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Introduction

Starting from certain ideas by I. Kol4¥, [1], and J. E. White, [3], we study some
geometric properties of the third tangent bundle T3M = T(T(TM)) of an arbitrary
smooth manifold M. In particular, we use the definition of the bracket [£,n]
of two vector fields &, 7 on M in terms of some geometrical operations on the
second tangent bundle of M ([1], [3]), and we deduce the Jacobi identity by means
of some geometrical constructions on the third tangent bundle. We make no use
of functions in our proof, which might appear to be suitable in more general
constructions.

All manifolds and maps are assumed to be smooth, i.e. infinitely differentiable.

1. Preliminaries

1.1. The vertical functor V. Consider a fibred manifold #:Y — X and its
tangent bundle py: TY — Y. For any xe X, the fibre n7'(x) = ¥, is a sub-
manifold of Y. Tangent maps Th, : T(Y,) - T'Y of canonical inclusions , : Y, - Y
induce an injection Hy : J T(Y,) —» TY. Let U T(Y,) =: VY (the disjoint union).

xeX xeX

The set VY has a natural structure of a vector bundle over Y with projection gy =:
=:pyo Hy. We may regard g, : VY — Y as a subbundle of py : TY — Y. The
fibre V.Y = T(Y,) over x € X is identified with the set

{4eTY/(gyom)(4) =x and Tn(4) = O x}.
Given local coordinates (x, yP) on Y such that (x’) are some local coordinates

on X about x, we have resulting coordinates (x', y?, X' = dx', Y? = dy?) on TY
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and (x}, yP, Y? = dy?) on VY. An element B = (x',y?, Y?)e VY is ideatified
with Hy(B) = (x%,y*,0, Y?)e TY. Given a morphism ¢:Y - W of fibred
manifolds n: Y > X and ¢: W —> Z, we define Vo : VY - VW to be the ab-
breviation (restriction) of T¢p. The coordinate expression of Ve is

. {ZZ = /76,
Clwt = e, yP),
Vo (gqf“ ¥)
wh=22y,
ay?

1.2. The tangent bundle of a vector bundle. Let us consider a vector bundle
n:E = M. Then pg : TE — E is a vector bundle. It can be verified that Tn : TE —
- TM is also a vector bundle, vector operations on fibres being defined as follows.
Let A, Be TE be such that Tn(4) = Tn(B). Then 4 and B may be regarded as
tangent vectors, 4 = (8/0t), y(¢t), B = (0/0t)o (1), of suitable smooth curves y(¢)
and 8(¢) : R > E, chosen so that n(y(¢)) = n(6(¢)) for any t. Let A4 + B!) =:

Tn

=1(8/0t)y (y(t) + 6(¢)) and k.A =:(8/0t)e (k.y(t)) for keR. All axioms of
vector space are satisfied. Thus we are given two structures of vector bundle on TE,
and the following diagram is commutative:

Py
TE —>E
Tni lﬂ (1)
Py
M — M.

The coordinate expressions of vector operations with respect to both two structures
of vector bundle on TE are following. Given local coordinates (x%) on M, let (x, y?)
be local coordinates on E, (x*, X*) on TM, and (x%, y?, X*, Y?) on TE. Assume two
elements 4, and B of the same fibre pg 1(x%, y?) over (x, y?) e E, with 4 = (x%, y?,
X, Y?) and B = (x', y?, X, Y?). Then

«d + BB = (X, y?, a X' + BX', aY? + BYP).

Pg

Now let 4 be as above, and let C = (x’, 77, X?, Y?). Then 4 and C belong to the
same fibre (7)™ ! (x, X*) over (x!, X*) e TM, and

ad + yC = (x}, ay? + 99, X', a Y? + y¥?).
Tn B

The evaluation in local coordinates shows that the following statement holds.

Lemma 1. Let ¢: E —» D be a linear morphism, over f: M — N, of a vector
bundle n: E - M onto a vector bundle g: D — N, i.e. the diagram

1) + denotes addition with respect to the projection T7.
Tn
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no e
ML N

commutes. Then T¢ in the following commutative diagram

TEXS D

Tn 1, JrT"
™ XL TN
is a linear morphism.

