Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Jitka Laitochová

On a canonical two-dimensional space of continuous functions

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 27 (1988), No. 1, 111--148

Persistent URL: http://dml.cz/dmlcz/120212

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1988
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

aCTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS

FACULTAS RERUM NATURALIUM
1988 MATHEMATICA XXVII

VOL. 91

Katedra matematiky pedagogické fakulty Univerzity Palackého v Olomouci
Vedouci katedry: Doc. RNDr. Frantisek Zapletal

ON A CANONICAL TWO-DIMENSIONAL SPACE OF CONTINUOUS FUNCTIONS

JITKA LAITOCHOVA
(Received January 7, 1987)

Abstract

This paper is devoted to a study of the global transformation of two-dimensional regular and strongly regular spaces of continuous functions from a geometrical point of view. Here the so-called canonical space of continuous functions is of great importance, since it enables us to characterize the spaces of continuous functions under consideration. 1. The set of real numbers will be denoted by R. If j denotes an open interval $(a, b), a, b \in R$, where a may be $-\infty$ and b may be $+\infty$, then the symbol $C^{(0)}(j)$ will stand for a set of continous real functions of the real variable t in the interval j, while the symbol $C^{(n)}(j)$, where n is a natural number, will stand for a set of real functions of the real variable t in the interval j, having continuous derivatives up to and including the order n.

Definition 1.1. Let $y_{1}, y_{2}, C^{(0)}(j)$. We say, the functions are dependent on the interval j if there exist such numbers $k_{1}, k_{2} \in R, k_{1}^{2}+k_{2}^{2}>0 \cdot$ that the identity

$$
k_{1} y_{1}(t)+k_{2} y_{2}(t) \equiv 0
$$

is valid in the interval j.
If for every two numbers $k_{1}, k_{2} \in R, k_{1}^{2}+k_{2}^{2}>0$ and for every interval $j_{1}, j_{1} \subset j$

$$
k_{1} y_{1}(t)+k_{2} y_{2}(t) \not \equiv \quad 0 \text { on } j_{1}
$$

holds, we say that the functions y_{1}, y_{2} are independent of the interval j.
Definition 1.2. Let $y_{1}, y_{2} \in C^{(0)}(j)$ be independent functions of the interval j, and $k_{1}, k_{2} \in R$ be arbitrary numbers. By a set S of all functions in the form

$$
k_{1} y_{1}+k_{2} y_{2}
$$

we mean a two-dimensional space of continuous functions in the interval j or also a space generated by the functions y_{1}, y_{2} with a definition interval j.

Any ordered pair $\left(z_{1}, z_{2}\right)$ of independent functions $z_{1}, z_{2} \in S$ will be called the basis of the space S.

Definition 1.3. Let $t_{o} \in j, z \in S$. The point t_{o} will be called the zero of the function z if $z\left(t_{o}\right)=0$.

If t_{o} is a zero of all functions of the space S, then it is called the singular point of the definition interval j of the space S. In the contrary case the point t_{o} will be named the regular point of the definition interval j of the space S.

The space S is called regular if the definition interval j possesses regular points, only.

```
The above definitions are used by K.S \(t\) a ch in [5].
```

Definition 1.4. Let j, J be open intervals in R. Further let S_{1} and S_{2} be spaces of continuous functions generated by the functions Y_{1}, y_{2} and Y_{1}, Y_{2} with the definition intervals j and J, respectively. Say, the space S_{2} is globally transformed onto the space S_{1} if there exist
a) a bijection $h: j \rightarrow J, h \in C^{(0)}(j)$,
b) a function $f \in C^{(0)}(j), f(t) \neq 0$ for $t \in j$,
c) a matrix $A=\left\|a_{i k}\right\|, i, k=1,2, a_{i k} \in R, \operatorname{det} A \neq 0$
to the vectors $\mathcal{Y}=\left(y_{1}, y_{2}\right)^{\top}, \underline{Y}=\left(Y_{1}, Y_{2}\right)^{\top}$, so that for every $t \in j$ the equality

$$
\begin{equation*}
\underline{y}(t)=A f(t) \underline{Y}[h(t)] \tag{1.1}
\end{equation*}
$$

holds, where (.,.) ${ }^{\top}$ denotes the transposed vector to the vector (.,.). The mapping (1.1) will be called the global transformation and will be written as $\tau=\langle A f, h\rangle$.

The above definition of global transformation corresponds to that used by F.N e $u \mathrm{~m}$ a n in [4] for spaces of linear $n-t h$ order differential equation solutions.

The equivalence of definitions of the global transformation used by O.B o r ù $v k a$ in [1], F.N e uman in [4] and K.S t a ch in [6] is discussed in [2].

Definition 1.5. Let $y_{1}, y_{2} \in C^{(0)}(j)$ be independent functions of the interval j. We say that the quotient $y_{2}(t) / y_{1}(t)$ is by parts increasing resp. decreasing in the interval $j=(a, b)$ provided the following two conditions A and B are satisfied.

Condition A. The quotient $y_{2}(t) / y_{1}(t)$ is an increasing resp. decreasing continuous function in the intervals described by some of the following situations a) - d):
a) in the interval j if $y_{1}(t) \neq 0$ for $t \in j$;
b) in every interval $\left(t_{i}, t_{i+1}\right)$, where t_{i}, t_{i+1} for
$i=0, \pm 1, \pm 2, \ldots$ are the neighbouring zeros of the
function $y_{1}(t)$ in j and the endpoints a, b of the in-

[^0]$$
\lim _{t \rightarrow t_{i}+} \frac{y_{2}(t)}{y_{1}(t)}=-\infty \quad \lim _{t \rightarrow t_{i}} \frac{y_{2}(t)}{y_{1}(t)}=+\infty,
$$
resp.
$$
\lim _{t \rightarrow t_{i}} \frac{y_{2}(t)}{y_{1}(t)}=+\infty \quad \lim _{t \rightarrow t_{i}-} \frac{y_{2}(t)}{y_{1}(t)}=-\infty
$$

Definition 1.6. The regular space S of continuous functions generated by the functions y_{1}, y_{2} with the definition interval j is called strongly regular exactly if the quotient $y_{2}(t) / y_{1}(t)$ is by parts increasing or decreasing on the interval j.

Lemma 1.1. Let S be the space of continuous functions generated by the functions y_{1}, y_{2} with the definition interval j. Let $u, v \in S$ be arbitrary functions, whereby

$$
\begin{align*}
& u=c_{11} y_{1}+c_{12} y_{2}, \tag{1.2}\\
& v=c_{21} y_{1}+c_{22} y_{2},
\end{align*}
$$

where $c_{i k} \in R$ are convenient numbers, $i, k=1,2$.
Then it holds: The functions u, v are dependent (independent) on j if and only if
$c_{11} c_{22}-c_{12} c_{21}=0 \quad\left(c_{11} c_{22}-c_{12} c_{21} \neq 0\right)$.

Proof. Let $u=c_{11} y_{1}+c_{21} y_{2}$, $v=c_{21} y_{1}+c_{22} y_{2}$,
where the numbers $c_{i k} \in R, i, k=1,2$. Two possibilities can occur:
a) the determinant $\left|c_{i k}\right|=0$ or
b) the determinant $\left|c_{i k}\right| \neq 0$.

Ad a) It holds
$c_{11} c_{22}-c_{12} c_{21}=0$.
Now there can two cases arise: Either all numbers $c_{i k}$, $i, k=1,2$ are equal to zero or at least one of the numbers $c_{i k}$ is different from zero. We will show that in both cases the functions u, v are dependent on the interval j.

1) Let $c_{11}=c_{12}=c_{21}=c_{22}=0$. Then $u \equiv 0, v \equiv 0$. Thus u, v are dependent on j.
2) Let f.i. $c_{11} \neq 0$. It then follows from (1.2) on taking account of (1.3) that

$$
\begin{aligned}
c_{11} v & =c_{11}\left(c_{21} y_{1}+c_{22} y_{2}\right)=c_{11} c_{21} y_{1}+c_{11} c_{22} y_{2}= \\
& =c_{11} c_{21} y_{1}+c_{12} c_{21} y_{2}=c_{21}\left(c_{11} y_{1}+c_{12} y_{2}\right)=c_{21} u ;
\end{aligned}
$$

whence it follows that the functions u, v are dependent on j, since the identity

$$
c_{21} u-c_{11} v \equiv 0
$$

on condition $c_{21}^{2}+\left(-c_{11}\right)^{2}>0$ is satisfied.
Likewise we may proceed for $c_{12} \neq 0$ or $c_{21} \neq 0$ or $c_{22} \neq 0$.

Ad b) Let $c_{i k} \neq 0$. We will show that in this case the functions u, v are independent of the interval j We argue by contradiction. If there were for every two numbers k_{1}, k_{2}, $k_{1}^{2}+k_{2}^{2}>0$,

$$
k_{1} u(t)+k_{2} v(t) \equiv 0
$$

in the interval $j_{1}, j_{1} \subset j$, then it would also be

$$
k_{1}\left(c_{11} y_{1}+c_{12} y_{2}\right)+k_{2}\left(c_{21} y_{1}+c_{22} y_{2}\right) \equiv 0
$$

or

$$
\left(k_{1} c_{11}+k_{2} c_{21}\right) y_{1}+\left(k_{1} c_{12}+k_{2} c_{22}\right) y_{2} \equiv 0
$$

whereby $\left(k_{1} c_{11}+k_{2} c_{21}\right)^{2}+\left(k_{1} c_{12}+k_{2} c_{22}\right)^{2}>0$, since there cannot simultaneously be

$$
\begin{align*}
& k_{1} c_{11}+k_{2} c_{21}=0, \\
& k_{1} c_{12}+k_{2} c_{22}=0, \tag{1.4}
\end{align*}
$$

because of the fact that $\left|c_{i k}\right| \neq 0$ and the system of equations (1.4) would possess a trivial solution $k_{1}=k_{2}=0$, only. This implies that the functions y_{1}, y_{2} would be dependent on j, contrary to the assumption. Hence

$$
k_{1} u+k_{2} v \neq 0
$$

in every interval $j_{1}, j_{1} \subset j$ and the functions u, v are ingependent of j.

Lemma 1.2. Let S_{1} and S_{2} be spaces of continuous functions generated by the functions Y_{1}, Y_{2} and Y_{1}, Y_{2} with the definiion intervals j and J, respectively.

