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of a functional differential equation y (t) = 2Ly (t) +
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1. Introduction

Let X be the Fréchet space of C%-functions on R with the
usual topology of local uniform convergence on R and let XB be
the set of bounded C®-functions on R with the topology as in X.

Consider a functional differential equation
y (1) = 2dy (t) + Qfy,y J()y(t) + Fly,y ](t), (1)

where £ # 0 is a constant and Q, F:Xgx Xz — X are continuous
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operators, that is lim Q[yn,zn] = Q[;,z]: lim F[yn,zn] = F[y,z]
e n-weee

for all convergent (in XB) sequences {yn‘, {zni, ﬁfﬂ.yn =y,

lim z_ = z.
N-deo:

In the present paper using of the Schauder linearization
technique and the Banach and Schauder-Tychonoff fixed point
theorems there are given sufficient conditions on Q, F for the
existence of bounded solutions of (1). A special case of (1) is
the differential equation y " = 24y  + q(t,y,y Dy + £(t,y,y")

in which g,f: R3 — R are continuous functions.

The problem of bounded solutions on a halfline or on R for
systems of differential equations, for classes of functional
differential equations and for n-th order differential equations
has been studied in many works by various methods (see e.g. [l],

[3] - [10]).

2. Lemmas k

Lemma 1. Let g, heXB. Then any solution szB of the dif-
ferential equation

y " = 24y’ + g(t)y + h(t) (2)

is a solution of the integral equation

y(t) = e‘tf fe“""[<g<v>+A2>y<y>+h<v>]dvds for £ >0 (3)
S

t
or
t s
y(t) = e'(tf I e““[(g(\))w@)y(\i)+h(v)]dvds for d < (4)

in the space XB and also reversally any solution of (3) gp (4)
in Xz is a solution of (2) in Xg -

Proof. Let £ >0 and let yeXy be a solution of (2),
Then y'e-XB by Esclangon fheorem (5?8 [2] and e.g. [11]). From
the equality y "(t) = Ly (£) + [y () + g(t)y(t) « h(t)] it

follows
t

y (1) = e*t[c +f e 5Ky (s) + g(s)y(s) + h(s))ds)
[s]
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with c being an appropriate constant. Since Y’.EXB and lim e"(t =

taoe

= 0o we have ¢ = - re“’(s[w(y'(s) + g(s)y(s) + h(s)]ds, con-
0
sequently,

y (1) = - e"(t[e_xs(o(y'(s) + g(s)y(s) + h(s))ds for all te R.
t

Similarly, from the equality

y (1) =dy(t) - [xy(t)+eXt fe"‘s(a(ym+g(s>y(s>+n<s>>ds]
t

we get

y(t) = e"&t{ ( e*’w(o(y'(v) +g(v)y(v) +h(Vv))dyds +(\’e‘(trz_'(sy(s)ds
t s t

and using the equality

o0 o0 oo
A 5t F f e_"(vy'(v)dvds = -K eMF—‘(Sy(s)dSH@e“/ [e_dvy(\))dvds
t s t t

S

we see that y is a solution of (2) in Xg-

Let ye X be a solution of (3). Then ye CZ(R) and one can
easily check by the standard calculations that y is a bounded
solution of (2).

In the case £ < 0 is the proof anal.gous as above.

Notation. On Xy define a functional oAl by lIx]] =
= sup {Ix(t)|; te Ri .

Lemma 2. Let g, he Xy and let inf {g(t); te R <O,
lall< 2£%. Then there is the unique solution of (2) in XB'

Proof. In view of Lemma 1 it is sufficient to prove
that equation (3) or (4) admits the unigue solution in Xg.

Let Y be the Banach space of bounded c%-functions on R with
the norm ||.|] . Let T:Y — Y be an operator defined by
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@) = e’“f" fe'“[(g(wn@)y(v)+h<v)]dyds for & >0
t S
or
P/
() = e‘t( | e V[(g(v) +&D)y(v) +h(»)]dvds for £ < 0.
"

The assumptions of Lemma 2 imply the existence of a posi-
tive constant € >0 such that - € % g(t) 2 -24% + £ for all
teR. Then |lg + «?]] ¢ &% - € and tor y,zeY we have

[(Ty)(t) - (Tz)(t)] £ (l-i—f)”y—zu for all te€ R,
consequently,
[Ty - Tz]|] £ (l—%)”y—z” for all y,zeY.

Hence T is a contraction and by the Banach fixed point theorem
there is the unique solution of (3) or (4) in Y.

>

Lemma 3. Let g, he Xy and let -€ 2 g(t) & - 242 + €
be fulfilled for all teR with a positive constant €. If y is
a bounded solution of (2) then

lyin s Al

y it s 2l Al (5)

Proof. Let y be a (and then the unique by Lemma 2) so-
lution of (2) and thus also the unique bounded solution of (3)
or (4). Substituting y(t) into (3) or (4) we get for an evident
calculation the following estimate |y(t)| £ —12'[”9 +o(2||HyH +
+ |In]l] for all teR. 4

’

ence llyll £ (1 -=E5) Iyl e AL ang gy = LB since
Y8 = Ly(t) -e“f;"‘s[m(s) « &2y (s) + h(s)]ds
t for all teR and & >0
and
t
y () = dy(t) +e°<tf e"{s[(g(s) + #8)y(s) +h(s)]ds
i for all te€R and o <0,
we have
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y (1 = 1L+ [ e+ oI iyl + Hinll ]
for all teR,
consequently,
s 2 A h
Iy i :

3. Bounded solutions of (1)

Say that Q, F satisfy the assumption (A) if:

There are positive constants k, £ such that -£ %

2aly,y J(t) 2 - 242 + & for all teR and ys{yg[ll(R),

Iyl = —E— Iy "l éiL'%IL} and sup{HF[y,y'] Il (A)
Xy ;M} .
[ ¢

yE Cl(R), Nyll

1A

Theorem 1. Let assumption (A) be fulfilled. Then equation
(1) admits a bounded solution y and the inequalities
k . 2| X |k
Iyl €4, gy s 2 (6
¢ €
hold.