Proof. Let (x}, y?, X!, ¥7) be local coordinates on TE chosen as above. Let

us choose coordinates (2%, w?, Z% W?*) on TD in a similar way. Then coordi-
nate expressions of the maps f, Tf, ¢, and T are

o {fr 2 = f7(x),

2 = f5(x'),
i 1f: a
wh= 76 57), B
Top: ZF = a‘f . Xi, ox’
ox'

wi= Lo xi i i v
X ).

Now it can be easily seen that for any (x%, X’)e TM, T¢ gives a linear map
OP, Y?) & (wh, W*) of the fibre (Tn)~! (x%, X*) over (x', X’) onto the fibre

(To)~* ( fGeh, g{; X i) over Tf(x, X*). QED.

2. Second tangent bundle
2.1. The second tangent bundle T,M. Applying previous considerations on the
special case py: TM — M, we obtain the commutative diagram

Prm

TTM 73 T
Tl VPu

™% M

Let us denote T(TM) by T,M and T(Tf) by T,f. According to Lemma 1 and
functoriality of T, for any map f: M — N, the diagram
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W ™
af i
; ra . /
AU
7, By | <
™m—2 o ou

is commutative. If (x%, &), X', U’) denote usual local coordinates on T,M, the
expression of T, fis

H

Iy =9,
Tf:
R R
ox' ’
T.f: ik .
2f vie I xt
ox'
20k k
e O oxiy Uy
0x" ox’ ox'

2.2. The canonical involution as a natural transformation i: 7, —» T,. On T, M,
we are given the canonical involution iy: T,M — T,M which may be described
as follows. Any 4 € T,M is expressible in the form 4 = (8/0¢,)o ((8/0t1)0 6(4, 1))
for some smooth local map &: R* — M. We set iy A = (9/0t,)o ((8/012)0 8(2,, 12).
It can be verified in local coordinates that i,;4 depends only on 4, and not on the
choise of §. Thus the definition is correct. The map i, is obviously involutive
(that is, i3 = 15), and in local coordinates,

in(x, o', X2, UY = (x%, X', o, UY).
The following diagram is commutative:
T,M 2% T, M.
Toae § Prne
™ '—T—“; ™
Therefore iy is a linear isomorphism (over identity) of vector bundles T}, and pry.
Moreover, for any smooth f: M — N, the diagram

r _

M 2f TN
Pr” k;//

i i LA n
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is commutative (see [1]). This diagram shows that i: T, — T, is a natural trans-
formation of functors?, with some additional property.

3. Descending map

Let m: E - M be a vector bundle. Consider its vertical bundle gg: VE — E.
Let (x%, y?) be local coordinates on E such that x* are local coordinate functions
on M. Since VE is a subbundle of TE, we have resulting local coordinates (x', y?,
0, Y?) on VE. Now we shall introduce a map k,: VE — E by the following geo-
metric construction. The vector bundle VE may be regarded as a Whithey sum
E @ E. The fibre (VE), = T(E,) over x of the fibred manifold VE — M is identified
with the direct sum E, X E,.

Let x: VE - E @ E denote the corresponding identification. Let p,, and p, be
projections of the pullback E @ E onto the first or second component, respectively.
We have the following commutative diagram:

% p,
VE—~>E®E—>E

"EJr ”ll Jr"

1g

E-3 E 5M

For any x € M and a € E,, there exists a canonical isomorphism y,: E, = T,(E,),
. v > (8/0t)g (a + tv). Further, each a € E, determines a unique translation t,:
E. - E, of a vector space E,, 7, v »v — a, which sends a to a zero element
0 = Og_ of the fibre. The corresponding tangent map Tt,: T(E,) — T(E,) maps
the tangent space T,(E,) onto To(E,).

Now let Ce VE with (xop)(C) =y, (s op,) (C) = ¥, and n(y) = n(Y) = x.
We set

kn(c) =1 (NO-1 B TTy ° ”y) (Y).

In local coordinates, if C = (x%, ¥8, 0, ¥2), we have y = (x}, y3), Y = (x}, YB),
and

2 Let " and & be categories, and let F, G: A — % be functors. A natural transformation
(or a morphism of functors) i: F— G is a system of #-morphisms

i={iy: FM - GM in £[M is object of A"}

such that for any 2 -morphism f: M — N, the following diagram is commutative:

Gf
GM —> GN

el A

I PN
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T. . 5! ;
Y25 (xh, 18, YB) <3 (x5, 0, ¥B) > k(C) = (x5, Y5).

