Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Jiří Rachůnek
The ordinal variety of distributive ordered sets of width two

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 30 (1991), No. 1, 17--32

Persistent URL: http://dml.cz/dmlcz/120260

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1991
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM
 1991
 MATHEMATICA XXX
 VOL. 100

Katedra algebry a geometrie
 přírodovědecké fakulty Univerzity Palackého v Olomouci Vedoucí katedry: Doc.RNDr.Jiří Rachůnek, CSc.

THE ORDINAL VARIETY OF DISTRIBUTIVE ORDERED SETS OF WIDTH TWO

JiŘí rachӨnek

(Received February 27, 1990)

Abstract: An ordinal variety \mathbf{V} of ordered sets is called regular if every $A \in V$ is an ordinal sum of ordinally irreducible ordered sets from V. Ordinally irreducible members from the regular ordinal variety of distributive ordered sets of the width at most two are described in detail here.

Key words: Orderet set, distributive ordered set, ordinal variety, regular ordinal variety

MS Classification: 06Al0
Let $A=(A, \leqq)$ be an ordered set and B a subset of A. Then we put $L_{A}(B)=\{x \in A ; x \leqq b$ for all $b \in B\}, U_{A}(B)=\{y \in A$; $b \leqq y$ for $a l l b \in B\}$. If $B=\left\{a_{1}, \ldots, a_{n}\right\}$, then $L_{A}\left(a_{1}, \ldots, a_{n}\right)$ means $L_{A}(B)$, and $U_{A}\left(a_{1}, \ldots, a_{n}\right)$ means $U_{A}(B)$. If there is no danger of misunderstanding, we will also write $L(B)$ and $U(B)$ instead of $L_{A}(B)$ and $U_{A}(B)$, respectively.

The notions of distributive and modular ordered sets, that generalize the analogical notions from the lattice theory, have been introduced in [3].

Definition. Let A be an ordered set.
a) If for any elements $a, b, c \in A$ it holds $L(U(a, b), c)=$ $=L(U(L(a, c), L(b, c)))$, then A is called a distributive ordered set.
b) If for any a, b, c $\in A$, where $a \leqq c$, it holds
$L(U(a, L(b, c)))=L(U(a, b), c)$, then A is called a modular ordered set.

We also need the following notion:
Definition. Let A be an ordered set and let $B \subseteq A$. If $U_{A}\left(L_{B}(a, b)\right)=U_{A}\left(L_{A}(a, b)\right)$ and $L_{A}\left(U_{B}(a, b)\right)=L_{A}\left(U_{A}(a, b)\right)$ for each $a, b \in B$, then B is called a strong subset of A.
(Strong subsets rather simulate sublattices of lattices. For example, in [1] there are used strong subsets for the characterization of distributive and modular ordered sets by means of forbidden subsets.) The classes DOS and MOS of all distributive and modular ordered sets, respectively, are not closed under direct products or retracts (that means DOS and MOS are not order varieties defined in [2]), but they are closed under ordinal sums and strong subsets. (See [4].) Therefore we have introduced (in [4]) the notion of an ordinal variety of ordered sets as follows.

Definition. A class of ordered sets is called an ordinal variety if it is ćlosed under
a) ordinal sums,
b) strong subsets,
c) isomorphisms.

For instance, every non-trivial lattice variety, the class of distributive ordered sets DOS, and the class of modular ordered sets MOS are ordinal varieties. Moreover, if X is an ordinal variety and X_{n} is the class of all ordered sets of width at most n from $X(n \geqq 1)$, then X_{n} is an ordinal variety.

It is known that in the class of all ordered sets it holds: Every ordered set is an ordinal sum of its ordinally irreducible ordered subsets. (See e.g. Theorem 3.11 in [5].) Therefore, we shall deal with ordinal varieties having an analogical property, now.

Definition. A class of ordered sets V will be called a regular ordinal variety if it is an ordinal variety and every ordered set $A \in V$ is an ordinal sum of ordinally irreducible ordered sets from V.

Remark 1. Let V be a class of lattices which is a regular ordinal variety. Let us suppose that there exists $L \in V$ such that L contains two non-comparable elements a and b. Then $L_{1}=\{a \wedge b$, $a, b, a \vee b\}$ is a sublattice of L. If V is a lattice variety, then $L_{1} \in V$. But we have that $L_{1}=\{a \wedge b\} \oplus\{a, b\} \oplus\{a \vee b\}$ is an ordinal sum of ordinally irreducible ordered sets, and $\{a, b\} \notin V$. Hence there is no lattice variety which is a regular ordinal variety. But, on the contrary, the class \mathbf{C} of all chains is a regular ordinal variety. Therefore, to find less trivial cases of regular ordinal varieties we must study ordinal varieties containing also ordered sets which are not lattices.

Theorem 1. The class of distributive ordered sets DOS and the class of modular ordered sets MOS are regular ordinal varieties.