Let S_{2} be globally transformed onto S_{1}. If S_{2} is a regular space, then S_{1} is also regular. If S_{2} is a strongly regular space, then S_{1} is also strongly regular.
$P r o o f$. We argue by contradiction. Let S_{2} be a regular space. If S_{1} were not a regular space, there would exist a singular point $t_{0} \in j$ and it would hold

$$
k_{1} y_{1}\left(t_{0}\right)+k_{2} y_{2}\left(t_{0}\right)=0
$$

for every $k_{1}, k_{2} \in R$.
Consequently, it would also hold

$$
\begin{align*}
f\left(t_{0}\right)\left[k _ { 1 } \left(a_{11} Y_{1}\left(h_{0}\right)\right.\right. & \left.+a_{12} Y_{2}\left(h_{0}\right)\right)+k_{2}\left(a_{21} Y_{1}\left(h_{0}\right)+\right. \\
& \left.\left.+a_{22} Y_{2}\left(h_{0}\right)\right)\right]=0 \tag{1.5}
\end{align*}
$$

where $h_{0}=h\left(t_{o}\right)$. Since in consequence of Lemma 1.1 the functions $\tilde{Y}_{1}, \tilde{Y}_{2}$, where

$$
\begin{aligned}
& \tilde{Y}_{1}=a_{11} Y_{1}+a_{12} Y_{2}, \\
& \tilde{Y}_{2}=a_{21} Y_{1}+a_{22} Y_{2},
\end{aligned}
$$

are independent, then by condition (1.5) the point h_{0} would be a singular point of the space S_{2}, because $f\left(t_{o}\right) \neq 0$, which contradicts our assumption.

Let S_{2} be a strongly regular space. From equation (1.1) we have

$$
\frac{y_{2}(t)}{y_{1}(t)}=\frac{f(t)\left(a_{21} Y_{1}[h(t)]+a_{22} Y_{2}[h(t)]\right)}{f(t)\left(a_{11} Y_{1}[h(t)]+a_{12} Y_{2}[h(t)]\right)}=\frac{\tilde{r}_{2}[h(t)]}{\tilde{Y}_{1}[h(t)]} .
$$

where $\tilde{Y}_{1}=a_{11} Y_{1}+a_{12} Y_{2}, \tilde{Y}_{2}=a_{21} Y_{1}+a_{22} Y_{2}$ are independent functions of S_{2}. Since S_{2} is strongly regular, the quotient $\tilde{Y}_{2} / \tilde{Y}_{1}$ is by parts increasing or decreasing. It follows from the conditions for the bijection $h=h(t)$ that the function h either increases or decreases in j, consequently the composite function $\tilde{Y}_{2}(h) / \tilde{Y}_{1}(h)$ is by parts increasing or decreasing in j. Hence, the quotient y_{2} / y_{1} is by parts increasing or decreasing in j. So the space S_{1} is strongly regular.
2. We will apply the geometrical methods presented by F. Neum a n, f.i. in [3] and [4] to construct now a canonical form of a strongly regular space of continuous functions.

Lemma 2.1. Let S be a regular space of continuous functions generated by the functions $y_{1}=y_{1}(t), y_{2}=y_{2}(t)$ with the definition interval j. Let next

$$
\begin{align*}
& \xi_{1}=y_{1}(t), \tag{2.1}\\
& \xi_{2}=y_{2}(t),
\end{align*}
$$

where $t \in j$, is a parametrically defined curve \mathcal{K} in a rectangular coordinate system $0 \xi_{1} \xi_{2}$. Then the curve \mathcal{K} is not going through the origin of the coordinates.
$\mathrm{P} r \circ \circ \mathrm{f}$. By the assumption the functions y_{1}, y_{2} are understood to be independent in the interval j and every function $y \in S$ is of the form $y=k_{1} y_{1}(t)+k_{2} y_{2}(t)$, where $k_{1}, k_{2} \in R$ are convenient numbers. If the curve \mathcal{K} were going through the origin of the coordinates, then there would exist a number $t_{0} \in j$ such that $y_{1}\left(t_{0}\right)=y_{2}\left(t_{0}\right)=0$. However, in such a case there would hold $y\left(t_{0}\right)=k_{1} y_{1}\left(t_{0}\right)+k_{2} y_{2}\left(t_{0}\right)=0$ for every pair $k_{1}, k_{2} \epsilon R$. The point t_{0} would thus be a singular
point of the space S, which contradicts our assumption on the regularity of the space S.

Lemma 2.2. Let S be a regular space of continuous functions generated by the functions y_{1}, y_{2} with the definition interval j. Let for $y_{3} \in S$ be $y_{3}=k_{1} y_{1}+k_{2} y_{2}$, where $k_{1}, k_{2} \in R$ are convenient numbers. The point t_{i} is a zero of the function y_{3} exactly if the point $P_{i}=\left[y_{1}\left(t_{i}\right), y_{2}\left(t_{i}\right)\right]$ is the intersection of the curve \mathcal{K} with the following straight line

$$
k_{1} \xi_{1}+k_{2} \xi_{2}=0
$$

$P r o o f . \quad$ If the point t_{i} is a zero of the function $y_{3}(t)$, then $k_{1} y_{1}\left(t_{i}\right)+k_{2} y_{2}\left(t_{i}\right)=0$.
Thus, the point P_{i} with the coordinates $\left[y_{1}\left(t_{i}\right), y_{2}\left(t_{i}\right)\right]$ is the intersection of the straight line $k_{1} \xi_{1}+k_{2} \xi_{2}=0$ going through the origin of the coordinates with the curve \mathcal{K} defined by the equations (2.1).

If the point $P_{i}=\left[y_{1}\left(t_{i}\right), y_{2}\left(t_{i}\right)\right]$ is the intersection of the straight line $k_{1} \xi_{1}+k_{2} \xi_{2}=0$ going through the origin of the coordinates with the curve \mathcal{K} defined by the equations (2.1), then $k_{1} y_{1}\left(t_{i}\right)+k_{2} y_{2}\left(t_{i}\right)=0$ or $y_{3}\left(t_{i}\right)=0$. Hence, the point t_{i} is a zero of the function $y_{3}(t)$.

Expressing the curve \mathcal{K} defined by the equations of (2.1) in polar coordinates ρ, φ gives

$$
\begin{align*}
\rho & =\sqrt{y_{1}^{2}(t)+y_{2}^{2}(t)} \tag{2.2}\\
\operatorname{tg} \varphi & =y_{2}(t) / y_{1}(t) \tag{2.3}
\end{align*}
$$

for $t \in j$.

Theorem 2.1. Let S be a regular space of continuous functions generated by the functions y_{1}, y_{2} with the definition interval $j=(a, b)$.

The function $\rho=\rho(t)$ defined by (2.2) is continuous and positive for $t \in j$.

The function $\varphi=\varphi(t)$ defined by (2.3) is an increasing (decreasing) continuous function in j exactly if S is a strongly regular space.

Proof. Because of the fact that $y_{1}, y_{2} \in C^{(0)}(j)$ we have $\rho \in C^{(0)}(j)$. The positivity of the function $\rho=\rho(t)$ in j follows from the fact that S is a regular space. Hence, there cannot exist any $t_{0} \in j$ such that $y_{1}\left(t_{0}\right)=y_{2}\left(t_{0}\right)=0$ would hold.

Suppose now that $\varphi=\varphi(t)$ is an increasing (decreasing) continuous function in j. Let us denote by J a set of functional values of the function $\varphi=\varphi(t)$ for $t \in j$. Now there may occur the following cases:
a) J does not contain any of the numbers $-\frac{\pi}{2}+i \pi$,
i being an integer,
b) J contains all numbers $-\frac{\pi}{2}+i \tilde{H}$, i being an integer,
c) there exists such an integer k that J contains all
numbers $-\frac{\pi}{2}+k \pi+i \pi, i=1,2, \ldots$ or it contains all
numbers $-\frac{\pi}{2}+k \pi-i \overparen{k}$ for $i=1,2, \ldots$.
d) there exists such an integer k that J contains all
numbers $-\frac{\pi}{2}+k \pi+i \pi, i=1, \ldots, n$, where n is a natural number.

In then follows from the equality $\operatorname{tg} \varphi(t)=y_{2}(t) / y_{1}(t)$ for $t \in j$ that the quotient $y_{2}(t) / y_{1}(t)$ is in case of a) an increasing (decreasing) continuous function in j and therefore $y_{1}(t) \neq 0$ in j.

Denoting in case b) $t_{i}=p^{-1}\left(-\frac{\pi}{2}+i \pi\right)$, where i is an integer, φ^{-1} is the inverse function to ψ, then the quotient $y_{2}(t) / y_{1}(t)$ is an increasing (decreasing) function in every interval $\left(t_{i}, t_{i+1}\right), i=0, \pm_{1}, \pm_{2}, \ldots$.

Denoting in case c) $t_{i}=\varphi^{-1}\left(-\frac{\pi}{2}+k \pi+i \widetilde{\pi}\right)$,
$i=1,2, \ldots$, then the quotient $y_{2}(t) / y_{1}(t)$ is an increasing (decreasing) continuous function in every interval (t_{i}, t_{i+1}), $i=1,2, \ldots$ and in the interval $\left(a, t_{1}\right)$, the point b is a cluster point of the points t_{i}, or if we denote $t_{i}=$ $=\varphi^{-1}\left(-\frac{\pi}{2}+k \pi-i \pi\right), i=1,2, \ldots$, then the quotient $y_{2}(t) / y_{1}(t)$ is an increasing (decreasing) continuous function in every interval ($\left.t_{-i}, t_{-i+1}\right), i=1,2, \ldots$, and in the inter$\operatorname{val}\left(t_{o}, b\right)$, the point a is a cluster point of the points t_{i}.

Denoting in case d) $t_{i}=\varphi^{-1}\left(-\frac{\pi}{2}+k \pi+i \pi\right)$ for $i=1, \ldots, n$, then the quotient $y_{2}(t) / y_{1}(t)$ is an increasing (decreasing) function in every interval (t_{i}, t_{i+1}), $i=1,2, \ldots$ $\ldots, n-1$ and in the intervals $\left(a, t_{1}\right),\left(t_{n}, b\right), n \geqq 1$.

