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DEFERENTIAL SYSTEMS 
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Abstract 
The question of existence of periodic solutions to the problem 

x"(t) = g(t, x(t)) + f(t, x(t), x(r(t)), xf(t), x'(z(t))) 

x(o) = x(w), x'(o) = x'(w), w > o, t £ [O, w] 

is considered. The proofs are based on topological degree methods, 
especially on the homotopy theory. 

Key words: Existence in periodic BVPs, second order ODE with 
deviated argument, a priori bounds, perturbed systems. 

MS Classification: 34C25 

In this paper there are demonstrated some theorems for the existence of 
ACl[o, w] solutions to the problem (1). Assuming degree conditions a lot of 
papers was devoted to second order BVPs (see[l]-[4], [6]—[11]). 

The concept of the a priori estimate and the extension to equations with 
deviated argument seems to be new in this paper.We assume that the function 
g(t, x) is strong nonlinear in neighbourhood of (t,x) = (O, O) and linear outside 
of it. 

The formulations of degree theory here follows M.A.Krasnoselskij [4]. 

Notations and assumptions The symbols x,g, f denote nxl vectors, in the 
following A(t) is a n x n integrable matrix, (u, v) is the inner product of vectors 
u, v £ Rn. r(t), z(t) are continuous functions r, z: [o, w] —• [O, w]. We assume that 
/ fulfils the Caratheodory conditions and it is bounded for arbitrary arguments. 
Further (x, A(t)x) > o for x ^ o and t £ [O, w]. A function x £ ACl[o, w] which 
fulfils (1) for a.e. t £ [O, w] will be called a solution of (1). 
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Lemma 1 The problem 

(2) x"(t) = A(t)x(t), x(o) = x(w)y x'(o) = x'(w), t E [o, w] 

has exactly the solution x(t) = o fort E [o,w]. 

In fact let us consider the inner product 

(3) (*(*).*'(')). 

where x(t) denote a solution of (2). Then 

(x(t))x'(t))' = (x(t))A(t)x(t)) + (x'(t))2>o for t€[oiW] 

and the function (x(t),x'(t)) is nondecreasing in [o,w]. 
When 

Or(*),-r ' (0)^ const., 

then 

(^..-'(o^-^^H.x'fu.)) 
and (2) has only the zero solution. 

When 
(x(t), x'(t)) = c = const. / o, 

then 
(x(t))2 = 2d + d, c,d = const. 

The boundary conditions 

x(o) = x(w), x'(o) = x'(w) 

fulfils the system 

(x(o))2 = 2co+d} (x(w))2 = 2cw + d, 

which is contradictory. 
When c = o, then 

o = {x{t), x'{t))' = {x{t), A{t)x{t)) + {x'{t))2 

and 
x(t) = o for t E [o, w]. 

A consequence of the lemma is the existence of a Green function G(tf,s) to 
the problem 

(Lz)(i) = *"(.) - A(.)x(t) = o 

x(o) = x(w), x'(o) = x'(w)) t€[o,w]. 
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The solution of the problem 

x"(t) = A(t)x(t) + f(t,x(t), x(r(t)), x'(t), x'(z(t))) 

x(o) = x(w), xf(o) — xf(w), w > O, te[o,w] 

can be written in the form 

pW 

(5) * ( . ) = / G(t,»)/(«, *(«),*(r(«)), *'(«), *'(*(»).))d«-
JO 

It follows of [5] p.60 that the operator 

pW 

(6) (Fx)(t):= G(t,s)f(s,x(s),x(r(s)),x'(s),x'(z(s)))ds 
Jo 

is completely continuous in ACl[o,w\. The fixed point of (6) is a AC^O.Lv] 
solution of (5). 

Theorem 1 Let us consider the problem (1') and assume that 

(A(t)x,x)>o for te[o,w] and x / O. 

The functions f(t, x,y,z,u), r(t), z(t) fulfil the above formulated assumptions, 
especially f is bounded for t £ [o,w] and arbitrary (x,y,z,u). 

Then (V) has at least one solution x £ ACl[o,w\. 

Proof For the following considerations let us introduce the trivial vector field 

pW 

(7) (<t>x)(t) = x(t) - / ox(s)ds, 
Jo 

it is completely continuous in ACl[o,w], 

<t>:ACl[o,w]-*ACl[o,w] 

and for x G ACl[o,w], \\ x | |= R > o it is <j)(x) ^ O. The rotation I(<1>,SR) of 
4>(x) on the sphere 

SR = {x :x£ ACl[o,w],\\x | |= R > o] 

may be considered. The vector field <j) fulfils the condition 

4>(—x) = —<j)(x) hence J((J),SR) ^ o. 