Proof.
a) Let $A_{\alpha}, \alpha \in I$, be ordered sets and let $A={ }_{\alpha \in I} A_{\alpha}$ be a distributive ordered set. Let us suppose $\beta \in I, x, y, z \in A_{\beta}$ and denote $A_{\beta}=B$. Then we have
$L_{B}\left(U_{B}\left(L_{B}(x, z), L_{B}(y, z)\right)\right)=L_{A}\left(U_{B}\left(L_{B}(x, z), L_{B}(y, z)\right)\right) \cap B=$ $=L_{A}\left(U_{A}\left(L_{A}(x, z) \backslash \bigcup_{\alpha<\beta} A_{\alpha}, L_{A}(y, z) \backslash \bigcup_{\alpha<\beta} A_{\alpha}\right)\right) \cap B=$
$=L_{A}\left(U_{A}\left(L_{A}(x, z), L_{A}(y, z)\right) \cap B=L_{A}\left(U_{A}(x, y), z\right) \cap B=\right.$
$=L_{B}\left(U_{A}(x, y), z\right)=L_{B}\left(U_{B}(x, y), z\right)$,
hence $A_{B} \in \operatorname{DOS}$.
b) Let $A_{\alpha}, \alpha \in I$, be ordered sets such that $A=\underset{\alpha \in I}{\oplus} A_{\alpha}$ is a modular ordered set. Let us suppose again $B \in I, B=A_{B}$. Let $x, y, z \in B, x \leqq z$. Then
$L_{B}\left(U_{B}\left(x, L_{B}(y, z)\right)\right)=L_{A}\left(U_{B}\left(x, L_{B}(y, z)\right)\right) \cap B=$
$=L_{A}\left(U_{A}\left(x, L_{A}(y, z) \backslash \bigcup_{\alpha<\beta} A_{\alpha}\right)\right) \cap B=$
$=L_{A}\left(U_{A}\left(x, L_{A}(y, z)\right)\right) \cap B=L_{A}\left(U_{A}(x, y), z\right) \cap B=$
$=L_{B}\left(U_{A}(x, y), z\right)=L_{B}\left(U_{B}(x, y), z\right)$,
thus $A_{B} \in$ MOS.

Let us recall that an element a of an ordered set A is called a node if a is comparable with each element x in A.

Corollary 1. If a non-trivial distributive (modular) ordered set A has a node, then A is ordinally reducible in DOS (in MOS).

Corollary 2. If $A \in D O S(A \in M O S)$ has a smallest or a greatest element, then A is ordinally reducible in DOS (in MOS).

Remark 2. It is evident that $D O S_{n}$ and $M O S_{n}$ are ordinal varieties for any $n \geqq 1$.

From now on, we will study only ordered sets of width at most 2 .

Proposition 2. If an ordered set A has width $w(A) \leqq 2$, then A is a distributive ordered set if and only if A is a modular one. (That means $D O S_{2}=\dot{M} O S_{2}$.)

Proof. For $w(A)=1$, the proposition is trivial. Let $w(A)=2$ and let A be modular. If $a, b, c A$, then at least two from them are comparable. Let e.g. a $\leqq b$. Then

$$
\begin{aligned}
& L(U(L(a, c), L(b, c)))=L(U(L(b, c)))=L(b, c)=L(U(a, b), c), \\
& L(U(L(a, b), L(c, b)))=L(U(a, L(c, b)))=L(U(a, c), b), \\
& L(U(L(b, a), L(c, a)))=L(U(a, L(c, a)))=L(a)=L(U(b, c), a),
\end{aligned}
$$ hence A is a distributive ordered set.

The converse implication is always true (see e.g. [3]).
We know that ordered sets from DOS_{2} are ordinal sums of ordinally irreducible sets from $D O S_{2}$. Hence, now we will show possibilities of constructions of ordinally irreducible ordered sets in the regular ordinal variety DOS_{2}.

Evidently, every two-elements antichain is ordinally irreducible in DOS_{2}. Rather general classes of ordinal irreducible sets will be described in the following theorems. The smallest element of an ordered set will be denoted by 0 and the greatest element by 1 (if they exist).

Theorem 3. Let B be a non-trivial distributive ordered set with 0 and 1 of width at most two such that the ordered subset $B \backslash\{0,1\}$ is ordinally irreducible or $B=\{0,1\}$. Let u be an atom and v a dual atom in B. Let $w, z \notin B$ and $\operatorname{let} A=B U\{w, z\}$
be an ordered set such that

$$
\begin{aligned}
& \forall a, b \in B ; a \leqq \begin{array}{l}
A
\end{array} \quad b a \leqq_{B} b, \\
& v<{ }_{A} w, w\left\|_{A} l, z<A_{A} u, z\right\|_{A} 0, \\
& \forall a \in B ; a<\leqq_{A} v, z<_{A} a \Leftrightarrow u \leqq_{B} a .
\end{aligned}
$$

Then A is an ordinally irreducible ordered set from $D O S_{2}$.
First, we will prove the following lemma.
Lemma 4. Let B be a non-trivial ordered set with $1, B \in D O S_{2}$.
Let v be a dual atom in $B, w B$ and $C=B \cup\{w\}$ be an ordered set such that

$$
\begin{aligned}
& \forall a, b \in B ; a \leqq_{C} b \Longleftrightarrow a \leqq_{B} b, \\
& v<_{C} w, w \|_{C} 1 \text {, } \\
& \forall a \in B ; a<C \quad W \Leftrightarrow a \leqq{ }_{B} \vee .
\end{aligned}
$$