Because of the fact that y_{1}, y_{2} are independent functions having thus no zeros in common, it follows from the equality $\operatorname{tg} \varphi(t)=y_{2}(t) / y_{1}(t)$ for $t \in j$ that

$$
\begin{equation*}
\lim _{t \rightarrow t_{i}+} \frac{y_{2}(t)}{y_{1}(t)}=(-\delta) \cdot \infty, \quad \lim _{t \rightarrow t_{i}} \frac{y_{2}(t)}{y_{1}(t)}=\delta . \infty \tag{2.4}
\end{equation*}
$$

where $\delta=1$, or $\delta=-1$ according as φ is increasing or decreasing in j.

On the contrary. Ad a) Let the quotient $y_{2}(t) / y_{1}(t)$ is an increasing (decreasing) continuous function in j. Then the function

$$
\varphi(t)=\operatorname{arctg} \frac{y_{2}(t)}{y_{1}(t)}
$$

is in j an increasing (decreasing) continuous function.
Ad b) Let the quotient $y_{2}(t) / y_{1}(t)$ be a function by parts increasing (decreasing) in j and let (2.4) hold. Then the function

$$
\varphi(t)= \begin{cases}\operatorname{arctg} \frac{y_{2}(t)}{y_{1}(t)}+\delta i \pi & \text { for } t \in\left(t_{i}, t_{i+1}\right) \\ \delta\left(-\frac{1}{2} \pi+i \tilde{\pi}\right) & \text { for } t=t_{i}\end{cases}
$$

is an increasing (decreasing) .continuous function in j, where $\delta=1$, or $\delta=-1$ according as y_{2} / y_{1} by parts increases or decreases in j.

Ad c) Let the quofient $y_{2}(t) / y_{1}(t)$ be a function by parts increasing (decreasing) in j and let (2.4) hold. Then the function
or

$$
\varphi(t)= \begin{cases}\operatorname{arctg} \frac{y_{2}(t)}{y_{1}(t)}+\delta_{i} \pi & \text { for } t \in\left(t_{i}, t_{i+1}\right) \\ \delta\left(-\frac{1}{2} \pi+i \pi\right) & \text { for } t=t_{i} \quad, i=1,2, \ldots, \\ \operatorname{arctg} \frac{y_{2}(t)}{y_{1}(t)} & \text { for } t \in\left(a, t_{1}\right)\end{cases}
$$

$$
\varphi(t)= \begin{cases}\operatorname{arctg} \frac{y_{2}(t)}{y_{1}(t)}+\delta_{i} \pi & \text { for } t \in\left(t_{-i}, t{ }_{-i+1}\right) \\ \delta\left(-\frac{1}{2} \pi+i \pi\right) & \text { for } t=t_{i} \quad, i=1,2, \ldots, \\ \operatorname{arctg} \frac{y_{2}(t)}{y_{1}(t)} & \text { for } t \in\left(t_{0}, b\right)\end{cases}
$$

is an increasing (decreasing) continuous function in j, where $\delta=1$, or $\delta=-1$ according as y_{2} / y_{1} by parts increases or decreases in j.

Ad d) Let the quotient $y_{2}(t) / y_{1}(t)$ be a function by parts increasing (decreasing) in j and let (2.4) hold. Then the function

$$
\varphi(t)=\left\{\begin{array}{l}
\operatorname{arctg} \frac{y_{2}(t)}{y_{1}(t)}+\delta i \pi \quad \text { for } t \in\left(t_{i}, t_{i+1}\right), \\
\delta\left(-\frac{1}{2} \pi+i, 2, \ldots, n-1,\right. \\
\operatorname{arctg} \frac{y_{2}(t)}{y_{1}(t)} \quad \text { for } t=t_{i}, \quad i=1,2, \ldots, n, \\
\operatorname{arctg} \frac{y_{2}(t)}{y_{1}(t)}+\delta n \pi \quad \text { for } t \in\left(t_{n}, b\right)
\end{array}\right.
$$

is an increasing (decreasing) continuous function in j, where $\delta=1$, or $\delta=-1$ according as the y_{2} / y_{1} in parts increases (decreases) in j.

Theorem 2.2. Let S be a strongly regular space of continuous functions generated by the functions y_{1}, y_{2} with the definition interval j. Further let $\boldsymbol{K}^{\boldsymbol{*}}$ be the projection of the curve \mathcal{K} defined by equations (2.1) on a unit circle from the origin 0 defined as follows: For every $t \in j$ there is assigned to the point $P_{t} \in \mathcal{K}$ with the coordinates $\left[y_{1}(t), y_{2}(t)\right]$ a point $P_{t}^{*} \in \mathcal{K}^{*}$ with the coordinates $\left[u_{1}(t), u_{2}(t)\right]$ lying on the half-line $\overline{O P}_{t}$. Then the curve \mathcal{K}^{*} is expressed by the equations

$$
\begin{align*}
& \xi_{1}=u_{1}(t), \tag{2.5}\\
& \xi_{2}=u_{2}(t) .
\end{align*}
$$

Hereby it holds for the functions u_{1}, u_{2}

$$
\begin{equation*}
u_{1}^{2}(t)+u_{2}^{2}(t)=1 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{align*}
& f(t) u_{1}(t)=y_{1}(t), \tag{2.7}\\
& f(t) u_{2}(t)=y_{2}(t),
\end{align*}
$$

where f is given by the formula

$$
\begin{equation*}
f(t)=\sqrt{y_{1}^{2}(t)+y_{2}^{2}(t)} \tag{2.8}
\end{equation*}
$$

Proof. From the definition of the curve \boldsymbol{K}^{*} then follows its expression by equations (2.5). Relation (2.6) holds, because for every $t \in j$ there are $u_{1}(t)$ and $u_{2}(t)$ the coordinates of the point P_{t}^{*} which lias on the unit circle.

Since $\frac{y_{2}(t)}{y_{1}(t)}=\frac{u_{2}(t)}{u_{1}(t)}$, we obtain from this equations
(2.7), whereby $f(t)>0$.

Squaring equations (2.7) and adding them together, we obtain

$$
f^{2}(t)\left[u_{1}^{2}(t)+u_{2}^{2}(t)\right]=y_{1}^{2}(t)+y_{2}^{2}(t)
$$

from which and with respect to (2.6) we get (2.8).
The image \mathcal{K}^{*} of the curve \mathcal{K} is thus given by equations

$$
\begin{aligned}
& \xi_{1}=u_{1}(t) \\
& \xi_{2}=u_{2}(t)
\end{aligned}
$$

for $t \in j$, expressing with respect to (2.6) the arc of the unit circle.

The $\operatorname{arc} \mathbb{K}^{*}$ of the unit circle with the center at the origin 0 may be expressed by the following equations

$$
\bar{Y}_{1}=\cos \left(s-s_{0}\right), \quad \bar{Y}_{2}=\sin \left(s-s_{0}\right),
$$

or

$$
\begin{equation*}
\bar{Y}_{1}=\cos \left(s-s_{0}\right), \quad \bar{Y}_{2}=-\sin \left(s-s_{0}\right), \tag{2.9}
\end{equation*}
$$

where $s \in J$, according as the curve revolves the origin in a positive or negative sense, whereby the point $[1,0]$ on the unit circle corresponds to the value of the parameter $s=s_{0}$.

Theorem 2.3. Let S be a strongly regular space of continuous functions generated by the functions y_{1}, y_{2} with the definition interval j. Let the quotient $y_{2}(t) / y_{1}(t)$ be increasing or decreasing in the interval j. Then there exists an increasing or decreasing function $\varphi=\varphi(t), t \in j$ satisfying the equality

$$
\begin{equation*}
\operatorname{tg} \varphi(t)=\frac{y_{2}(t)}{y_{1}(t)} \text { for every } t \in j \tag{2.10}
\end{equation*}
$$

characterized by the fact that if φ increases there holds

$$
\begin{equation*}
u_{1}[\bar{h}(s)]=\cos s, u_{2}[\bar{h}(s)]=\sin s, \tag{2.11}
\end{equation*}
$$

whereby $\hbar(s)=\varphi^{-1}(s), \varphi^{-1}$ denotes the inverse function to $\varphi, s \in J, J=\varphi(j)$ and if φ decreases there holds

$$
\begin{equation*}
u_{1}[\hbar(s)]=\cos s, \quad u_{2}[\bar{h}(s)]=-\sin s, \tag{2.12}
\end{equation*}
$$

whereby $\bar{h}(s)=\varphi^{-1}(-s),-s \in J$.
The functions u_{i} are determined by the conditions $y_{i}(t)=f(t) u_{i}(t), t \in j, i=1,2, \quad u_{1}^{2}(t)+u_{2}^{2}(t) \equiv 1, f(t)>0$.

Proof. Let us first remark that there exists the function $\hbar=\varphi^{-1}(s)$ and it is a bijection for which
$\bar{h}: J \rightarrow j, \quad \bar{h} \in C^{(0)}(J)$
holds, which follows on one hand from the monotonicity and on the other hand from the continuity of the function φ.

$$
\text { Because of } \operatorname{tg} \varphi(t)=\frac{y_{2}(t)}{y_{1}(t)}=\frac{f(t) u_{2}(t)}{f(t) u_{1}(t)}=\frac{u_{2}(t)}{u_{1}(t)}
$$

for $t \in j$, we obtain from this

$$
\sin \varphi(t)=p(t) u_{2}(t)
$$

$$
\cos \varphi(t)=p(t) u_{1}(t)
$$

On squaring and adding together we obtain $p^{2}(t) \equiv 1$. Consequently there is either

$$
\begin{equation*}
u_{1}(t)=\cos \varphi(t), \quad u_{2}(t)=\sin \varphi(t) \tag{2.13}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{1}(t)=-\cos \varphi(t), \quad u_{2}(t)=-\sin \varphi(t) \tag{2.14}
\end{equation*}
$$

[^1]equations (2.13) define the positively or negatively oriented arc of the unit circle.

Setting in (2.13) in case of the increasing function φ the expression $\bar{h}=\varphi^{-1}(s), s \in J$, instead of t, we obtain

$$
u_{1}[\hbar(s)]=\cos s, \quad u_{2}[\bar{h}(s)]=\sin s
$$

which is the formula of (2.11).
Setting in (2.13) in case of the decreasing function φ the expression $\bar{h}=\varphi^{-1}(-s),-s \in J$, instead of t, we obtain $u_{1}[\bar{h}(s)]=\cos (-s)=\cos s, u_{2}[\bar{h}(s)]=\sin (-s)=-\sin s$, which is the formula of (2.12).

