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A NOTE TO THE FOURIER METHOD OF SOLVING
PARTIAL SECOND-ORDER
DIFFERENTIAL EQUATIONS
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The Fourier method is known for a long time in the
partial differential equations. Combinating this method with
a linear transformation enables us to solve a greater class
of linear partial differential equations of the second order.

This paper is a continuation of paper [3].

Let us study the equation

2u 2 u _ b Dzu
al(t) th + az(t) ? + as(t)u = 1(y) g—yz +
+ by(y) ;’: + by(y)u (1)

for tévjl, \ 632, where 31 and 32 are real bounded or un-

bounded intervals.

Definition: We call u(t,y) a solution of equation (1) on
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(t,y)€ 31><32
and u(t,y)e CZ(Jlx 32).

if u(t,y) satisfies equation (1) everywhere

Theorem 1: Let (1) be an equation defined in the intervals
t€I, =<to,t1), t Cty or t€3 =<t , o) and y€I, =

= <YO-Y15.. Yo<Yq OF y€:12 = (yo, ®). Let Cq # 0, ¢y, Cq be
real constants such that Ql(Z) is a solution of equation

Qi (2)2% = ¢; 2 Q{(2) *+ Qu(Z)(Cy + Cy Z°) (2)

in the interval 2€{Z;, ), 2, >0 and let d; # 0, d,, d, be
real constants such that Q2(Z) is a solution of equation

“ 2 . 2

Q3(2)2° = d; Z Q5(2) + Qy(2)(dy + dgZ°) (3)
in the interval Z€ <ZZ' ), 22> o.

Let us suppose that cza,(t), d3b1(y)>0, al(t)ecz(Jl),

1 : :
by (y)€ C2(3,), a,(t)€Cl(3;) and by(y)€cl(J,) is true for
Y€:)2, te 31. Denote

t, y
ds ds
X(t) = + Kl' Y(y) = + |<2 .
.[o i;csal(s) 'go i;d:sbl(s)
t
) £C1 11 ay(s) de
F(t) = (x(t)) 2 “(x(t)) Ze 2 foals

(5N
N
1
LS L
‘<H<
o
N
—~
1]
~

- X4 -
G(y) = (Y(y)) Z3(v*(y)) Ze 2V, B(s) %

where Kys» K, are real positive numbers. Suppose that

2
2

3 7 1.2

?al(t)-b ZaZ(t)

-1 e
1 2. %
8;(t) = —————s (= cy + = + C,) + -
3 cg(x(t))® 4 t 2 2 ag(t)
- Lare) + ay(t) -, 33(*)
4t ap(t) 2
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3, .2 1.2
. i d , == by“(y) + Fb5(y)
b = + == + ) + -
R I by (v)
ba(y) . by(y)
1. 2(Y) . 5y
ST G 2

and that the series

u(t,y) = LE%ER+ A,Q1(1X(r))F(t)oz(xv(y))e(y{]e c?(3,% 3,)

(where for every A€M is Ap a real number) is convergent and
also the first and second partial derivative, term by term
of this series with respect to t and y is convergent to the
first and second partial derivative of the function u(t,y)
with respect to t and y. Then u(t,y) is a solution of equa-
tion (1).

The proof is based on verifying equation (1), and we
will leave it out.

Theorem 2: Let (1) be an equation defined in the interval
teJy = <t°,t1> , t,<t, or t€3, =<0, w) and in the inter-
val y€32 = <yo,y1) , y0< Yq - Let c,d be non-zero real con-

stants such ' at Q (Z) is a solution of equation

Q}(2) = cQ,(2) (4)
and Q,(Z) is a solution of equation .*

Q3(2) = do,(2) (5)

in the interval z €0, ®). Suppose ai(t) and b;(y) (i =1,2)
possess the same properties as in Theorem 1 and for every
t€d,, y€J, cay(t), db, (y) > 0. Denote

t

X(t)=f—-9-9— ,

Y
ds
Yiy) = [ ——
t, ca,(s) yfo ‘,dbi(s)
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1 ——-T———ds
F(t) = (cay())® o to 20T
1 ¢ bpls)
1 3§ Borey 9
G(y) = (dby(yn*e °

Suppose that

3 .2 2
~= a t) + aj(¢t
2221 (t) 2(t) ay(t) | a (t)

a3(t) = al(t) > a"(t) + (ai(t) > (6)
3 .2 2
= b7 (y) + b5(y)
2 1 2
b3(y) = 4 - % b"(y) + (bZ(Y))_b (Y)

by () by (v) 2 )
-and besides that the series
~ 2
u(t,y) -[&R+ Ay (AX(£))F( )0, (A (1))6(y)]€C% (323,

(where for every A€M Ap is a real number) is convergent and
also the first and the second partial derivative, term by
term of this series with respect to t and y is convergent to
the first and second partial derivative of the function
u(t,y) with respect to t and y. Then, u(t,y) is a solution

of equation (1).