Then $\mathrm{C} \in \mathrm{DOS}_{2}$.
Proof. a) Let $a, b \in B, a<w$.
$\alpha)$ Let $b<w$. Then evidently we have $L(U(a, L(b, w)))=$ $=L(U(a, b), w)$. The symbols $\leqq<,<, \|, L, U$ without indexes will be used for the largest from considered ordered sets, i.e., in this case, for C.)
B) Let $b \| w$. Then $b \| v$ and $v \in U(a, L(b, v))$. Hence $L(U(a, L(b, w)))=L(U(a, L(b, v)))=L_{B}\left(U_{B}\left(a, L_{B}(b, v)\right)\right)=$ $=L_{B}\left(U_{B}(a, b), v\right)=L_{B}(U(a, b), v)=L(U(a, b), v)=L(U(a, b), w)$.
b) Let $a, b \in B, a<b$.
$\boldsymbol{\alpha})$ If $a \leqq v$, then $a<w$, and hence we have $L(U(a, L(w, b)))=$ $=L(U(a, w), b)$.
B) Let a \| v. Then
$L(U(a, L(w, b)))=L(U(a, L(v, b)))=L\left(U_{B}\left(a, L_{B}(v, b)\right)\right)=$
$=L_{B}\left(U_{B}\left(a, L_{B}(v, b)\right)\right)=L_{B}\left(U_{B}(a, v), b\right)=L_{B}(1, b)=L(b)=$ $=L(U(a, w), b)$.
c) Let $a, b, c \in B, a<c$.
$\alpha)$ Let us suppose that $a, b, c \leqq v$. Then
$L(U(a, L(b, c)))=L\left(U_{B}(a, L(b, c)) U\{w\}\right)=$ $=L_{B}\left(U_{B}\left(a, L_{B}(b, c)\right)\right) \cap L(w)=L_{B}\left(U_{B}(a, b), c\right) \cap L(w)=$
$=L\left(U_{B}(a, c)\right) \cap L(w) \cap L(c)=L\left(U_{B}(a, b) L^{\prime}\{w\}\right) \cap L(c)=L(U(a, b), c)$.
B）Let us suppose $a, c \leqq v, b \| v$ ．Then
$L(U(a, L(b, c)))=L\left(U_{B}(a, L(b, c)) U\{w\}\right)=$
$=L\left(U_{B}\left(a, L_{B}(b, c)\right)\right) \cap L(w)=L_{B}\left(U_{B}\left(a, L_{B}(b, c)\right)\right) \cap L(w)=$
$=L_{B}\left(U_{B}(a, b), c\right) \bigcap L(w)=L(U(a, b), c) \cap L(w)=L(U(a, b), c)$.
分 Let us suppose $a \leqq v, c \| v$ ．
$\left.\gamma_{1}\right)$ Let $b \| v$ ．Since B have width 2 ，it must be $b \nVdash c$ ， and thus $L(U(a, L(b, c)))=L(U(a, b), c)$ ．
$\left.\gamma_{2}\right)$ Let $b>v$ ．Then $b=1$ and the assertion is true．
γ_{3} ）Let $b \leqq v$ ．Then the proof is aralogical to that of the part B）．

ठ）Let a丰v．Then alsoc争v．Hence a \｜lv，and either $c=1$ or $c \| v$ ．For $c=1$ ，the assertion is obvious．Let $c \| v$ and let $b \| c, b| | a$ ．Then

$$
\begin{aligned}
& L(U(a, L(b, c)))=L\left(U_{B}\left(a, L_{B}(b, c)\right)\right)=L_{B}\left(U_{B}\left(a, L_{B}(b, c)\right)\right)= \\
& =L_{B}\left(U_{B}(a, b), c\right)=L_{B}(U(a, b), c)=L(U(a, b), c) .
\end{aligned}
$$

For bサt or bXa the assertion follows from［4，Lemma 2］．\square
Proof of Theorem 3．Let an ordered set A satisfy the hypo－ thesis of Theorem 3．Then $C=B \cup\{w\}$ ，by Lemma 4 ，belongs to DOS_{2} ．However，the notion of a distributive（and also a modular） ordered set is self－dual，hence，using the proposition dual to Lemma 4，we obtain $A \in \mathrm{DOS}_{2}$ ．Finally，the ordinal irreducibility of A is evident．

Theorem 5．Let B be a non－trivial ordered set with 0 and 1 from DOS_{2} such that $B \backslash\{0,1\}$ is ordinally irreducible or $B=$ $=\{0,1\}$ ．Let u be an atom，v a dual atom in B ，and $u \| v$ ．Let $w_{1}, w_{2}, z_{1}, z_{2} \notin B$（it can be $w_{1}=w_{2}$ or $z_{1}=z_{2}$ ）and let $A=B \cup\left\{w_{1}, w_{2}, z_{1}, z_{2}\right\}$ be an ordered set such that

$$
\begin{aligned}
& v<_{A} w_{1} \leqq{ }_{A} w_{2}, z_{2} \leqq{ }_{A} z_{1}<_{A} u, w_{1}\left\|_{A} 1, w_{2}\right\|_{A} 1, \\
& z_{1}\left\|_{A} 0, z_{2}\right\|_{A} 0, z_{2} \prec_{A} w_{2}, \\
& \forall a, b \in B ; a \leqq{ }_{A} b \Longleftrightarrow a \leqq \begin{array}{l}
B \\
\\
\forall a \in B ; a<{ }_{A} w_{1} \Leftrightarrow a \leqq \\
\forall a, z_{1}<{ }_{A} a \Longleftrightarrow u \leqq
\end{array} l
\end{aligned}
$$