The map k, will be called the descending map corresponding to .
The previous construction yields a natural transformation k: ¥ — 1 of functors
on the category of vector bundles. In fact, the following assertion holds:

Proposition. Let n: E — M and g: D — N be vector bundles. Let ¢: E —» D be
a linear morphism over f: M — N; that is, the diagram

ESD
o e
ML N
is commutative. Then the following diagram also commutes:

vEXS vD

Wl Lk

E-S D.

Proof. Let ¢ be a linear morphism over f. Let x € M. As usual, assume local
coordinate system (x’, y?) on E such that (x’) are local coordinates in a neighborhood
of x = (x}). Similarly, let (z% w*) be local coordinates on D chosen so that z°
are coordinate functions about f(x). Since ¢ maps the fibre E, linear into Dy,
and coefficients in the corresponding linear combination are constants for x fixed,
the coordinate expression of the restriction Vo/E, = T(¢,) is

. {f(x)3 ¥ = f:(xi),
x wh = al(x) y?,
. 14
VolE,: Z5 =0

W = ai(x) Y.
Given a vertical tangent vector C = (x5, 15,0, Y8) at y = (x5, ¥5) e E., we have
kn(C) = (xo, YB),

Vo(C) = (f(x), ap(x) ¥8, 0, ap(x) Y§),
and finally,
k(Vp(C)) = (f*(x), ag(x) Y8) = 9(k(C)).

4. Iterated tangent bundles

4.1. The r-th tangent bundle T, M. Let M be a smooth manifold. We have already
investigated tangent bundles TM and T, M. By iteration, one obtains the r-th
tangent bundle defined inductively by
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T.M = T(T,_ M) =T(...(TM) ...) for r =2 2.
()
r-time

T,M is a smooth manifold. A smooth map f: M - Nisprolongedto 7, f: T,M —
— T,N in an obvious way, and T, is a functor. We also set ToM = M and T,f = f.
According to J. E. White, elements of T,M will be called tangent r-sectors on M.
T,M admits a structure of vector bundle over T,_; M, corresponding projections
being _
n=T,_pr, T ,M—>T,_ M for s =2,...,r

Any r-sector A € T,M is expressible in the form

d 0
A——Ey‘ 0‘“5}?

5(tl, ceey tr) (2)
0

for a suitable smooth local map 6: R" - M. For any se {1, ..., r}, we have

. d e | 8 | 2
TZ,A = -ar— Ogt-s—:l“o—a—t:l—' Lo—a—t: oé(tl, ey tS_I,O, by ...,t,).

4.2. Let S, denote the symmetric group of r elements. For each o € S,, let us
define a map ig: T,M — T,M by

o | p]

Oty

oty .y t,
0 ata(‘) (l )

0

in(4) =

for all 4 e T,M, expressed in the form (2). It can be verified that this definition
Is correct, and that S, acts on T,M on the right, if we set 6(4) =:if(4). For each
g€ S,, i’ T,—> T, is a natural transformation of functors. Further, the group
{ig1}es, is generated by tangent prolongations of canonical involutions on iterated
tangent bundles. In fact, if iy, _,) denotes the canonical involution on T,M for
s=2,..,r, and o, is the inversion interchanging r — s + 1 and r — 5 + 2,
that is,

- =<1,...,r—s,r—s+ 1,r—-s+2,r-—s+3,...,r>

s L, ..,r=s,r—s+2r—s+1,r—-—s+3,..,r/,

then

02 . ; s0s __ . . o __ .
i ='Tzip, oovsipg = Tl _oms oo iag =0T, oM

are required generators.

4.3. Tt is convenient to introduce local coordinates on 7T,M by the following
procedure. Let x* be local coordinates on M and denote by X} the pullbacks of x*
to TM. That is, X} = x' op,, . Besides X5, on TM we have also additional co-
ordinates Xj =: dx’. Let us proceed inductively. Taking pullbacks will be denoted
by addition of index 0, addition of 1 denotes differentiation. Hence on T, M,
we have local coordinates Xbo, Xio (of X5 and X}), X§;, = dX} and X}, = dXi.
For an arbitrary r, we obtain 2" groups of coordinates on T,M, each of which

»
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consists of m elements Xj, ., i=1,...,m, where (ji, ...,J,) is a sequence of
elements 0 and 1. With respect to these coordinates, the expression of iy is

