
—{X 1} + X% q(X) = q(n),
—{X. 1} + X7 4(X) = (1),
Xm X” 2 . )
kde {X, 1} = 1L X" i(;%) . Je dokazano, Ze tento prinik je bud neko-
t
necna cyklickd grupa a nebo trividlni grupa. Déle jsou uvedeny podmrinky, které

jsou nutné a postacujici k tomu, aby funkce X(t) =t + a, ae R, byla prvkem
tohoto priniku.

Pesiome

CTPYKTYPA MEPECEUEHUMW T'PYIII
OUCIEPCUIN YPABHEHUSA y’ = q(t)y
U ET'O COIMMPOBOXIAIIMEIO0 YPABHEHU A

CBATOCIJIAB CTAHEK

I 1 "

Mycts g€ C*(R), g(t) < 0 anst € R. MonoxuM §(1): = q(t) + / —q(t) (\/ : )A) s
—q(t
t € R. Vpasnenue (q): y” = §(¢)y naspiBaeTcs CONPOBOXIAOLINM yPABHEHHEM OTHO-
cutenpHo ypasHenus (q): y = g(t)y. Ilyctsb (q) XoneGutonnecs ypaBuenye, g # 4.
B pabote mciemyeTcst CTpPYKTypa mepeceyeHuss MHOXECTB BO3PACTAIOLIUX pelieHu)
nByXx ypaBhenwii Kymmepa
—{X, 1} + X'* . q(X) = q(v),

—{X, 1} + X2 4(X) = 4(»),
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1 X/ll t 3 XN t 2

roe {X,t} = ___._,(_)_ - = # . Jloka3aHo 4YTO 3TO INepecedeHHe WIH Gec-
2 x@ 4\x0

KOHEeYHAsl IUKJIAYeCKas IPyIla MM TPUBHANbHAS [PYIIA ¥ yKa3aHBl HeOGXOAUMBbIE

M JIOCTaTOYHBIE YCJIOBUS NPU BHINOJHEHUN KOTOPHIX (GyHKUUS X () =1 + 4, a€R,

JJIEMCHT 3TOr'0 MEPECCUCHUA.
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