Then A is an ordinally irreducible ordered set in DOS_{2}.
Proof. a) Let $a \leqq v, b\|v, a\| b$. Then $b \nmid u$ (in the opposite case, $u \nVdash v$), hence $b \geqq u$. We have

$$
\begin{aligned}
& L\left(U(a, b), w_{2}\right)=L\left(U_{B}(a, b), w_{2}\right)=L_{B}\left(U_{B}(a, b), v\right) \cup\left\{z_{2}\right\}= \\
& =L_{B}\left(U_{B}\left(a, L_{B}(b, v)\right)\right) \cup\left\{z_{2}\right\}=L(a) \cup\left\{z_{2}\right\}, \\
& L\left(U\left(a, L\left(b, w_{2}\right)\right)\right)=L\left(U\left(a, L(b, v) \cup\left\{z_{2}\right\}\right)\right)=L\left(U\left(a, z_{2}\right)\right)= \\
& =L\left(U(a, u) \cup\left\{w_{2}\right\}\right)=L\left(U_{B}(a, u)\right) \cap L\left(w_{2}\right)= \\
& \left.=L\left(U_{B}(a, u)\right) \cap L(v) \cup\left\{w_{2}, w_{1}, z_{2}\right\}\right)= \\
& =\left(L\left(U_{B}(a, u)\right) \cap L(v)\right) \cup\left(L\left(U_{B}(a, u)\right) \cap\left\{w_{2}, w_{1}, z_{2}\right\}\right)= \\
& =L\left(U_{B}(a, u), v\right) \cup\left\{z_{2}\right\}=L_{B}\left(U_{B}(a, u), v\right) \cup\left\{z_{2}\right\}= \\
& =L_{B}\left(U_{B}\left(a, L_{B}(u, v)\right)\right) \cup\left\{z_{2}\right\}=L_{B}(a) \cup\left\{z_{2}\right\}=L(a) \cup\left\{z_{2}\right\} .
\end{aligned}
$$

b) Let b \|v. Then
$L\left(U\left(w_{1}, L\left(b, w_{2}\right)\right)\right)=L\left(U\left(w_{1}\right) \cap U\left(L\left(b, w_{2}\right)\right)\right)=L\left(w_{2}\right)=L\left(U\left(w_{1}, b\right), w_{2}\right)$.
c) Let $a<w_{1}, b\|a, b\| w_{1}$. Then $b \| v$, and so b $\nmid u$. Thus $b \geqq u$. We have
$L\left(U\left(a, L\left(b, w_{1}\right)\right)\right)=L(U(a, L(b, v)))=L\left(U\left(a, L_{B}(b, v)\right)\right)=$
$=L\left(U_{B}\left(a, L_{B}(b, v)\right) \cup\left\{w_{1}, w_{2}\right\}\right)=L\left(U_{B}\left(a, L_{B}(b, v)\right)\right) \cap L\left(w_{1}\right)=$
$=L_{B}\left(U_{B}\left(a, L_{B}(b, v)\right)\right) \cap L\left(w_{1}\right)=L_{B}\left(U_{B}(a, b), v\right) \cap L\left(w_{1}\right)=$
$=L\left(U_{B}(a, b), w_{1}\right)$.
d) Let $a, b, c \in B, a<c$. We can suprose that $a \| b, b| | c$, hence, among others, $a \neq 0, b \neq 0, b \neq 1, c \neq 1$.
$\alpha)$ Let $c \leqq v$. Then $c \neq$. However, we cannot have $b \leqq v$, otherwise we would have $b \neq u$ and this would imply $b\|u, c\| u$, $\mathrm{b} \| \mathrm{c}$, a contradiction. Therefore $b \| v$ and $b \geqq u$. We have

$$
\begin{aligned}
& L(U(a, L(b, c)))=L\left(U\left(a, L_{B}(b, c)\right)\right)=L\left(U_{B}\left(a, L_{B}(b, c)\right) \cup\left\{w_{1}, w_{2}\right\}\right)= \\
& \quad=L_{B}\left(U_{B}\left(a, L_{B}(b, c)\right)\right) \cap L\left(w_{1}\right)=L_{B}\left(U_{B}(a, b), c\right) \cap L\left(w_{1}\right)= \\
& \quad=L\left(U(a, b), c, w_{1}\right)=L(U(a, b), c)
\end{aligned}
$$