X;x, .jr(iMA) = Xj',(;),,., ,j,(')(A)' (3)

4.4. For each vector bundle 7n3: T.M - T, _ M (1 £r,1 £ s £ r), we have the
corresponding descending map k,,:: V(T,M) —» T,M. Moreover, descending maps

k,,,_l (I=1,...,r=1;s=1,..,r =) of lower orders are prolonged to maps
T,k,,,'l: T\W(T,.,M) - T,M. Together, we obtain r (r + 1)/2 maps
T,k,,S_l, [=0,..,r—1 4

with domain < T, ;M and image T,M. Each of the maps (4) is “linear” in the
following sense.

Lemma 2. Let 4, and B be (r + 1)-sectors of the domain of &, and at the same
time, let n, ;(A) = nf,,(B) for some se {1, ...,r + 1}.3) Then any linear com-
bination a4 + BB with a, f € R belongs to the domain of k, and there exists

s
"r+1

a unique projection n? with the property
k(xAd + BB) = ak(A) + Bk(B).

s q
Tl "r

We shall not prove the lemma here.

4.5. In the following text, we shall deal with tangent bundles of orders r £ 3
only. In the case r = 2, coordinates of 2-sectors at a fixed point x € M will be
written into the schema X4, — X%; — X%,, *) which corresponds to the structure

Pra

TpM
TM < T, M —> TM
of double fibred manifold on T, M. For py: TM — M, we obtain a descending
map k,,u: V(TM) —» TM with coordinate expression
kpM :X']’_o - X{l - OﬂX{I.
It can be easily verified the following:

Lemma 3. Let 4, and B be 2-sectors with T, (4) = T,,(B) = 0. Then 4, B
belong to the domain of k,, and

ky (aA + BB) = ak, (4) + Bk, (B). )

Ty

For r = 3, it is convenient to arrange coordinates of a 3-sector 4 at x € M into
a regular coordinate triangle, see [3],

3) That is, 4, B belong to the same fibre with respect to 7;, ,, and they can be added in this
fibre. .
4) In our considerations, pullbacks X3:..o of coordinates x’ will be omitted.
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. j j j
A4: XIOO Xuo XOIO

X ©6)
X’101 X(I)ll

J
XOOI

corresponding to the commutative diagram (7):

TM — . .M P o
TPEH
Pry Py
VRl Lp,
e N
o M
\ 4

™

Commutativity of this diagram follows by functoriality of T and by appliyng of
commutative diagram (1) on vector bundles Tp,,: T,M — TM and ppp: ToM —
— TM, respectively. Coordinate expression of the maps kpn‘, kT'u‘ and Tk,u are

. . J .
Xioo Xito X010 *
i
Xlll . ; ;
j — j
0 Xo11 korae X100 — X111 — Xo11,
0

and
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X{OO X{IO 0

X | |
X{Ol 0 Tkpye X{IO — X{ll - X{)Ol-
X001
Obviously, kTPu = kaM o Tiyy, and
TkpM = iMokaMoTiMoiTM. (8)

Hence it suffices to use kpm only.

Lemma 4. Let 4, and B be 2-sectors on M, and let both 4 and B belong to the
domain of kpn‘. Let «, B e R. If 4, B belong to the same fibre with respect to the

projection T, py, then

kaM(aA + fB) = cxkpm(A) + ,kam(B). )
TyPy Top
If A, B are elements of the same fibre with respect to Tpry, then
kpm(ch + pB) = ockpm(A) + [)’/cpm(B). (10)
Thra Prm

If A, B belong to the same fibre with respect to pr,y,, then

ky, (@A + BB) = ok, (A) + Bk, (B).

Pr,m Prym

4.6. The action of the symmetric group S; on T3 M may be described in terms

of canonical involutions as follows. If ¢ = (i g ;), then iy = igpy o Tiy coOI-
. 123 . 12 , .
responds to the permutation 213 , Tiyg o ipp corresponds to 23 1) M o Tiy

corresponds to <; ? ;) For ¢ = (; ; i), iy = Tiypoippyo Tiyy =iryo Tiyo
o iry. Finally, the identical permutation induces the identity 17,,. In local co-
ordinates, iy, Tip, and Tiy o ipp o Tiy, are “‘axial symmetries” of the regular
coordinate triangle (6), while iz o Tiy and Tiy o iy, are “rotations” with angles
n/3 and —n/3, respectively:

irn(4): XYoo X0 Xho1 Tiy(A): Xbyo X410 X 00

J J
. X111 . ) X1 .