Theorem 2.4. Let S be a strongly regular space of continuous functions generated by the functions y_{1}, y_{2} with the definition interval j. Let the functions $\varphi, \bar{h}, u_{i}, i=1,2$ have the meaning stated in the foregoing theorem.
Let $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$. Let the functions \bar{Y}_{1}, \bar{Y}_{2} be defined as follows

$$
\left(\begin{array}{l}
\bar{Y}_{1} \tag{2.15}\\
\left(\bar{Y}_{2}\right)
\end{array}=A\binom{u_{1}[\hbar(s)]}{u_{2}[\hbar(s)]} .\right.
$$

If $A=\left(\begin{array}{ll}\cos s_{0} & \sin s_{0} \\ -\sin s_{0} & \cos s_{0}\end{array}\right)$ or $A=\left(\begin{array}{lr}\cos s_{0} & \sin s_{0} \\ \sin s_{0} & -\cos s_{0}\end{array}\right)$,
then the functions \bar{Y}_{1}, \bar{Y}_{2} are given by the formulas

$$
\begin{equation*}
\bar{Y}_{1}=\cos \left(s-s_{0}\right), \quad \bar{Y}_{2}=\sin \left(s-s_{0}\right) \tag{2.17}
\end{equation*}
$$

or
for $s \in J$.

Proof. From (2.15) on taking account of (2.11) or (2.12) and of (2.16) we get

$$
\left.\begin{array}{rl}
\bar{Y}_{1}=a_{11} u_{1}[\bar{h}(s)] & +a_{12} u_{2}[\hbar(s)] \\
& +\sin s_{0} \sin s=\cos \left(s-s_{0}\right), \\
\bar{Y}_{2}=a_{21} u_{1}[\bar{h}(s)] & +a_{22} u_{2}[\bar{h}(s)]
\end{array}\right)=-\sin s_{0} \cos s+\quad .
$$

or

$$
\begin{aligned}
\bar{Y}_{1}=a_{11} u_{1}[\bar{h}(s)] & +a_{12} u_{2}[\bar{h}(s)]=\cos s_{0} \cos s+ \\
& +\sin s_{0} \sin s=\cos \left(s-s_{0}\right), \\
\bar{Y}_{2}=a_{21} u_{1}[\bar{h}(s)] & +a_{22} u_{2}[\bar{h}(s)]=\sin s_{0} \cos s- \\
& -\cos s_{0} \sin s=-\sin \left(s-s_{0}\right)
\end{aligned}
$$

for $s \in J$, which are the formulas of (2.17).

Theorem 2.5. Let S be a strongly regular space of continuous functions generated by the functions y_{1}, y_{2} with the definition interval j. Let φ be an increasing or decreasing continuous function satisfying the functional equation

$$
\operatorname{tg} \varphi(t)=\frac{y_{2}(t)}{y_{1}(t)} \quad \text { for } t \in j
$$

Let J $=\varphi(\mathrm{j})$. Then for
a) the bijection. $\varphi: j \rightarrow J, \varphi \in C^{(0)}(j)$,
b) the function $f=\sqrt{y_{1}^{2}+y_{2}^{2}}, f \in C^{(0)}(j), f(t) \neq 0$ for $t \in j$,
c) the matrix $A=\left(\begin{array}{ccc}\cos s_{0} & \sin s_{0} \\ -\sin s_{0} & \cos s_{0}\end{array}\right)$ or $A=\left(\begin{array}{ccc}\cos s_{0} & \sin s_{0} \\ \sin s_{0} & -\cos s_{0}\end{array}\right)$
$s_{0} \in J$, there exists the global transformation $\tau=\langle A f, \varphi\rangle$ of the space s^{*} generated by the functions $\cos s, \sin s$ with the definition interval J onto the space S given by the relation

$$
y(t)=A f(t) Y[\varphi(t)], \quad t \in j
$$

where

$$
Y=(\cos s, \sin s)^{\top}, \quad y=\left(y_{1}, y_{2}\right)^{\top}
$$

Proof. Let us put $\tilde{Y}(s)=\left(\tilde{Y}_{1}(s), \tilde{Y}_{2}(s)\right)$ and define $\underline{Y}(s)$ by the equation

$$
\underline{\tilde{Y}}(s)=A \underline{Y}(s)
$$

We easily observe that for $A=\left(\begin{array}{ccc}\cos & s_{0} & \sin s_{0} \\ -\sin & s_{0} & \cos \\ s_{0}\end{array}\right)$ we have $\tilde{Y}_{1}=\cos \left(s-s_{0}\right), \tilde{Y}_{2}=\sin \left(s-s_{0}\right)$ and for $A=\left(\begin{array}{lll}\cos s_{0} & \sin s_{0} \\ \sin s_{0} & -\cos s_{0}\end{array}\right)$ we have $\tilde{Y}_{1}=\cos \left(s-s_{0}\right) \tilde{Y}_{2}=-\sin \left(s-s_{0}\right)$.

We are looking for $s=h(t)$ such that $\tilde{Y}[h(t)]=\underline{u}(t)$, where $\underline{u}=\left(u_{1}, u_{2}\right)$, whereby the functions $u_{i}, i=1,2$, have the meaning stated in Theorem 2.3.

Then
$\underline{u}(t)=\underline{\tilde{y}}[h(t)]=A \underline{Y}[h(t)]$
and since $y_{i}=f u_{i}, i=1,2$, we have for $y=\left(y_{1}, y_{2}\right)$ that

$$
\underline{y}(t)=f(t) \underline{Y}[h(t)]=f(t) A \underline{Y}[h(t)]
$$

Since for the function φ
$\operatorname{tg} \varphi=\frac{y_{2}(t)}{y_{1}(t)}=\frac{u_{2}(t)}{u_{1}(t)}=\frac{\sin \left[h(t)-s_{0}\right]}{\cos \left[h(t)-s_{0}\right]}=\operatorname{tg}\left[h(t)-s_{o}\right]$
holds, we have from this

$$
\varphi=h(t)-s_{0}+k \pi, \quad k \text { being an integer. }
$$

In case of $s_{0}=0$ we have $A=E$ and $\underline{Y}=\underline{Y}$ and the transformation equation becomes the form

$$
\underline{y}(t)=f(t) \underline{Y}[h(t)], \text { where } \varphi=h(t)+k \pi .
$$

Definition 2.1. By a space of continuous functions S^{*} generated by the functions cos s, sin s with the definition interval J we mean the canonical form of a strongly regular space S of continuous functions generated by the functions y_{1}, y_{2} with the definition interval j, more briefly the canonical space of continuous functions.

It follows from Definition 2.1 and from Lemma 1.2 that the canonical space of continuous functions S^{*} is strongly regular.

Let us remark that the elements of the space S^{*} are the functions $k_{1} \cos s+k_{2}$ sin $s, s \in J, k_{1}, k_{2} \in R$, where $J=\varphi(j), \quad \varphi$ is a continuous function satisfying the fundtional equation

$$
\operatorname{tg} \varphi(t)=\frac{y_{2}(t)}{y_{1}(t)}, \quad t \in j
$$

First phase. Conformably to the definition of the first phase of an ordered pair of solutions of a linear secondorder differential equation of the Jacobian form, introduced by $0 . B$ o r ur $v a$ in [1], we will express the following

Definition 2.2. Let $\left(y_{1}, y_{2}\right)$ be a basis of the strongly regular space S with the definition interval j. Every funcLion $\alpha \in \mathbb{C}^{(0)}(j), \alpha: j \rightarrow J$ satisfying in j the functional equation

$$
\begin{equation*}
\operatorname{tg} \alpha(t)=\frac{y_{1}(t)}{y_{2}(t)} \tag{2.18}
\end{equation*}
$$

will be called the first phase, more briefly the phase of the ordered pair of functions $y_{1}, y_{2} \in S$.

Theorem 2.6. If α is the phase of the ordered pair $\left(y_{1}, y_{2}\right) \in S$, then any other phase α_{k}, k being an integer, is given by the formula

$$
\alpha_{k}(t)=\alpha(t)+k \pi,
$$

where

$$
\alpha_{0}=\alpha
$$

Thus (2.18) defines the countable system of phase α_{k}, k being an integer.

Proof. This follows immediately from (2.18).

Theorem 2.7. Let $\left(\tilde{y}_{1}, \tilde{y}_{2}\right)$ be the basis of the strongly regular space S with the definition interval j and ($\tilde{Y}_{1}, \tilde{Y}_{2}$) be the basis of the space S^{*} with the definition interval J. Next let $\tilde{y}=\left(\tilde{y}_{1}, \tilde{y}_{2}\right), \quad \tilde{Y}=\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right)$. Let the space S^{*} be globally transformed onto the space S as follows

$$
\begin{equation*}
\tilde{\underline{y}}(t)=A f(t) \underline{\tilde{y}}[h(t)] \tag{2.19}
\end{equation*}
$$

by means of the function f, of the parametrization h and of the matrix A. Let \mathscr{H} be the matrix given by the equation

$$
\underline{\tilde{Y}}=\boldsymbol{x} \underline{Y},
$$

where $\underline{Y}=(\cos s, \sin s)^{\top}$. Let $\underset{1}{y}=\left(y_{1}, y_{2}\right)^{\top}$, where $\underline{y}=$ $=x^{-1-} A^{-1} \tilde{y}$, whereby $x^{-1}, A^{-\frac{1}{1}}$ denote inverse matrices to the matrix \mathcal{X} or A. Let $\alpha=\alpha(t)$ be a first phase of the basis $\left(y_{1}, y_{2}\right) \in S$.
Then

$$
\begin{aligned}
& \quad \alpha_{k}(t)=h(t)+k \pi, \quad k \text { being an integer, } \\
& \alpha_{o}=\alpha(t) . \\
& P \text { roof. From equation (2.19) we obtain } \tilde{y}(t)= \\
& =A \mathcal{X} f(t) \underline{Y}[h(t)] \text {, whence }
\end{aligned}
$$

$$
\underline{y}=x^{-1} A^{-1} \tilde{y}=f(t) \underline{Y}[h(t)]
$$

or

$$
\begin{aligned}
& y_{1}=f(t) Y_{1}[h(t)]=f(t) \cos h(t) \\
& y_{2}=f(t) Y_{2}[h(t)]=f(t) \sin h(t)
\end{aligned}
$$

From this we get

$$
\begin{equation*}
\operatorname{tg} h(t)=\frac{y_{2}(t)}{y_{1}(t)} \tag{2.20}
\end{equation*}
$$

From the definition equation (2.18) we obtain the expression for the phase α of the basis $\left(y_{2}, y_{1}\right)$
$\operatorname{tg} \alpha(t)=\frac{y_{2}(t)}{y_{1}(t)}$.