B) Let $c \| v$. Then we cannot have $c \| u$, thus $c \geqq u$. Further it must be b \quad, hence $b \leqq v$, and therefore $b \| u$. At the same time, since $a \| b$ we get $a \geqq t, v \neq a$. Therefore we have
$L(U(a, L(b, c)))=L\left(U\left(a, L_{B}(b, c)\right)\right)=L\left(U_{B}\left(a, L_{B}(b, c)\right)\right)=$
$=L_{B}\left(U_{B}\left(a, L_{B}(b, c)\right)\right) \cup\left\{z_{1}, z_{2}\right\}=L_{B}\left(U_{B}(a, b), c\right) \cup\left\{z_{1}, z_{2}\right\}=$
$=L_{B}(U(a, b), c) \cup\left\{z_{1}, z_{2}\right\}=L(U(a, b), c)$.
e) Let $u \leqq c, b\left\|z_{1}, b\right\| c$. Then $b \| u$, and since $u \| v$, we get b $\mathrm{b} v$, hence $b \leqq v$. In addition, c \| v. Then
$L\left(U\left(z_{1}, L(b, c)\right)\right)=L(U(u, L(b, c)))=L\left(U\left(u, L_{B}(b, c)\right)\right)=$
$=L\left(U_{B}\left(u, L_{B}(b, c)\right)\right)=L_{B}\left(U_{B}\left(u, L_{B}(b, c)\right)\right) \cup\left\{z_{1}, z_{2}\right\}=$
$=L_{B}\left(U_{B}(u, b), c\right) \cup\left\{z_{1}, z_{2}\right\}=L_{B}(U(u, b), c) \cup\left\{z_{1}, z_{2}\right\}=$
$=L(U(u, b), c)$.
f) Let $c \geqq u, b \| u$. Then $b \nVdash v$, hence $b \leqq v$. We have
$L\left(U\left(z_{2}, L(b, c)\right)\right)=L\left(U\left(z_{2}\right) \cap U(L(b, c))\right)=$
$\left.=L\left(U(u) \cup\left\{z_{1}, z_{2}, w_{2}\right\}\right) \cap U(L(b, c))\right)=$
$=L\left((U(u) \cap U(L(b, c))) \cup\left(\left\{z_{1}, z_{2}, w_{2}\right\} \cap U(L(b, c))\right)\right)=$
$=L(U(u) \cap U(L(b, c))) \cap L\left(\left\{z_{1}, z_{2}, w_{2}\right\} \cap U(L(b, c))\right)=$
$=L\left(U_{B}(u) \cap\left(U_{B}\left(L_{B}(b, c)\right) \cup\left\{w_{1} w_{2}\right\}\right)\right) \cap L\left(w_{2}\right)=$
$=L\left(\left(U_{B}(u) \cap U_{B}\left(L_{B}(b, c)\right)\right) \cup\left(U_{B}(U) \cap\left\{w_{1}, w_{2}\right\}\right)\right) \cap L\left(w_{2}\right)=$
$=L\left(U_{B}\left(u, L_{B}(b, c)\right)\right) \cap L\left(w_{2}\right)=$
$=\left(L_{B}\left(U_{B}\left(u, L_{B}(b, c)\right)\right) \cup\left\{z_{1}, z_{2}\right\}\right) \cap L\left(w_{2}\right)=$
$=\left(L_{B}\left(U_{B}(u, b), c\right) \cup\left\{z_{1} z_{2}\right\}\right) \cap L\left(w_{2}\right)=$
$=L(U(u, b), c) \cap L\left(w_{2}\right)=L\left(U\left(z_{2}, b\right), c\right)$.
g) Let $b|\mid u$. Then
$L\left(U\left(z_{2}, L\left(b, z_{1}\right)\right)\right)=L\left(z_{2}\right)=\left\{z_{2}\right\}$, $L\left(U\left(z_{2}, b\right), z_{1}\right)=L\left(U\left(z_{2}, b\right)\right) \cap L\left(z_{1}\right)=L\left(U(u, b) U\left\{w_{2}\right\}\right) \cap L\left(z_{1}\right)=$
$=L\left(U(u, b), z_{1}\right) \cap L\left(w_{2}\right)=L\left(z_{1}\right) \cap L\left(w_{2}\right)=\left\{z_{2}\right\}$.
h) $L\left(U\left(w_{1}, L\left(z_{1}, w_{2}\right)\right)\right)=L\left(U\left(w_{1}, z_{2}\right)\right)=L\left(w_{2}\right)$. $L\left(U\left(w_{1}, z_{1}\right), w_{2}\right)=L\left(w_{2}\right)$.
i) $L\left(U\left(z_{2}, L\left(w_{1}, z_{1}\right)\right)\right)=L\left(U\left(z_{2}\right)\right)=L\left(z_{2}\right)$, $L\left(U\left(z_{2}, w_{1}\right), z_{1}\right)=L\left(w_{2}, z_{1}\right)=L\left(z_{2}\right)$.

The ordinal irreducibility of A is now also obvious.
Theorems 3 and 5 make possible to construct e.g. the
following ordinally irreducible ordered sets in $D O S_{2}$. (Figure 1

Fig. 1

Another method of construction of ordinally irreducible elements of DOS, will be based on the following theorem.

Theorem 6. Let B be an ordered set with 0 and 1 from DOS. such that the ordered set $B \backslash\{0, l j i s ~ o r d i n a l l y ~ i r r e d u c i b l e . ~$
 $=B U\left\{w_{1}, w_{2} \$\right.$ be an ordered set such that

$\mathrm{V} x$, yfi B ; $\mathrm{x}=\mathrm{A}_{\mathrm{A}} \mathrm{y}<=>\mathrm{X}_{\mathrm{o}} \mathrm{y}$,