J j J J
Xi10 Xo14 X011 X101

) j
XOIO 001
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TiMOiTM(A): iTMo TiM(A):
. ] . ;
Xoor Xy XMoo Xho Xhu o Xoo
X1 X1 :
j j i J
Xo11 Xi10 X0 Yo

j J
X{no X100

Tiy o igas o Tipg(A):

. ; i
Xho1 X011 Xo10
J

111

j j
Xlol Xllo

X}oo
Consequently, by (3) the coordinates X7, are not changed by any ig.

5. Vector fields and Jacobi identity

5.1. A smooth map &: M — TM is called a vector field on a manifold M, if
Puo & = 1, thatis, & is a smooth section of the projection py: TM — M. For
a vector field &: M — TM, prolongations T¢: TM — T,M and T,&: To;M —» T3 M
satisfy Tpy o TE = lpp and Typy 0 To& = lp,y, respectively. '

Remark. 7¢, or 7,¢ is not a vector field on TM, or T, M, respectively. But let
us observe that iy, o T¢ is a vector field on TM, and Tiy o iy o T,E is a vector
field on T, M. In general,

T,_yiygono Ty, Mo ...oip _pmoT,$:=T ¢ for 1 £s<r

is a vector field on 7,M with the flow exp #(7,£) = T,(exp ¢£) (see also [1]).
Let &, and 5 be two vector fields on M with coordinate expressions & = £/(8/0x7)
and n = #9(8/0x7). Let us consider compositions

. ani . .
Tyeé:n' — — & - &
neg:in Py ¢
and
, ;08
iyo TEo iy —i.r]’—ﬁ',
ox’

Given a point x e M, (Tn o &) (x) and (iy o T¢ o 1) (x) are 2-sectors of the same
fibre with respect to pry. Hence the difference

91



. i aﬂi i aﬁi i
ol —jo Téonin ——+8 - =—p')-0
Tno & —iyo Téon:n (axfé axj">

belongs to the domain of k,,, . It was shown in [1], that

k, (Thol —iyoTEon)i=Thol = TEon
Pur P

™™

Prm

coincides with the classical bracket [, 7] of vector fields. To simplify the notation,
we set

rmsemee) X

[&n]=:Tno& —iyoTéon.

Prm
Hence

(&) = Ky, o (8,71, (1

5.2. Jacobi identity. Three vector fields £, 7, and { on M satisfy the classical
well-known formula

(L& n1, 81 + [[n, €0, €1 + [[¢, &1, n] = 0, (12)

so called Jacobi identity, where 0 denotes the zero vector field on M. The previous
considerations enable us to prove it in a new way, without refering to functions.

———

Proof of Jacobi identity. By (11), [[£, #], {] = kpp, o [fé-:r_f] o {]. Further,

[[f’ "]’ C] =T{o kpM OEE’-'H —iyo T(kpM ° [éa rl]) ol.

Pry
Now T¢ o k,,M = ka
diagram N

vim E vr,m

kle lk"TM

™35 T,m

el A

M= TM

v ° VT¢, since k is a natural transformation, and thus the

re———
is commutative. But [¢, ] e VTM, hence

T¢o kpM o[&n] = kaM o Tyl o [f;'l]-
By (8), and functoriality of 7,

P

imoT(ky o[&n]) =ipo Tk, oT[&n] =k, oTiyoirmoT[En].

Hence we conclude by (10) that

[[‘:’ ’7]’ C] = kp”, °(T3o [f, '7]) - kaM o(Tipoiryo T[£; ’7] o0,

Prm
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[[é, 7]]’ CJ = kaM o (T25 ° [é’ ,']T— TI'M o iTM ° T[é? '7] ° C)

Prm

It remains to show that the assumptions of (10) are satisfied. But that follows
immediately, if we express projections of our 3-sectors by diagrams of the type (7):