Comparing (2.20) and (2.21) we observe that the parametrization $h(t)$ represents the phase $\alpha(t)$ of the ordered pair $\left(y_{2}, y_{1}\right)$. Thus
$\alpha_{k}(t)=h(t)+k \pi, k$ being an integer, $\alpha_{o}=\alpha(t)=h(t)$.
-The following theorem is a certain modification of the Stach theorem [6] and presents a necessary and sufficient condition of the global transformation of the space S_{2} onto the space S_{1}.

Theorem 2.8. Let $S_{i}, i=1,2$, be strongly regular spaces of the continuous functions with definition intervals j_{i}. Let S^{*} be a canonical space of continuous functions with the definition interval J. Let $\underset{\sim}{Y}=\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right)$ be a basis of S^{*} and $\left(\tilde{u}_{1}, \tilde{u}_{2}\right) \in S_{1},\left(\tilde{U}_{1}, \tilde{U}_{2}\right) \in S_{2}$ be the space bases. Let the space S^{*} be globally transformed onto the space S_{1} as follows
$\tilde{u}(t)=A_{1} f(t) \underline{Y}[h(t)]$, where h is a bijection $h: j_{1} \rightarrow J$, $h \in C^{(0)}\left(j_{1}\right), \underline{\tilde{u}}=\left(\tilde{u}_{1}, \tilde{u}_{2}\right)^{\top}$.

Suppose the space S^{*} is globally transformed onto the space S_{2} by the equation
$\underline{\tilde{U}}(T)=A_{2} F(T) \underline{\tilde{Y}}[H(T)]$, where H is a bijection, $H: j_{2} \rightarrow J$, $H \in C^{(0)}\left(j_{2}\right), \underline{\tilde{u}}=\left(\tilde{U}_{1}, \tilde{U}_{2}\right)^{\top}$.

The necessary and sufficient condition for the existence of a global transformation of the space S_{2} onto the space S_{1}, transforming the basis $\left(\tilde{u}_{1}, \tilde{u}_{2}\right)$ into the basis $\left(\tilde{U}_{1}, \tilde{U}_{2}\right)$ by means of
a) the bijection $k: j_{1} \rightarrow j_{2}, k \in C^{(O)}\left(j_{1}\right)$,
b) the function $g \in C^{(0)}\left(j_{1}\right), g(t) \neq 0$ for $t \in j_{1}$,
c) the matrix $B=A_{1} A_{2}^{-1}$
by the formula

$$
\begin{equation*}
\underline{\tilde{u}}(t)=B g(t) \underline{U}[k(t)], \quad t \in j_{1} \tag{2.22}
\end{equation*}
$$

is the existence of

1) the bijection $T=x(t), x: j_{1} \rightarrow j_{2}, x \in C^{(0)}\left(j_{1}\right)$,
2) the integer ℓ, for which $h(t)=H[x(t)]+\ell \pi$
for $t \in j_{1}$.

Proof. Let the matrix \mathscr{X} be given by the equation $\tilde{Y}=\mathscr{L} \underline{Y}$, where $\underline{Y}=(\cos s, \sin s)^{\top}$.

Assume the space S_{2} to be globally transformed onto the space S_{1}. Since $\underline{\tilde{u}}(t)=A_{1} f(t) \tilde{Y}[h(t)] \cdot \tilde{\tilde{U}}(T)=A_{2} F(T) \tilde{Y}[H(T)]$ we obtain from this on introducing the following relations

$$
\begin{equation*}
\underline{u}=x^{-1} A_{1}^{-1} \underline{\tilde{u}}, \quad \underline{U}=x^{-1} A_{2}^{-1} \underline{U} \tag{2.23}
\end{equation*}
$$

hat

$$
A_{1} x \underline{u}=A_{1} f(t) x \underline{Y}[h(t)], \quad A_{2} \mathscr{X} \underline{u}=A_{2} F(T) x \underline{Y}[H(T)]
$$

ie.

$$
\underline{u}=f(t) Y[h(t)], \quad \underline{u}=F(T) Y[H(T)]
$$

From this we have

$$
\operatorname{tg} h=\frac{u_{2}(t)}{u_{1}(t)}, \quad \operatorname{tg} H=\frac{u_{2}(T)}{u_{1}(T)}
$$

It thus follows from (2.22) and (2.23) that

$$
A_{1} \mathscr{X} \underline{u}=A_{1} A_{2}^{-1} g(t) \quad A_{2} \quad F(T) \mathscr{X} \underline{y}[k(t)]
$$

ie.

$$
\underline{u}=g(t) F(T) \underline{Y}[k(t)]=g(t) \underline{u}[k(t)] .
$$

So, we have
$\operatorname{tg} h=\frac{u_{2}(t)}{u_{1}(t)}=\frac{u_{2}(k)}{u_{1}(k)}=\operatorname{tg} H(k)$.
If we set $X(t)=k(t), k(t)=H^{-1}(h)$, then $X: j_{1} \rightarrow j_{2}$, $x \in C^{(0)}\left(j_{1}\right)$ and we see that for $t \in j_{1}$ there exists an integer ℓ such that
$h(t)=H[x(t)]+l \widetilde{\pi}$.
Suppose conversely the existence of the function $x=x(t), x: j_{1} \rightarrow j_{2}, x \in C^{(0)}\left(j_{1}\right)$ and of the integer ℓ, for which $h(t)=H[x(t)]+l \pi \quad$.
Then
$\operatorname{tg} h(t)=\operatorname{tg} H[X(t)]$.
i.e.
$\left(\operatorname{tg} h(t) \equiv \frac{u_{2}(t)}{u_{1}(t)}=\frac{u_{2}[x(t)]}{u_{1}[x(t)]}(\equiv \operatorname{tg} H[x(t)])\right.$.

Setting $X(t)=k(t)$ yields

$$
\underline{u}=g(t) \cup(k),
$$

where $g \in C^{(0)}\left(j_{1}\right), g(t) \neq 0$ for $t \in j_{1}, k: j_{1} \rightarrow j_{2}, k \in C^{(0)}\left(j_{1}\right)$.
Since (2.23) holds, we obtain

$$
x^{-1} A_{1}^{-1} \underline{\tilde{u}}=g(t) x^{-1} A_{2}^{-1} \underline{\tilde{u}}(k)
$$

i.e.

$$
\underline{\tilde{u}}=g(t) A_{1} A_{2}^{-1} \underline{\tilde{u}}(k) .
$$

Hence

$$
\underline{\tilde{u}}=B g(t) \underline{\tilde{u}}(k),
$$

where $B=A_{1} A_{2}^{-1}$, so that (2.22) holds.
3. As special cases of strongly regular spaces of continuous functions there may be named the spaces of solutions of linear second-order differential equations of the general form
(ab) $y^{\prime \prime}+a(t) y^{\prime}+b(t) y=0$,
where $a, b \in C^{(0)}(j)$ and further of the Sturm form
(pq) $\left(p(t) y^{\prime}\right)^{\prime}+q(t) y=0$,
where $p, q \in C^{(0)}(j), p y^{-} \in C^{(1)}(j), p(t) \neq 0$ in. j.
The space of solutions of the differential equation (ab) will be denoted by $S_{a b}$ and the space of solutions of the differential equation ($p q$) by $S_{p q}$.

It can be easily seen that the spaces of solutions $S_{a b}$, $S_{p q}$ are generated by the functions of the basis of the differential equation (ab), or (pq). The elements of the basis, f.i. the solutions y_{1}, y_{2} are linearly independent, so that $k_{1} y_{1}(t)+k_{2} y_{2}(t) \neq 0$ in j, where $k_{1}^{2}+k_{2}^{2}>0$. We will now
show that y_{1}, y_{2} are also independent functions of the interval j, in other words that

$$
k_{1} y_{1}(t)+k_{2} y_{2}(t) \not \equiv 0 \quad \text { in } j_{1}, \quad j_{1} \subset j .
$$

Indeed, there holds for $k_{2} \neq 0$ or $k_{1} \neq 0$

$$
w=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\frac{1}{k_{2}}\left|\begin{array}{ll}
y_{1} & k_{1} y_{1}+k_{2} y_{2} \\
y_{1}^{\prime} & k_{1} y_{1}^{\prime}+k_{2} y_{2}^{\prime}
\end{array}\right|=\frac{1}{k_{1}}\left|\begin{array}{ll}
k_{1} y_{1}+k_{2} y_{2} & y_{2} \\
k_{1} y_{1}^{\prime}+k_{2} y_{2}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

If the interval $j_{1} \subset j$ and the numbers $k_{1}, k_{2}, k_{1}^{2}+k_{2}^{2}>0$ existed such that $k_{1} y_{1}(t)+k_{2} y_{2}(t) \equiv 0$ in j_{1}, then the Wronskian W would be equal to zero in j_{1} and the functions y_{1}, y_{2} would be linearly dependent, contrary to our assumption.

The spaces $S_{a b}$ and $S_{p q}$ are regular spaces of continuous functions with the definition interval j.

Indeed, if $y_{1}=y_{1}(t), y_{2}=y_{2}(t)$ is the basis of $S_{a b}$ or $S_{p q}$, there cannot simultaneously be $y_{1}\left(t_{0}\right)=y_{2}\left(t_{o}\right)=0$ for any $t_{o} \in j$, for otherwise the functions y_{1}, y_{2} would be linearly dependent.

The spaces $S_{a b}$ and $S_{p q}$ are strongly regular spaces of continuous functions with the definition interval j.