Then A is an ordinally irreducible ordered set in $D 0 S_{2<}$
$P r \circ \circ f$. a) $L\left(U\left(v_{1}, L\left(v_{2}, W_{1}\right)\right)\right)=L\left(U\left(\mathrm{v}_{\mathrm{x}}, L\left(\mathrm{v}_{2}, \mathrm{v}^{-\wedge}\right)\right)=L\left(\mathrm{v}_{\mathrm{x}}\right)\right.$, $\left.L\left(U\left(v_{1}, V_{2}\right), w_{1}\right)=L\left(1, w_{2}, w_{1}\right)=K v j^{\wedge}\right)$.
b) $L\left(U\left(W_{j L}, L\left(I, W_{2}\right)\right)\right)=L\left(U\left(w_{1}, V_{1}, V_{2}\right)\right)=L\left(w_{2}\right)$, $L\left(U\left(W_{1}, l\right), W_{2}\right)=L\left(W_{2}\right)$.
c) $\mathrm{L}\left(\mathrm{U}\left(\mathrm{v}_{2}, \mathrm{~L}\left(\mathrm{w}_{15} \mathrm{l}\right)\right)\right)=\mathrm{L}\left(\mathrm{U}\left(\mathrm{V}_{2}, \mathrm{~V}_{1}\right)\right)=\mathrm{L}\left(\mathrm{w}_{2}, \mathrm{l}\right)$, $L\left(U\left(v_{2}, w_{1}\right), l\right)=L\left(w_{2}, l\right)$.
d) Let $a<w, a| | V_{2}$. Then
$\mathrm{L}\left(\mathrm{U}\left(\mathrm{a}, \mathrm{L}\left(\mathrm{V}_{2}, \mathrm{w}_{1}\right)>\right)=\mathrm{L}\left(\mathrm{U}\left(\mathrm{a}, \mathrm{L}\left(\mathrm{v}_{2}, \mathrm{y}_{1}\right)\right)\right)=\right.$
$=L\left(U_{B}\left(a, L_{B}\left(v_{2}, V_{1}\right)\right) U\left\{w_{1}, w_{2} \mid\right)=\right.$
$=L_{B}\left(U_{B}\left(a, L_{B}\left(\mathrm{~V}_{2} \wedge_{1}\right)\right)\right) O L\left(w_{1}\right)=L_{B}\left(U_{B}\left(a, V_{2}\right), V_{1}\right) H L\left(w_{1}\right)=$
$=L\left(U_{B}\left(a, v_{2}\right), v_{1}, w_{1}\right)=L\left(v_{1}\right)$,
$\mathrm{L}\left(\mathrm{U}\left(\mathrm{a}, \mathrm{v}_{2}\right), \mathrm{w}_{1}\right)=\mathrm{L}\left(\mathrm{U}\left(\mathrm{a}, \mathrm{V}_{2}\right)\right) \mathrm{AL}\left(\mathrm{w}_{1}\right)=$
$=L\left(1, w_{2}\right) A L\left(w_{1}\right)=L\left(w_{x}\right)$.
e) Let $a<v_{2}$, a \| $\mathrm{v}^{-},$. . Then we háve:
á) $L\left(U\left(a, L\left(w_{1}, w_{2}\right)\right)\right)=L\left(U\left(a, L\left(v_{1}, v_{2}\right)\right)\right)=$
$=L\left(U_{B}\left(a, L_{B}\left(v \cdot 1 j v_{2}\right)\right) U\left\{w_{2} \backslash\right)=\right.$
$\left.\left.=L_{B}\left(U_{B}\left(a, L_{B}\left(v_{1}, v_{2}\right)\right)\right) O L\left(w_{2}\right)=L^{\wedge} U^{\wedge} a^{\wedge}\right), v_{2}\right) f I L\left(w_{2}\right)$
$=L_{B}\left(1, v_{2}\right) r i L\left(w_{2}\right)=L\left(v_{2}\right)$, $L\left(U\left(a, w_{1}\right), v_{2}\right)=L\left(w_{2}, v_{2}\right)=L\left(v_{2}\right)$.
B) $L\left(U\left(a, L\left(v_{1}, v_{2}\right)\right)\right)=L\left(v_{2}\right)$,

$$
L\left(U\left(a, v_{1}\right), v_{2}\right)=L\left(w_{2}, 1, v_{2}\right)=L\left(v_{2}\right) .
$$

f) $L\left(U\left(a, L\left(w_{1}, 1\right)\right)\right)=L\left(U\left(a, v_{1}\right)\right)=L\left(w_{2}, 1\right)$, $L\left(U\left(a, w_{1}\right), l\right)=L\left(w_{2}, l\right)$.
f) Let $a, b, c \in B, a \leqq c, a\|b, b\| c$. It is evident that a, b, c are different from 1.
α) Suppose $c \leqq v_{1}, c \| v_{2}$. Then $b \leqq v_{2}$ and we have $L(U(a, L(b, c)))=L\left(U\left(a, L_{B}(b, c)\right)\right)=L\left(U_{B}\left(a, L_{B}(b, c)\right) \cup\left\{w_{1}, w_{2}\right\}\right)=$
$=L_{B}\left(U_{B}\left(a, L_{B}(b, c)\right)\right) \cap L\left(w_{1}\right)=L_{B}\left(U_{B}(a, b), c\right) \bigcap L\left(w_{1}\right)=$
$=L\left(U_{B}(a, b), c, w_{1}\right)=L\left(U(a, b) \backslash\left\{w_{2}\right\}, c\right)=L(U(a, b), c)$.
B) Suppose $c \leqq v_{2}$, c $\| v_{1}$. Then $b \leqq v_{1}$ and

$$
L\left(U_{B}\left(a, L_{B}(b, c)\right)\right)=L\left(U_{B}\left(a, L_{B}(b, c)\right) \cup\left\{w_{1}, w_{2}\right\}\right),
$$

and hence the proof is similar to that of the part α).
() Let $c \leqq v_{1}, v_{2}$. Then also it holds the equality as in B). The ordinal irreducibility of A is evident.

Clearly, the dual theorem is true, too. Combining these theorems and Lemma 4 and its dual proposition, we can construct e.g. the following ordinally irreducible ordered sets of $\quad \mathrm{O} \mathrm{S}_{2}$. (Figure 2.)

Fig. 2

The following theorem gives a method of construction of ordinally irreducible ordered sets of DOS_{2} which is a little different from the preceding ones.
 such that
a) A has two, maximal elements $a_{1}, a_{2}, a_{1} \neq a_{2}$, and there exist $p, q, r, s \in A$ with
$p \mathcal{K}_{A} q \prec_{A} a_{1}, \quad \mathrm{r} \prec_{A} s \prec_{A} a_{2}, \quad q\left\|_{A} a_{2}, \quad s\right\|_{A} a_{1}$,
$p \prec_{A} a_{2}, r \prec_{A} a_{1}$,
$\forall x \in A ; x \leqq{ }_{A} p \Longleftrightarrow x<_{A} q, x \leqq{ }_{A} r \Longleftrightarrow x<_{A} s ;$
b) B has two minimal elements $b_{1}, b_{2}, b_{1} \neq b_{2}$, and there exist c, d, e, $f \in B$ with