¢ Tlon q ¢ iyoTnol n
T3¢ o [6 1] Tiy oigso TLE ] ¢
o T 0 [
0 0

Further, we have

Tytollin] =Tyl oThol — ippoTrloTEon,

Pr,m
since
¢ TCon n
T o [Eon]
o fem
0
and
¢ T(on 1 { Tlon
Ty, oTnok irmoTol o TEo
T o & Thoé T o & ioTEon
¢ 4
Similarly, —
T[E,n]ol =TooTEol — TipgoToéoTyol,
Tp‘ru

because
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n F[E—;l-j 0

& Mot
Tno( 0
14
and
1 Tnoé ¢ n iyo T¢on 4
T,noTEol Tiyo T2§ Tno {
Tno( TEo( Tyo ¢ T¢o ¢
4 4
Let us set
MEm ) =:(TyloTnol — ipyoTrloTEon)
Pr,m
—TiMol'TMo(Tzi]oTafoC - Tl'MoTZfoTt]oC).
TPy TPram

The corresponding diagram of projections is

4 [ ¢] 0

A&, 0)
(13)
0 0

p—

Now [[&,n], €] = k,_ oA(& 1, {) with
Prayg o= Try -
L <=1 [[&n], (] i—=0. (14)
By (13) and (14), the assumptions of (5) and (9) are satisfied. Therefore

€ TIME ) = € Lky, o (e n1.¢] =

%) € 3 will denote a cyclic summation. Thus € Y [[£, 5], ¢] = [[£, 71, &1 + [, &1, 81 +
+ [I¢, &1. 1)

94



\\

ks © (6 Lk o MER D) (0Y ()

= Kooy o€ LMEN O = (by O).
2P
Here

3¢ ¢Yna o

Tpm

€3 MEn D

Tapm

0 0

By the definition of A(&, 11, {), it is clear that
X{ll O% Z 1(65 n, C) = 05

T2pm
since the maps iy, o € S5 do not change coordinates X%,,, and each term of the
form iy 0 Th{ o T o & occures in the sum exactly two times, always with opposite
signs. Herce

CY (== kpppo® Y, M0, ) =0 === 0.

M T2pMm
Consequently, € Y [[&, n, {] is a zero vector field on TM. QED.
§2.74
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O GEOMETRII TRETIHO TECNEHO BANDLU
Shrnuti

Clanek navazuje na prace I. Kolate a knihu J. E. Whitea, [3). Je pfispévkem ke studiu geo-
metrickych vlastnosti tfetiho teného bandlu T5M = T(T(TM)) hladké variety M. Puvodnich
vysledkil je dosaZeno pfi popisu a interpretaci operace symetrické grupy na tfetim te¢ném bandlu
a pfi studiu operace sestupu na libovolném r-krat iterovaném te¢ném bandlu. V zavéru je pomoci
téchto novych metod podin novy dikaz Jacobiho identity pro vektorovd pole. Metodicky
vyznam tohoto nového postupu spoéiva v tom, Ze se neuziva funkci, coZ mitZe mit vyznam pro
néktera dalsi zobecnéni této problematiky.

O TEOMETPUMN TPETHBEI'O KACATEJIBHOTO PACCJIOEHNA A
Peziome

Cratba ucxomut u3 uaeit M. Konapxa u M. D. Baitra. PaccMaTpuBaloTcs 30€Ch HEKOTOPHIE
TeOMETPHIECKHE CBOMCTBA TPEThETO KacaTenbHoro paccioenus I3M = T(T(TM)) npou3BOILHOTO
rNagxoro MHOrooGpasust M, a HMEHHO ero rpynua cuMmmerprii. Taloke ompenensercs HoBas one-
paius ,,cOpocHBaHMA Ha KacaTeNbHOM MPOCTPAHCTBE r-ro mopsgka 1,M, ¥ yCTaHaBIIMBAIOTCH
ee cBoiictBa. JOCTHIHYTHIC Pe3yabTaThl NPHMEHSIOTCS K J{OKa3aTeNbCTBY TOXAECTBa SIKOOH.
Hns ckobku [, 1] nByx BekTOpHBIX NoNeil & U Ha M ynotpebiserca onpeneieHe OCHOBAaHHOE
Ha FeOMETPHYECKUX ONEpaLysaX Ha BTOPOM KacaTeIbHOM PACCTOCHNH. DTO HOBOE HOKa3aTEeLCTBO
HE MONb3yeTCs QYHKIMAME, YTO MOXKET OKa3aThCsl IOJIE3HBIM ISl HEKOTOPHIX Gonee obmux pac-
CYXICHUN.
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