Proof . Assume X >0. Let Z be the Fréchet space of Cl—
functions on R with the topology of local uniform convergence on
R of functions and their derivatives. Setting K = {y; ye Z,

Iyl £ % , Iy Il 2 2L [k VE\ k f then K is a bounded closed convex
subset of Z. Let Sﬂe K and consider the differential equation

v = 24y” waly, ¢y + FIP, ¢l . (7

By Lemma 2 there is the unique bounded solution y of (7) and
Lemma 3 implies ye K. Putting T(U) = y we obtain an operator
T:K — K. To prove T is continuous operator Suppose fynch is

a convergent sequence and lim Yo =Y that is lim yn1 (t) =
n-»oe n-»oe

= y(i)(t) locally uniformly on R for i = 0,1. Let z_ = T(yn)
and z = T(y). Then

[ 4
z (D =ett r{e"w[(ufyn,yr;](v) + kD2, (V) +Fly .y, ] (»]dvas
t s
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and

0 50 Ir
2(1) = ekt 1 fe'“[(u[y,y’]m +dHz(v) +Fly,y 1(»)]d vds
t s

for all t€R and neN. Using the equalities z (t) = 2%zé(t) +

2
) . . 6
+ Q[yn,yn](t)zn(t) + F[yn,yn](t) we have Hzn Il §<—%—K for all

n€ N. Therefore the Ascoli theorem implies that from every sub-
sequence {in{ of { zni one may select a convergent (in K) sub-
sequence {Enf such that {;n(t)f and {Eé(t)é are locally
uniformly convergent on R. Let lim z =%, Using the Lebesgue

N>
theorem on the dominanted convergence we conclude 7 satisfies

the equality

5(t) = e“f je‘“[<u[y,y’]<v)+ £22(v) +Fly,y 1(»]dvds
t s

for all t € R. Consequently, ? is a bounded solution of the
differential equation

w’ o= 24w’ + Qfy,y 1w + Fly,y T(t) .
Since this equation admits the unique bounded solution (by Lemma
2) it is necessary z = 2 and therefore all selected convergent
subsequences of {znf have' the same 1limit equal to z . This proves
{zn% is a convergent sequence, lim z_ = z and, consequently,

N=woo
T is a continuous operator.
. 6 42
Since T(K)c{y; ye K(\CZ(R), ly "1 ¢ é K | T(K) is a pre-

compact subset of Z and by the Schauder-Tychonoff fixed point

theorem there is a fixed point y of T in K. This y is a solution
of (1) satisfying (6).

For X £ 0 the proof is analogical.

From Theorem 1 immediately follows
Corollary 1. Suppose there are positive constants £, k

such that - € % q(t,y,z) 2 - 242 + € and |f(t,y,z)| % k for all

te R, |yl ¢ and |z]| = Zl%Jﬁ—. Then equation y~ = 2Ly~ +
+ q(t,y,y Dy + £(t,y,y ) admits a solution y satisfying (6).

oojx
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Example 1. Let n be a positive integer and let « z Z\‘+
+ y1+% . Consider the functional differential equation

2
t . |
. . k (sMy (s)
() = 24y (t)—(1+2.c'r+[ ﬂ%ﬁ ds)y(t) +
t

1l +s
t+l
*% { Yn[y'(kl(s)) +s]ds + p(t), (8)
t

where k_, ki, p € c°(R) and |p(t)]| ¢ % for all t « R. The as-
sumptions of Theorem 1 are fulfilled with € =k =1 consequently,
there is a solution y of (8) satisfying |lyll £ 1, |ly'l] & 2X.

Corollary 2. Let assumption (A) be fulfilled and let

Lim Qy,y J(t) = - &%, 1im Fy,y ](t) = 0 for all y, y e Xg,
t>ve t2+vee
Iyl & lly il ¢ 280 ang sone vef-1,1} . Then

lim y(l)(t) = 0 for every solution y of (1) satisfying (6),
t3Veo
i=o0,l1.

Proof. Let y be a solution of (1) satisfying (6). Such
a solution y exists by Theorem 1 and by Lemma 1.the equality (3)
or (4) holds with g(t) = Q[y,y ](t), h(t) = Fly,y ]1(t) for all
t € R. Using the L Hospital rule we obtain

Lin y(t) = Lim = [(@fy,y 10 + «Dy(0) +Fly,y 1] = 0
tave K

t+Veo

and
lim y (1) = L lim y(t)+ L qin [(u[y,y’](t>+oa2)y(t)+
tave tavee | t+vee -

+Fly,y J(©)] = 0.

Example 2. Let n be a positive integer. Consider the
functional differential equation

. n 2
YO = —2y () ¢ (-1 + (2((:):2*)) yw+t et cos yt). (9
+

The assumptions of Corollary 2 are fulfilled with K=-1 ,
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E=4%,k=%,V=-1,1 Thus there is a solution y of (9),
lyll € %, Ily Il £ 1 and any such solution y satisfies
lim y(t) = 0.
[t]> o
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