$$
\begin{aligned}
& b_{1} \prec_{B} c \prec_{B}^{d,} \quad b_{2} \prec_{B} e \prec_{B} f, \quad c\left\|_{B} b_{2}, e\right\|_{B} b_{1} \text {, } \\
& b_{1} \longrightarrow_{B} f, \quad b_{2} \longrightarrow_{B} d, \\
& \forall x \in B ; \quad d \leqq{ }_{B} x \Leftrightarrow c<{ }_{B} x, \quad f \leqq x \Leftrightarrow e<{ }_{B} x . \\
& \text { Let } C=(A \cup B) \backslash\left\{b_{1}, b_{2}\right\} \text { be an ordered set such that } \\
& \text { 1. } \forall x, y \in A ; x \leqq y \Longleftrightarrow x \leqq y \text {; }
\end{aligned}
$$

2. $\forall z \in B \backslash\left\{b_{1}, b_{2}\right\} ; a_{1} \angle_{C} z \Leftrightarrow b_{1}<{ }_{B} \quad z$, $a_{2}<C_{C} \Longrightarrow b_{2}<B_{B} \quad$;
3. $\forall u, v \in B \backslash\left\{b_{1}, b_{2}\right\} ; \quad u \leqq_{C} v \Longleftrightarrow u \leqq_{B} v$.

Then C belongs to $D O S_{2}$. In addition, if A and B are ordinally irreducible, then C is an ordinally irreducible ordered set, too.

Proof. Let u, v, w $\in C, u<w$.

1. Suppose $u \leqq a_{1}, v \leqq a_{1}, b_{1}<_{B} w$. Then evidently we have $L(U(u, L(v, w)))=L(U(u, v), w)$.
2. Suppose $u \leqq a_{1}, b_{1}<_{B} w, v \in A, v \not a_{1}, b_{2} \xi_{B} w$. Then $u \neq s, w=c$, and $v=s$ or $v=a_{2}$. We have $L(U(u, L(s, c)))=$ $=L(U(u, r))$.
$\alpha)$ Let $v=s$. Then
a) for $u=a_{1}$ or $u=q$,
$L(U(u, r))=L\left(U\left(a_{1}\right)\right)=L\left(a_{1}\right)$,
$L(U(u, s), c)=L(d, f, c)=L\left(a_{1}\right) ;$
b) for $u \in A \backslash\left\{a_{1}, a_{2}, q, s\right\}$,
$L(U(u, r))=L\left(a_{1}, a_{2}\right)$,
$L(U(u, s), c)=L\left(a_{2}, c\right)=L\left(a_{1}, a_{2}\right)$.
B) Let $v=a_{2}$. Then $L\left(U\left(u, L\left(a_{2}, c\right)\right)\right)=L(U(u, p, r))$.
a) For $u=a_{1}$ or $u=q$ we obtain
$L(U(u, p, r))=L\left(a_{1}\right)$,
$L\left(U\left(u, a_{2}\right), c\right)=L(d, f, c)=L\left(a_{1}\right)$.
b) If $u \in A \backslash\left\{a_{1}, a_{2}, q, s\right\}$, then
$L(U(u, p, r))=L\left(a_{1}, a_{2}\right)$,
$L\left(U\left(u, a_{2}\right), c\right)=L\left(a_{1}, a_{2}\right)$.
3. Suppose $u \leqslant a_{1}, b_{2}<_{B} w, v \in A, v \not a_{2}, b_{1} \not \&_{B} w$. Then $u \neq s$, $u \neq a_{2}, w=e$, and $v=q$ or $v=a_{1}$. From $w=e$ we get $u \neq a_{1}$, $u \neq q$.
$\chi)$ Let $v=q$. Then $L(U(q, e))=L(U(u, p))$.
a）If $u \leqq p$ ，then

$$
L(U(u, p))=L(p)=L(q, e)=L(U(u, q), e) .
$$

b）If $u \leqq r$ ，u 羊 p ，then

$$
L(U(u, p))=L\left(a_{1}, a_{2}\right)=L\left(a_{1}, e\right)=L(U(u, q), e)
$$

B）Let $v=a_{1}$ ．Then $L\left(U\left(u, L\left(a_{1}, e\right)\right)\right)=L(U(u, p, r))$ ．
Since $u \notin\left\{a_{1}, a_{2}, q, s\right\}$ ，

$$
L(U(p, r, u))=L(U(p, r))=L\left(a_{1}, a_{2}\right)
$$

a）If $u \leqq p$ ，then

$$
L\left(U\left(u, a_{1}\right), e\right)=L\left(a_{1}, e\right)=L\left(a_{1}, a_{2}\right)
$$

b）If $u \leqq r, u$ 争 p ，then

$$
L\left(U\left(u, a_{1}\right), e\right)=L\left(a_{1}, e\right)=L\left(a_{1}, a_{2}\right)
$$