It is 
inf || <j)(x) | |= a n = R > o. 

x€SR 
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Therefore 

(8) inf || <f>(x) | |= kaR = kR —• oo, when IS —> oo. 

Further let 

(**)(<) =: *(t) - / ; G( t ,* ) / ( , , * ( , ) , *(r(*)), * ' ( , ) , x'(z(s)))ds, 

x eACl[o,w], | | x | | = I2>o. 

The vector field ^ is completly continuous, 

i>:ACl[o,w]~* ACl[otw] 

and 

(10) || 0ar - i)x | |= | | / G(t, *)/(*, x(s)x(r(s))) x'(s), x'(z(s))ds \\<c = const. 
Jo 

The constant c in (10) is independent of the radius R of SR. Conditions (8) and 
(10) enable for I^i sufficiently large the inequality 

( i i ) | | # - ^ | | < | | ^ | | , xeSRl. 

From the last inequality it follows that the vector fields <f> and xp on SRl are 
homotopic and therefore 
(12) 7W,Sn,) 9-0. 

The nonzero rotation (12) is sufficient for the existence of at least one solution 
x e ACl[o, w] of the problem (V). 

Let us now consider the problem (1) with the function g(t, x) instead of A(t)x 
in (V). The behaviour of g(t, x) in the neighbourhood of the origin (t, x) = (o, o) 
is not important for the validity of theorem. 

To examine this question we formulate the following lemma. 

L e m m a 2 Let us consider the problem (1) and suppose that there exists R0 > o 
such that for 

(t, x) e £>i =: {(t, x) : t e [o, w], \\ x | |> R0} 

g(t,x) = A(t)x and (A(t)x,x) > o. In the set 

D2=:{(t}x):te[oiw], \\ x \\< R0} 

the function g(t,x) in general is nonlinear. 
Then there exists a linear function A(t)x for (t,x) e D2 and (A(t)zyx) > o 

such that 

(13) A(t)x=JA{t)x> {t>x)eD> 
[ g(t,x) = A(t)x, (t,x)ED1 

fulfils the Caratheodory conditions and 

(14) \\A(t)x-g(t,x)\\<m = const, for (t,x)eD2. 
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To prove the lemma it is enough to take as A(t)x, (t,x) G D2 any continuous 
prolongation of A(t)x, (t,x) G D\, such that 

(A(t)x,x) > o for (t,x)eD2. 

Now we may demonstrate the following theorem. 

Theorem 2 Let us examine problem (1) and assume lemma 2 and that the 
functions / , r, z and g fulfil the conditions formulated at the beginning of the 
paper. Then (1) has at least one solution. 

Proof Let us rewrite (1) in the form 

x"(t) = 

(15) = A(t)x(t) + f(tt x(t)t x(r(t))t x'(t), x'(z(t))) + g(t, x(t)) - A(t)x(t), 

x(o) = x(w), x'(o) = x'(w), x G ACl[o,w], \\ x | |= R > o. 

The difference 

f(t, x(t)t x(r(t)), x'(t),x'(z(t))) + g(ttx(t)) - A(t)x(t) (tt x) G D2 

is bounded and A(t)x fulfils the condition (A(t)x, x) > o for t G [O, w] and x / o. 
Therefore theorem 1 may be applicated to (14) and this finished the proof. 

In a well known manner it is possible to get uj-periodic solutions of the 
problem (1). 

T h e o r e m s If A(t),r(t),z(t)t f(ttx,y,z,u) are w-periodic in t and fulfil the 
assumptions of theorem 2, then problem (1) has at least one w-periodic solution 
x G ACl[o,w]. 

Examples The above theorems can be applied to the system 

( x'{(t) = xi(t) + tx2(t) + arctan(z2(sintf)) r 1 

t G [O, ZTTJ 
x%(t) = -txi(t) + 4x2(t) + exp(-[x'f(sin1) + ^(sin*)]) 

but it is impossible to apply the existence theorems to the scalar problem 

x"(t) = ox(t) + 2, x(o) = x(w), x'(o) = x'(w), t G [o, w], w > o 

arbitrary. 
The condition (A(t)x, x) > o for t G [O, w], x ^ o is not valid. 
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