This proof is also based on verifying equation (1). As
in Theorem 1 we will leave it out. ’

Remark 1: The following method is generally known. Let (1) be
the equation with the following boundary conditions

u(ty,y) fa(v) u(ty,y) fo(y)

gl(t) U(t,yl) = gz(t)

1

u(t,yy)
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This problem will be divided into four partial problems:

1) u(tg,y) = fa(y) u(tyay) = u(t,yy) = u(t,yy) =0
2) u(ty,y) = fo(y) u(ty,y) = u(t,y,) = u(t,y,) =0
3) u(t,ygy) = g4(t) u(ty,y) = u(ty,y) = u(t,yy) =0
4) u(t,yg) = g5(t) u(ty,y) = u(ty,y) = u(t,y,) =0

The solution of the original problem is a sum of the solutions
of those four partial problems 1) - 4).

Remark 2: For example, let us suppose that in Remark 1 the
function g,(t) is expressible as a Fourier series with a
weightX“(t) that the ortogonal function QZ(Z) in the Fourier
series is satisfying equation (3) or (5) that the function
Q,(2) is satisfying equation (2) or (4) and that for every
A € M we have

QAX(ty)) = Q@X(t;)) = Q(a¥(yy)) = 0, Q(AY(y,y)) # O

Then the solution of equation (1) with the boundary conditions
U(tonY) = u(ty,y) = U(tnyl) =0, U(t:YO) = 91(t)

may be expressed as described in Theorem 1 or Theorem 2 under
the condition that the solution u(t,y) satisfies the con-
vergence conditions of Theorem 1 or Theorem 2.

Remark 3: Let us remark that functions sin y, cos y are
suitable ortogonal functions, for example for the bounded
conditions u(t,yy) = u(t,yy) = 0. On the other side, the
function e¥ - e7Y is suitable for the bounded conditions
u(t,0) =

% = u(t,0)= 0. The function e X is suitable for
Y
conditions concerning the behaviour u(t,y) at infinity.

Remark 4: Conditions u(t,y)é& Cz(t,y) and u(t,y) satisfying

equation (1) everywhere, are very strong. We may weaken them
for example in the sence that u(t,y) satisfies equation (1)
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everywhere excepting the set of points of the Lebesgue
measure O. Then it is necessary to change some assumptions
in Theorem 1 or Theorem 2.

Example: Find a solution of equation (1) under the boundary
conditions

u(tOIY) = u(t1nY) = u(t,yo) = u(t,yl) =0,

where t_, ty, y,, Yy, are real numbers, t {t;, y,{yy , on

the region (t,y)€3J;X3J, = (<t0,t1> , (yo,y1> ). Suppose
that (6) and (7) hold, a,(t), by(y)>0 for every (t,y)€ 3, %3,

and 8, (£)€ ®(3y), by (V)€ C3(I,), 8,(1)€ CH (), by(Y)ECT(Iy).

Solution: Write

f Y1
c=(J ds 2 12'd=(J ds )2 1
\{a (s) r ,]b (s) o
t0 ! yo !

In Theorem 2 we set Q,(2) = Q,(Z) = sin Z. Then, we have

u(t,y) = A sin(j.

Y
VC al(s ;,f \/d bl(s)

L -1 f az(s) } b (s)
Z 2t al(s) Yo 1(s)
. (ag(t) by(yN™ e

which is the solution sought.

The paper was suggested by Professor M.Laitoch.
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POZNAMKA K FOURIEROVE METODE PARCIALNfCH DIFERENCIALNECH
ROVNIC DRUHEHO RADU

Souhrn

V &lanku se ukazuje moZnost pouZiti Fourierovy metody
k reseni parcialni diferencidlni rovnice 2.radu typu

Izu b t = b _I__ 2“ b —I._"..‘.
a;(t) '—I';:i + ay(t) 1e + ag(t)u 1(Y) Iy2 + by(y) Ty +
+ b3(y)u

Pritom se vyuZiva Kummerovy transformace fedeni obylejné li-

A ’ s : s L ’ . z
nearni diferencidlni rovnice 2.r&adu.

Pouziti metody je ukdzéno na prikladé.

SAMEUAHNE K METOAY ¢VPRE LN®PEPEHUMAJIBHOIO YPABHEHNSA

B YACTHHX IMPOM3BOILHHX BTOPOI'O IOPSIHA

PespMe

B cTaThe NMOKasHBEETCH BOSMOXHOCTL pemarh Auddepenumes -
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HO€ ypeBHEHME C YACTHHMM NPOUSBOZLHHMM BTODOrO NOpSAKE TANA

2
I u I u I u I u
a,(t) =5 + ay(t) = + ag(t)u = by (y) =5 + by(y) — +
1 It2 2 It 3 1 I2 2
+ b3(y)u
uercaom ®ypre. Mcnoarayerca mpeoGpasoBaHue Hyummepa nJas

COHKHOBEHHOTrO nuHeitHoro AuddepeHuueanbHoro ypeBHeHUS BTOPOTO
nopALKa.

[lpuMeHeHMe MeTOJa NMOKA38HO HA IpuMepe.
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