4．The case $u \in A, u \not a_{2}, v \leqq a_{2}, b_{1} 母_{B} w$ cannot come．
5．Suppose $u, v, w \in A, u<w, u\|v, v\| w$ ．Denote $B_{1}=$ $=B \backslash\left\{b_{1}, b_{2}\right\}$ ．
$\alpha)$ Let $w \leqq p, v \leqq r$（or vice versa）．Then
$L(U(u, L(v, w)))=L\left(U\left(u, L_{A}(v, w)\right)\right)=L\left(U_{A}\left(u, L_{A}(v, w)\right) \cup B_{1}\right)=$
$=L_{A}\left(U_{A}\left(u, L_{A}(v, w)\right)\right) \cap L\left(B_{1}\right)=L_{A}\left(U_{A}(u, v), w\right) \cap L\left(B_{1}\right)=$
$=L\left(U_{A}(u, v) \cup B_{1}\right) \cap L(w)=L(U(u, v)) \cap L(w)=L(U(u, v), w)$ ．
B）Let $w=q, u \leqq p$ ．Since $v \| q$ ，we have $v \leqq a_{2}$ ．Thus
$L(U(u, L(v, q)))=L\left(U\left(u, L_{A}(v, q)\right)\right)=L\left(U\left(u, L_{A}(v, p)\right)\right)$ ，
which equals，by the part $\alpha)$ ，to $L(U(u, v), p)=L(U(u, v), q)$ ．
f）Let $w=a_{1}, u \leqq p$ ．Then $v=s$ and $w e$ have
$L\left(U\left(u, L\left(s, a_{1}\right)\right)\right)=L(U(u, r))=L\left(a_{1}, a_{2}\right)$ ，
$L\left(U(u, s), a_{1}\right)=L\left(a_{2}, a_{1}\right)$ ．
$\delta)$ Let $w=a_{1}, u=q$ ．Then $v=a_{2}$ or $v=s$ ．
δ_{1} ）If $v=a_{2}$ ，then
$L\left(U\left(q, L\left(a_{2}, a_{1}\right)\right)\right)=L(U(q, p, r))=L\left(a_{1}\right)$,
$L\left(U\left(q, a_{2}\right), a_{1}\right)=L\left(d, f, a_{1}\right)=L\left(a_{1}\right)$ ．
δ_{2} ）In the case $v \fallingdotseq s$ ，

$$
\begin{aligned}
& L\left(U\left(q, L\left(s, a_{1}\right)\right)\right)=L(U(q, r))=L\left(a_{1}\right), \\
& L\left(U(q, s), a_{1}\right)=L\left(d, f, a_{1}\right)=L\left(a_{1}\right) .
\end{aligned}
$$

6. In this part, we will replace (in C) a_{1} by b_{1} and a_{2} by b_{2} and then we will conserve the order of C. Formally, if we denote $A_{1}=A \backslash\left\{a_{1}, a_{2}\right\}$, then now $C=A_{1} \cup B$. Suppose $u, v, w \in B, u<w$.
α) Let $d \leqq u, f \leqq v$ (or vice versa). Then
$L(U(u, v), w)=L\left(U_{B}(u, v), w\right)=L_{B}\left(U_{B}(u, v), w\right) \cup A_{1}=$
$=L_{B}\left(U_{B}\left(u, L_{B}(v, w)\right)\right) U A_{1}=L\left(U\left(u, L_{B}(v, w)\right)\right)=L(U(u, L(v, w)))$.
B) Let $u=c, d \leqq w$. Then $v \geqq b_{2}$ and we have
$L(U(c, v), w)=L\left(U_{B}(c, v), w\right)=L_{B}\left(U_{B}(c, v), w\right) \cup A_{1}=$
$=L_{B}\left(U_{B}\left(c, L_{B}(v, w)\right)\right) \cup_{A_{1}}=L_{B}(U(c, L(v, w))) \cup A_{1}=$
$=L(U(c, L(V, w)))$.

A

Fig. 3

C 4

8) Let $u=b_{1}, w \geqq d$. Then $v=e$ and we have
$L\left(U\left(b_{1}, L(e, d)\right)\right)=L\left(U\left(b_{1}, b_{2}\right)\right)=L(d, f)$,
$L\left(U\left(b_{1}, e\right), d\right)=L(f, d)$.

$$
\begin{aligned}
& \delta) \quad \text { Let } u=b_{1}, w=c . \text { Then } v=b_{2} \text { or } v=e . \\
& \left.\delta_{1}\right) L\left(U \left(b_{1}, L\left(b_{2}, c\right)=L\left(U\left(b_{1}, p, r\right)\right)=L\left(b_{1}\right)\right.\right. \\
& L\left(U\left(b_{1}, b_{2}\right), c\right)=L(d, f, c)=L\left(b_{1}\right) . \\
& \left.\delta_{2}\right) L\left(U\left(b_{1}, L(e, c)\right)\right)=L\left(U\left(b_{1}, p, r\right)\right)=L\left(b_{1}\right) \\
& L\left(U\left(b_{1}, e\right), c\right)=L(f, c)=L\left(b_{1}\right) .
\end{aligned}
$$

Applying Theorem 7 we can construct e.g. the following ordinally irreducible ordered sets from DOS_{2}. (Figure 3.)

REFERENCES

[1] Ch a j d a, I. and R a ch $\dot{\sim}$ n e k, J.: Forbidden configurations for distributive and modular ordered sets, Order 5 (1989), 407-423.
[2] Duffus, D. and R i v a 1 , I.: A structure theory for ordered sets, Discrete Math. 35 (1981), 53-118.
[3] Larmero vá, J. and R a ch ů n e k, J.: Translations of distributive and modular ordered sets, Acta Univ.Palack. Olomucensis, Fac.Rer.Nat.Math. 91 (1988), 13-23.
[4] R a ch ů n e k, J.: Ordinal varieties of ordered sets (submitted).
[5] S k o r n jak o v, L.A.: Elements of Lattice Theory (Russian), Nauka, Moscow, 1970.

> Department of Algebra and Geometry Palacký University
> Svobody 26,77146 Olomouc
> Czechoslovakia

Acta UPO, Fac.rer.nat. 100, Mathematica XXX (1991), 17-32.