Indeed, if $y_{1}=y_{1}(t), y_{2}=y_{2}(t)$ is the basis of $S_{a b}$ or $S_{p q}$, there cannot simultaneously be $y_{1}\left(t_{0}\right)=y_{2}\left(t_{o}\right)=0$ for any $t_{0} \in j$, for otherwise the functions y_{1}, y_{2} would be linearly dependent.

The spaces $S_{a b}$ and $S_{p q}$ are strongly regular spaces of continuous functions, since the quotients of the independent solutions $y_{2}(t) / y_{1}(t)$ are by parts monotonic functions in j.

In fact

$$
\left(\frac{y_{2}(t)}{y_{1}(t)}\right)^{\prime}=\frac{y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)}{y_{1}^{2}(t)} \geqslant 0
$$

because the Wronskian $W\left(y_{1}, y_{2}\right) \equiv y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ is different from zero for independent functions y_{1}, y_{2}.

Let us remark that the elements of the space $S_{a b}$ are of the class $C^{(2)}(j)$ and those of the space $S p$ are of the class $C^{(1)}(j)$ with the property that $p y^{\bullet} \in C^{(1)^{q}}(j)$.

We will now show how our results on spaces of functions obtained in this paper may be applied to solutions of spaces $S_{a b}$ and $S_{p q}$ especially as regards the concepts of the global transformation and the canonical space. In point of the global transformation of spaces of linear differential equations (ab). (pq) solutions, we will introduce - conformably with the definition of the global transformation of linear $n-t h$ order equations in $[4]$ - some simple conditions on the coefficients of differential equations, such that the multiplicator f and the parametrization h may be the functions of the class $c^{(2)}$ and this at the transformation of the equation $(a b)$ or ($p q$) into the differential equation $y^{\prime \prime}=-y$, which will be considered to be canonical.

With the above approach to the definition of global transformation we may show that in the differential equation (pq) it suffices besides $p, q \in \mathrm{C}^{(0)}$ to assume f.i. $p \in \mathrm{C}^{(1)}$. In case we require in the definition of global transformation $f, h \in \mathbb{C}^{(1)}$, it suffices to assume $p, q \in C^{(0)}$.

The space of solutions of the linear differential equation (ab)

We will now express the main results of this paper applied to the space of solutions of the linear differential equation (ab).

A modification of Theorem 2.1.:

Theorem 3.1. Let $S_{a b}$ be a space of solutions of the linear differential equation (ab) with the definition interval j.

Let $\left(y_{1}, y_{2}\right)$, where $y_{1}=y_{1}(t), y_{2}=y_{2}(t)$, be a basis of the space $S_{a b}$ and \mathcal{K} be a curve defined by the equations $\xi_{1}=y_{1}(t), \xi_{2}=y_{2}(t), \quad t \in j$. For the polar coordinates $\rho=\rho(\mathrm{t}), \quad \varphi=\varphi(\mathrm{t})$ of the curve \mathcal{K} we have: $\rho \in \mathrm{c}^{(2)}(\mathrm{j})$, $\varphi \in C^{(2)}(j), \varphi^{\prime}(t) \neq 0$ in j.
$P r \circ \circ f . \quad$ Since $y_{1}, y_{2} \in C^{(2)}(j)$, it follows from (2.2) $p=\sqrt{y_{1}^{2}(t)+y_{2}^{2}(t)}, \quad t \in j$, the existence of the continuous Cerivative of the second order of the function ρ, i.e. $\rho \in C^{(2)}(j)$.

From formula (2.3) $\operatorname{tg} \varphi=y_{2}(\mathrm{t}) / y_{1}(\mathrm{t})$ we get $\sin \varphi=$ $=k y_{2}(t), \cos \varphi=k y_{1}(t), k=1 / \sqrt{y_{1}^{2}+y_{2}^{2}}$. By differentiating this formula we find that $\varphi^{\prime} / \cos ^{2} \varphi=-\left(y_{1}^{\prime} y_{2}\right.$ -
$\left.-y_{1} y_{2}^{\prime}\right) / y_{1}^{2}$ whence by rearrangement

$$
\varphi^{*}=-\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right) /\left(y_{1}^{2}+y_{2}^{2}\right)
$$

$t \in j$. We see that $\varphi^{\circ}(t) \neq 0$ for $t \epsilon j$ and that there exists a continuous $\varphi^{\prime \prime}$ in j, i.e. $\varphi \in C^{(2)}(j)$.

Since the space of solutions of the differential equation (ab) is strongly regular, we can express (conformably with Theorem 2.3 and Theorem 2.4) the following theorems for the space $S_{a b}$.

Theorem 3.2. Let $S_{a b}$ be the space of solutions of the differential equation ($a b$) with the definition j. Let $\left(y_{1}, y_{2}\right)$ be the basis of $s_{a b}$. Let $s=\varphi(t)$ be the polar coordinate of the curve $\mathcal{K}: \xi_{1}=y_{1}(t), \xi_{2}=y_{2}(t), t \in j$, defined by formula (2.3): $\operatorname{tg} \varphi=y_{1}(\mathrm{t}) / \mathrm{y}_{2}(\mathrm{t}), \quad \mathrm{t} \in \mathrm{j}$.

Then we have for the increasing or decreasing function $\varphi=\varphi(t)$
$u_{1}\left[\varphi^{-1}(s)\right]=\cos s, u_{2}\left[\varphi^{-1}(s)\right]=\sin s, s \in J, J=\varphi(j)$,
or

$$
\begin{aligned}
u_{1}\left[\varphi^{-1}(s)\right]=\cos s, \quad u_{2}\left[\varphi^{-1}(s)\right]=-\sin s, & -s \in J \\
& J=\varphi(j),
\end{aligned}
$$

where φ^{-1} denotes an inverse function to φ and the functions u_{i} are determined by the conditions $y_{i}(t)=f(t) u_{i}(t)$, $t \in j, \quad i=1,2, u_{1}^{2}(t)+u_{2}^{2}(t) \equiv 1, f(t)=\sqrt{y_{1}^{2}(t)+y_{2}^{2}(t)}$.

Theorem 3.3. Suppose the assumptions of Theorem 3.2 are satisfied. Let $A=\left\|a_{i k}\right\|, i, k=1,2, \bar{Y}=A \underline{u}\left[\varphi^{-1}(s)\right]$.

If the matrix A is of the form (2.16), then the functions \bar{Y}_{1}, \bar{Y}_{2} are given by formulas (2.17).

Theorem 3.4. Let $S_{a b}$ be a space of solutions of the differential equation (ab) with the definition interval j. Let $\left(y_{1}, y_{2}\right)$ be a basis of the space $s_{a b}$. Let $\varphi=\varphi(t)$ be an increasing or decreasing function satisfying the functional equation $\operatorname{tg} \varphi(t)=y_{2}(t) / y_{1}(t)$ for $t \in j$. Le.t $J=\varphi(j)$.

Then for
a) the bijection $\varphi: j \rightarrow J, \varphi \in C^{(2)}(j)$,
b) the function $f=\sqrt{y_{1}^{2}(t)+y_{2}^{2}(t)} \in c^{(2)}(j), f(t) \neq 0$ for $t \in j$,
c) the matrix $A=\left(\begin{array}{ccc}\cos s_{0} & \sin s_{0} \\ -\sin s_{0} & \cos s_{0}\end{array}\right) \quad$ or $A=\left(\begin{array}{cc}\cos s_{0} & \sin s_{0} \\ \sin s_{0} & -\cos s_{0}\end{array}\right)$,

$$
s_{0} \in J, \quad s_{0}=\varphi\left(t_{0}\right), \quad t_{0} \in j,
$$

there exists a global transformation of the space S^{*} onto the space $S_{a b}$ given by the relation

$$
y(t)=A f(t) \underline{Y}[\varphi(t)]
$$

$t \in j, \underline{Y}=(\cos s, \sin s)^{\top}, \underline{y}=\left(y_{1}, y_{2}\right)^{\top}$.
$\mathrm{P} \mathrm{r} \circ \circ \mathrm{f}$. The above theorem is a modification of Theorem 2.5. in case of the space $S_{a b}$.

Definition 3.1. The differential equation

$$
\begin{equation*}
Y^{*}=-Y \tag{-1}
\end{equation*}
$$

with the definition interval J, J $=\varphi(j)$ will be called the canonical form of the second order of the space $S_{a b}$ of the solution of the differential equation (ab), or briefly the canonical differential equation of the second order of the space $S_{a b}$.

Let us remark that by the space of solutions of the differential equation (-1) we mean the space S^{*} with the definition interval J. The elements of the space S^{*} are the functions of the form

$$
\bar{Y}=k_{1} \cos s+k_{2} \cos s, \quad s \in J, \quad k_{1}, k_{2} \in R
$$

Definition 3.2. Let $\left(y_{1}, y_{2}\right)$ be a basis of the space $S_{a b}$ with the definition interval j. Every function $\alpha \in c^{(2)}(j), \alpha$: $j \rightarrow J$, satisfying in j the functional equation

$$
\operatorname{tg} \alpha(t)=\frac{y_{1}(t)}{y_{2}(t)}
$$

will be named the first phase, briefly the phase of an ordered pair of solutions $y_{1}, y_{2} \in S_{a b}$.

Theorem 3.5. Let $\left(\tilde{y}_{1}, \tilde{y}_{2}\right)$ be a basis of the space $S_{a b}$ with the definition interval j. Let $\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right)$ be a basis of the space S^{*} with the definition interval J. Suppose the space S^{*} is globally transformed onto the space $S_{a b}$ by the equation

$$
\tilde{\underline{y}}(t)=\operatorname{Af}(t) \tilde{\underline{Y}}[h(t)]
$$

by means of the function f, the parametrization h and the matrix A. Let \mathcal{d} be the matrix given by the equation $\tilde{\tilde{Y}}=$ $=\& \underline{Y}_{-1}$ where $\underline{Y}=(\cos s, \sin s)^{\top}$. Let $\underline{y}=\left(y_{1}, y_{2}\right)^{\top}$, where $y=\mathscr{K}^{-1} A^{-1} y$, whereby \mathscr{L}^{-1}, A^{-1} denote the inverse matrices to the matrix $\nless<$, or A. Let $\alpha=\alpha$ (t) be a first
phase of the basis $\left(y_{2}, y_{1}\right) \subset s_{a b}$. Then
$\alpha_{k}(t)=h(t)+k \pi, k$ being an integer, $\alpha_{0}=\alpha(t)$ for $t \in j$.
Proof. The above theorem is a modification of Theorem 2.7 in case of the space $S_{a b}$.

Theorem 3.6. Let $S_{a b}$ and $S_{A B}$ be the spaces of solutions of the differential equations ($a b$) and ($A B$) with the definition intervals j_{1} and j_{2}, respectively. Let S^{*} be the canonical space with the definition interval J. Let $\underline{\tilde{Y}}=\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right)$ be a basis of S^{*}. Let $\left(\tilde{u}_{1}, \tilde{u}_{2}\right) \in S_{a b},\left(\tilde{U}_{1}, \tilde{U}_{2}\right) \in S_{A B}$ be the space bases.

Suppose the space S^{*} is globally transformed onto the space $S_{a b}$ by the equation $\underline{\tilde{u}}(t)=A_{1} f(t) \underline{\underline{Y}}[h(t)]$, where h : $j_{1} \rightarrow J, h \in C^{(2)}(j), \underline{\tilde{u}}=\left(\tilde{u}_{1}, \tilde{u}_{2}\right)^{\top}$. Suppose the space S^{*} is globally transformed onto the space $S_{A B}$ by the equation $\underline{\tilde{U}}(T)=A_{2} F(T) \underline{\tilde{Y}}[H(T)]$, where $H: j_{2} \rightarrow J, H \in C^{(2)}\left(j_{2}\right), \underline{\tilde{U}}=$ $=\left(\tilde{U}_{1}, \tilde{U}_{2}\right)(T)$.

The necessary and sufficient condition for the existence of the global transformation of the space $S_{A B}$ onto the space $S_{a b}$ transforming the basis $\left(\tilde{u}_{1}, \tilde{u}_{2}\right)$ into the basis ($\left.\tilde{U}_{1}, \tilde{u}_{2}\right)$ by means of
a) the bijection $k: j_{1} \rightarrow j_{2}, k \in C^{(2)}\left(j_{1}\right)$.
b) the function $g \in C^{(2)}\left(j_{1}\right), g(t) \neq 0$ for $t \in j_{1}$,
c) the matrix $B=A_{1} A_{2}^{-1}$

By the formula

$$
\underline{\tilde{u}}(t)=B g(t) \quad \underline{\tilde{u}}[k(t)], \quad t \in j_{1}
$$

is the existence of

1. a bijection $T=x(t), x: j_{1} \rightarrow j_{2}, x \in C^{(2)}(j)$,
2. an integer ℓ, for which $h(t)=H[x(t)]+\ell \pi$ for $t \in j_{1}$.

Proof. The above theorem is a modification of Theorem 2.8 in case of the spaces $S_{a b}, S_{A B}$.

The space of solutions of the linear differential equation (pq)

We will now express the main results obtained in this paper applied to the space of solutions of the linear differential equation (pq).

A modification to Theorem 2.1.:

Theorem 3.7. Let $S_{p q}$ be a space of solutions of the linear differential equation (pq) with the definition interval j. Let $\left(y_{1}, y_{2}\right)$, where $y_{1}=y_{1}(t), y_{2}=y_{2}(t)$, be a basis of the space $S_{p q}$ and \mathcal{K} be a curve defined by the equations $\xi_{1}=$ $=y_{1}(t), \xi_{2}=y_{2}(t), t \in j$. For the polar coordinates $\rho=$ $\rho(\mathrm{t}), \varphi=\varphi(\mathrm{t})$ of the curve \mathcal{K} we have $\rho \in \mathrm{c}^{(1)}(\mathrm{j})$. $\varphi \in C^{(1)}(j), \quad \varphi^{\prime}(t) \neq 0$ in j.
$P r o o f$. Since $p \in C^{(0)}(j), y_{1}, y_{2}, p y_{1}^{\prime}, p y_{2}^{\prime} \in C^{(1)}(j)$, $p(t) \neq 0$ in j, it follows from formula (2.2) $\rho=$ $=\sqrt{y_{1}^{2}(t)+y_{2}^{2}(t)}, t \in j$, that

$$
\begin{aligned}
\rho^{\prime}= & \left(y_{1}^{2}+y_{2}^{2}\right)^{-\frac{1}{2}}\left(y_{1} y_{1}^{\prime}+y_{2} y_{2}^{\prime}\right)=\left[y_{1}\left(p y_{1}^{\circ}\right)+y_{2}\left(p y_{2}^{\prime}\right)\right] / \\
& / p \sqrt{y_{1}^{2}+y_{2}^{2}}
\end{aligned}
$$

```
From this we see that }\mp@subsup{\rho}{}{\prime}\mathrm{ is a continuous function, i.e.
    \rho\in\mp@subsup{c}{}{(1)}(j). From 2.3): tg \varphi= y (t)/\mp@subsup{y}{1}{}(t) we obtain sin \varphi=
=k\mp@subsup{y}{2}{}(t), \operatorname{cos}\varphi=k\mp@subsup{y}{1}{}(t),k=1/\sqrt{}{\mp@subsup{y}{1}{2}+\mp@subsup{y}{2}{2}}\mathrm{ . By differentiatin,}
and rearrangement we obtain
```

$$
\begin{gathered}
\varphi^{\prime}=-\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right) /\left(y_{1}^{2}+y_{2}^{2}\right)=-\left[y_{1}\left(p y_{2}^{\prime}\right)-\right. \\
\left.-\left(p y_{1}^{\prime}\right) y_{2}\right] / p\left(y_{1}^{2}+y_{2}^{2}\right), \quad t \in j
\end{gathered}
$$

and we can see that $\varphi^{\prime}(\mathrm{t}) \neq 0$ for $\mathrm{t} \in \mathrm{j}$ and that φ^{\prime} is continuous in j, ie. $\varphi \in C^{(1)}(j)$.

Assuming that the coefficient p of the differential equation ($p q$) satisfies the condition $p \in C^{(1)}(j)$, then there holds for the polar coordinates of the curve \mathcal{K} from Theorem 3.7. that $\rho \in C^{(2)}(j), \varphi \in C^{(2)}(j), \varphi^{\prime}(t) \neq 0$ in j.

Since the space $S_{p q}$ is strongly regular we may express (conformably with Theorems 2.3. and 2.4.) the following theorems for the space $S_{p q}$.

Theorem 3.8. Let $S_{p q}$ be a space of solutions of the differentdial equation ($p q$) with the definition interval j. Let $\left(y_{1}, y_{2}\right)$ be a basis of $S_{p q}$. Let $s=\varphi(t)$ be a polar coordinate of the curve $\mathcal{K}: \xi_{1}=y_{1}(t), \xi_{2}=y_{2}(t), t \in j$, defined by formula (2.3).

Then it holds for the increasing or decreasing function

$$
\varphi=\varphi(t)
$$

$$
u_{1}\left[\varphi^{-1}(s)\right]=\cos s, u_{2}\left[\varphi^{-1}(s)\right]=\sin s, \quad s \in J
$$

$$
J=\varphi(j)
$$

or

$$
\begin{aligned}
u_{1}\left[\varphi^{-1}(s)\right]=\cos s, u_{2}\left[\varphi^{-1}(s)\right]=-\sin s, & -s \in J \\
J & =\varphi(j)
\end{aligned}
$$

where φ^{-1} denotes the inverse function to φ and the fundtions u_{i} are determined by the conditions $y_{i}(t)=$ $=f(t) u_{i}(t), t \in j, i=1,2, u_{1}^{2}(t)+u_{2}^{2}(t)=1, f(t)=$ $=\sqrt{y_{1}^{2}(t)+y_{2}^{2}(t)}$.

Theorem 3.9. Suppose the assumptions of Theorem 3.8. are fulfilled. Let $A=\left\|a_{i k}\right\|, i, k=1,2, \underline{Y}=A \cdot \underline{u}\left[\varphi^{-1}(s)\right]$.

If the matrix A is of the form (2.16) then the functions \bar{Y}_{1}, \bar{Y}_{2} are given by formulas (2.17).

Theorem 3.10. Let $S_{p q}$ be a space of solutions of the differential equation (pq) with the definition interval j. Let $\left(y_{1}, y_{2}\right)$ be a basis of the space $s_{p q}$. Let $\varphi=\varphi(t)$ be an increasing or decreasing function satisfying the functional equation $\operatorname{tg} \varphi(t)=y_{2}(t) / y_{1}(t)$ for $t \in j$. Let $J=\varphi(j)$. Then for
a) the bijection $\varphi: j \rightarrow J, \quad \varphi \in C^{(2)}(j)$,
b) the function $f=\sqrt{y_{1}^{2}(t) a y_{2}^{2}(t)} \in c^{(2)}(j), f(t) \neq 0$ for $t \in j$,
c) the matrix $A=\left(\begin{array}{lll}\cos s_{0} & \sin s_{0} \\ -\sin s_{0} & \cos s_{0}\end{array}\right)$, or $A=\left(\begin{array}{lll}\cos s_{0} & \sin s_{0} \\ \sin s_{0} & -\cos s_{0}^{\circ}\end{array}\right)$,
$s_{0} \in J, \quad s_{0}=\varphi\left(t_{0}\right), \quad t_{0} \in j$,
there exists a global transformation S^{*} onto the space $S_{p q}$ given by the relation

$$
\underline{y}(t)=A f(t) \underline{Y}[h(t)] \text {, }
$$

$t \in j, \underline{Y}=(\cos s, \sin s)^{\top}, \underline{y}=\left(y_{1}, y_{2}\right)^{\top}$.

P r o of. The above theorem is a modification of Theorem 2.5. in case of the space $S_{p q}$.

Definition 3.3. The differential equation

$$
\begin{equation*}
Y^{\prime \prime}=-Y \tag{-1}
\end{equation*}
$$

with the definition interval J, J $=\varphi(j)$ will be called the canonical form of the second order of the space $S_{p q}$ of the solution of the differential equation (pq), more briefly the
canonical differential equation of the second order of the space $S_{p q}$.

Let us note that by the space of solutions of the differential equation (-1) we mean the space S^{*} with the definition interval J. The elements of the space S^{*} are the functions

$$
\bar{Y}=k_{1} \cos s+k_{2} \sin s, \quad s \in J, \quad k_{1}, k_{2} \in R .
$$

Definition 3.4. Let $\left(y_{1}, y_{2}\right)$ be a basis of the space $S_{p q}$ with the definition interval j. Every function $\alpha \in C^{(2)}(j)$, $\alpha: j \rightarrow J$ satisfying in j the functional equation

$$
\operatorname{tg} \alpha(t)=\frac{y_{1}(t)}{y_{2}(t)},
$$

will be called a first phase, more briefly a phase of an ordered pair of solutions $y_{1}, y_{2} \in S_{p q}$.

Theorem 3.11. Let $\left(\tilde{y}_{1}, \tilde{y}_{2}\right)$ be a basis of the space $S_{p q}$ with the definition interval j. Let $\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right)$ be a basis of the space S^{*} with the definition interval J. Suppose the space S^{*} is globally transformed onto the space $S_{p q}$ by the aquation.

$$
\tilde{y}(t)=A f(t) \tilde{\underline{Y}}[h(t)]
$$

by means of the function f, the parametrization h and the matrix A. Let $\&$ be a matrix given by the equation $\underline{\tilde{Y}}=\alpha \underline{Y}$ where $\underline{Y}=(\cos \mathrm{s} \text {, } \sin \mathrm{s})^{\top}$. Let $\underline{Y}=\left(y_{1}, y_{2}\right)^{\top}$, where $\underline{y}=$ $=\not^{-1} \bar{A}^{-1} \tilde{y}$, whereby \not^{-1}, A^{-1} denote the inverse matrices to the matrix \notin, or A. Let $\alpha=\alpha$ (t) a first phase of the basis $\left(y_{2}, y_{1}\right) \in S_{p q}$. Then

$$
\begin{aligned}
& \quad \alpha_{k}(t)=h(t)+k j, \quad k \text { being an integer, } \\
& \alpha_{0}=\alpha(t) \quad \text { for } t \in j .
\end{aligned}
$$

Proof. The above theorem is a modification of Theorem 2.7. in case of the space S_{pq}.

Theorem 3.12. Let $S_{p q}$ be the space of solutions of the differential equation (qq) with the definition interval j_{1} and $S_{P Q}$ be the space of solutions of the differential equadion ($P Q$) with the definition interval j_{2}. Next let S^{*} be a canonical space with the definition interval J. Let $\underline{\tilde{Y}}=$ $=\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right)$ be a basis of S^{*}. Let $\left(\tilde{u}_{1}, \tilde{u}_{2}\right) \in S_{p q},\left(\tilde{U}_{1}, \tilde{u}_{2}\right) \in S_{P Q}$ be a space basis. Suppose the space $S^{\mathscr{R}}$ is globally transformed onto the space $S_{p q}$ by the equation
$\underline{\tilde{u}}(t)=A_{1} f(t) \tilde{\underline{Y}}[h(t)]$, where $h: j_{1} \rightarrow J, h \in C^{(2)}\left(j_{1}\right)$, $\underline{\underline{u}}=\left(\tilde{u}_{1}, \tilde{u}_{2}\right)^{\top}$.

Suppose the space S^{*} is globally transformed onto the space $S_{P Q}$ by the equation
$\underline{\tilde{U}}(T)=A_{2} F(T) \underline{\tilde{Y}}[H(T)]$, where $H: j_{2} \rightarrow J, H \in C^{(2)}\left(j_{2}\right)$, $\underline{\tilde{U}}=\left(U_{1}, U_{2}\right)^{\top}$.

The necessary and sufficient condition for the existence of the global transformation of the space $S_{P Q}$ onto the space $S_{p q}$ transforming the basis $\left(\tilde{u}_{1}, \tilde{u}_{2}\right)$ into the basis $\left(\tilde{u}_{1}, \tilde{u}_{2}\right)$ by
a) the bijection $k: j_{1} \rightarrow j_{2}, k \in C^{(2)}\left(j_{1}\right)$,
b) the function $g \in C^{(2)}(j), g(t) \neq 0$ for $t \in j_{1}$,
c) the matrix $B=A_{1} A_{2}^{-1}$
by the formula

$$
\underline{\tilde{u}}(t)=B g(t) \underline{\underline{U}}[k(t)], \quad t \quad j_{1}
$$

is the existence of

1. a bijection $T=x(t), \quad x: j_{1} \rightarrow j_{2}, x<c^{(2)}\left(j_{1}\right)$,
2. an integer ℓ, for which $h(t)=H[X(t)]+\ell \pi$
for $t \in j_{1}$:

Proof. The above theorem is a modification of Theorem 2.8. in case of the space $S_{p q}, S_{P Q}$.

REFERENCES

1 B o r ů v $k a, 0 .:$ Linear Differential Transformations of the Second order. The English Univ.Prass, London 1971.

2 L a i tochova, J.: To the definition of the global transformation in-2-dimensional linear spaces of continuous functions. Acta Univ.Palackianae Olomucensis, F.R.N., Vol. 88 , 1987 (in print).

3 N e um a n, F.: Geometrical Approach to Linear Differential Equations of the n-th Order, Rend., Math. 5 (1972), 579-602.

4 N e u m a n, F.: Теория глобальных свойств обыкновенннх линейных дифференциальных уравнений $n-\Gamma 0$ порядла. Дифференциальнне уравнения 19 (1983), 799-808.
5 S t a ch, K.: Die allgemeinen Eigenschaften der Kummerschen Transformationen zweidimensionaler Räume von stetigen Funktionen, Publ.Fac.Sci.UJEP Brno, No 478, 1966.
6 S t a ch, K.: Die vollständigen Kummerschen Transformationen zweidimensionaler Räume von stetigen Funktionen. Arch.Math., T3 (1967), 117-138.

KANONICKÝ PROSTOR SPOJITÝCH FUNKCf DIMENZE 2

Souhrn

Článek je věnován studiu globální transformace dvourozměrných regulárních a silně regulárních prostorů spojitých funkci z geometrického hlediska. Význačnou roli zde má tzv.
kanonický prostor spojitých funkcí, který umožñuje charakterizovat studované prostory spojitých funkcí.

Definuje se fáze α uspořádané dvojice funkcí y_{1}, y_{2} \checkmark silně regulárním prostoru S s definičním intervalem j jako každá spojitá funkce $v j, k t e r a ́ ~ v ~ j ~ v y h o v u j e ~ f u n k c ̌ n i ́ ~ r o v n i c i ~$ $\operatorname{tg} \alpha(\mathrm{t})=y_{1}(\mathrm{t}) / y_{2}(\mathrm{t})$. Hledá se vztah mezi prvni fází α a parametrizací h, kterou je zprostředkována globální transformace kanonického prostoru spojitých funkcí na prostor S a ukazuje se, že platí $\alpha_{k}(t)=h(t)+k \pi, k$ celé, $\alpha_{o}=\alpha(t)$. Dokazuje se nutná a postačující podmínka pro existenci globální transformace silně regulárních prostorů S_{1} a S_{2} dimenze 2.

Ziskané výsledky jsou aplikovány na prostory řešení lineárních diferenciálních rovnic obecného a Sturmova tvaru.

КАНОНИЧЕСКОЕ ПРОСТРАНСТВО НЕПРЕРЫВННХ ФУНКЩИИ

РАЗМЕРНОСТИ 2

Peanme

Настоящая статья посвящена ияученир глобального преобрязовения двухмерных регулярных и сильно регулярных пространств непрерывных функций с геометрической точки арения. Особур роль здесь играет т.н. каноническое пространство непрерывных Функций, которое деет возмохность характерияировать ияучяемые пространства непрерывных функций.

Определяется первая фаза $\mathcal{\alpha}$ упорядоченной пары функций y_{1}. Y_{2} в сильно регуля рном пространстве S с интервалом определения ј как лобвя непрерывная функция в j, которая в ј удовлетворяет функциональному уравненир $\operatorname{tg} \mathcal{C}(\mathrm{t})=$ $=y_{1}(t) / y_{2}(t)$. Ищется соотношение мехду первой фавой \propto

параметрмвацией h, с помощьш которой осуществляется глобальняя трансфо рмадия канонического пространствя непрерывных функций на пространство S и показывается, что имеет место $\alpha_{k}(t)=h(t)+k \pi, k \quad$ целое, $\alpha_{0}=\alpha(t)$.

Доказывается необходимое и достаточное условие для существования глобальной трансформации сильно регулярных пространств S_{1} и S_{2} раямерности 2.

Полученные ревультаты применявтся в теории пространств решений линейных дифференциальных уравнений общего типе и

Author's address:
RNDr. Jitka Laitochová, CSc. pedagogická fakulta
Univerzity Palackého
Žerotinovo náměst1 2
77140 Olomouc
XSSR /Czechoslovakia/

Acta UPO, Fac.rer. nat.,Vol.91, Mathematica XXVII,1988,111-148.

[^0]: terval j are the only cluster points of zeros of the function $y_{1}(t)$;
 c) in every interval (t_{i}, t_{i+1}), where t_{i}, t_{i+1} for $i=1,2,3, \ldots$ are the neighbouring zeros of the function $y_{1}(t)$ in j and in the interval $\left(a, t_{1}\right)$, if b is the only cluster point of zeros of the function $y_{1}(t)$, or
 in every interval (t_{-i}, t_{-i+1}), where t_{-i}, t_{-i+1} for $i=1,2,3, \ldots$ are the neighbouring zeros of the function $y_{1}(t)$ in j and in the interval $\left(t_{0}, b\right)$ if a is the only cluster point of zeros of the function $y_{1}(t)$;
 d) in every interval (t_{i}, t_{i+1}), where t_{i}, t_{i+1} for $i=1,2, \ldots, n-1$ are the neighbouring zeros of the function $y_{1}(t)$ in j and in the intervals $\left(a, t_{1}\right)$, $\left(t_{n}, b\right)$ in case the function $y_{1}(t)$ in the interval j has precisely n zeros t_{i}; for $n=1$ the interval $\left(t_{1}, t_{2}\right)$ is an empty set.

 Condition B. At the points t_{i} there exist the following limits

[^1]: However, besides the function $\varphi(\mathrm{t})$ there are also the functions $\varphi(t)+k \pi, k$ being an integer, satisfying (2.10), it suffices to take the function $\varphi_{1}(t)=\varphi(t)+\pi$ to get (2.13).

 If φ is an increasing or decreasing function, then

