Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematic

Sever Silvestru Dragomir; Bertram Mod; Josip E. Pečarić On Jensen's inequality for self-adjoint operators in Hilbert space

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 34 (1995), No. 1, 7--13

Persistent URL: http://dml.cz/dmlcz/120318

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1995
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On Jensen's Inequality for Self-Adjoint Operators in Hilbert Space

S. S. DRAGOMIR ${ }^{1}$, B. MOND ${ }^{2}$, J. E. PECCARIĆ ${ }^{3}$
${ }^{1}$ Department of Mathematics, University of Timisoara, B-dul V. Parvan 4, R-1900, Timisoara, Romania.
${ }^{2}$ School of Mathematics, La Trobe University, Bundoora 3083, Melbourne, Australia.
${ }^{3}$ Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia.

(Received September 9, 1994)

Abstract

Some inequalities, related to Jensen's discrete inequality, are given for self-adjoint operators in Hilbert space.

Key words: Jensen's inequality, convex inequalities, arithmeticgeometric mean, self-adjoint operators.

MS Classification: 47A63

Preliminaries

Let X be a linear space and C a convex subset in X. If $f: C \rightarrow \mathbb{R}$ is convex on C, then the following inequality is well known in the literature as Jensen's discrete inequality:

$$
f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)
$$

where x_{i} are n-elements in $C, p_{i} \geq 0$ for $i=1, \ldots, n$ and $P_{n}=\sum_{i=1}^{n} p_{i}>0$.

For some refinements of this classical result as well as certain applications in the theory of inequalities connected with the arithmetic-geometric mean inequality, generalized triangle inequality, Ky Fan's and other inequalities, we refer to the recent papers [1-7] and [11-12].

Now, let $(H ;()$,$) be a Hilbert space and A: H \rightarrow H$ a self-adjoint operator on H satisfying the inequality

$$
m I \leq A \leq M I, \quad \text { i.e. } \quad m\|x\|^{2} \leq(A x, x) \leq M\|x\|^{2} \quad \text { for all } x \text { in } H .
$$

To the real valued function $g:[m, M] \rightarrow \mathbb{R}$, there is associated in a natural way a self-adjoint operator on H denoted by $g(A)$ (see e.g. [13, pp. 265-273]).

We shall make use of the following [13, p. 271].
Lemma 1 Suppose that $g_{1}, g_{2}:[m, M] \rightarrow \mathbb{R}$ are continuous and that $g_{2}(\lambda) \geq$ $g_{1}(\lambda)$ for all $\lambda \in[m, M]$, then also $g_{2}(A) \geq g_{1}(A)$.

By the use of this lemma we shall give some analogues of Jensen's inequality for self-adjoint operators in Hilbert space. Some natural applications for convex functions are also given.

Results

First we shall note that the following result is a simple consequence of Lemma 1 and the definition of convex functions.

Theorem 1 Let $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a continuous convex function, $x, y \in$ $[a, b]$ and A a self-adjoint operator in Hilbert space H with $0 \leq A \leq I$. Then

$$
f(x A+y(I-A)) \leq A f(x)+(I-A) f(y)
$$

in the order of $A(H),(A(H)$ denotes the linear subspace of self-adjoint operators on H).

Theorem 2 Suppose that $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous convex on $[a, b]$, $p_{i} \geq 0, x_{i} \in[a, b](i=1, \ldots, n)$ with $P_{n}>0$, and A is a self-adjoint operator on a Hilbert space H with $0 \leq A \leq I$. Then

$$
\begin{align*}
f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) I \leq & \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left\{x_{i} A+\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right)(I-A)\right\} \leq \\
& \leq\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)\right) I \tag{1}
\end{align*}
$$

in the order of $A(H)$.

Proof Consider the mappings $g_{1}, g_{2}, g_{3}:[0,1] \rightarrow \mathbb{R}$ given by

$$
g_{1}(t)=f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right), \quad g_{2}(t)=\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left[t x_{i}+(1-t) \frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right]
$$

and

$$
g_{3}(t)=\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) .
$$

Since f is continuous convex on $[a, b], g_{2}$ is also convex and continuous on $[0,1]$. The mapping g_{1} is continuous on $[0,1]$ (being constant on $[0,1]$) and by Jensen's inequality one has

$$
g_{2}(t) \geq f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i}\left[t x_{i}+(1-t) \frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right]\right)=g_{1}(t)
$$

for all $t \in[0,1]$.
Using Lemma 1 for g_{2} and g_{1} defined above, we get the first inequality in (1).
To prove the second inequality, we observe that

$$
g_{2}(t) \leq t \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)+(1-t) f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq g_{3}(t)
$$

for all $t \in[0,1]$. Applying Lemma 1 for g_{2} and g_{3} we deduce the desired result.
Corollary 1.1 Suppose that $x_{i}>0, p_{i} \geq 0$ with $P_{n}>0(i=1, \ldots, n)$ and $p \geq 1$. Then for a self-adjoint operator A on Hilbert space H with $0 \leq A \leq I$, we have

$$
\begin{aligned}
&\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{p} I \leq P_{n}^{p-1} \sum_{i=1}^{n} p_{i}\left\{x_{i} A+\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right)(I-A)\right\}^{p} \leq \\
& \leq P_{n}^{p-1}\left(\sum_{i=1}^{n} p_{i} x_{i}^{p}\right) I
\end{aligned}
$$

in the order of $A(H)$.
Corollary 1.2 Suppose that $x_{i}>0, p_{i} \geq 0$ with $P_{n}>0(i=1, \ldots, n)$ and A is as above. Then one has the inequality:

$$
\left(\prod_{i=1}^{n} x_{i}^{p_{i}}\right)^{1 / P_{n}} I \leq\left[\prod_{i=1}^{n}\left[x_{i} A+\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right)(I-A)\right]^{p_{i}}\right]^{1 / P_{n}} \leq\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) I
$$

in the order of $A(H)$.

Proof By a similar argument as in Theorem 2 for the convex mapping $f(x)=$ $-\ln x(x>0)$ we get the following refinement of the arithmetic-geometric mean inequality:

$$
\left(\sum_{i=1}^{n} x_{i}^{p_{i}}\right)^{1 / P_{n}} \leq\left[\prod_{i=1}^{n}\left[t x_{i}+(1-t) \frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right]^{p_{i}}\right]^{1 / P_{n}} \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}
$$

for all $x_{i}>0, p_{i} \geq 0(i=1, \ldots, n)$ with $P_{n}>0$ and $t \in[0,1]$. Now, applying Lemma 1, we get the desired inequality.

Theorem 3 Let $f, x_{i}, p_{i}(i=1, \ldots, n)$, A be as in Theorem 2. Thus, one has the inequalities

$$
\begin{gather*}
\left(\frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(\frac{x_{i}+x_{j}}{2}\right)\right) I \leq \frac{1}{p_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left[x_{i} A+x_{j}(I-A)\right] \leq \\
\leq\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)\right) I \tag{2}
\end{gather*}
$$

in the order of $A(H)$.
Proof We consider the mappings $g_{1}, g_{2}, g_{3}:[0,1] \rightarrow \mathbb{R}$ given by

$$
g_{1}(t)=\frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(\frac{x_{i}+x_{j}}{2}\right), \quad g_{2}(t)=\frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(t x_{i}+(1-t) x_{j}\right)
$$

and

$$
g_{3}(t)=\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)
$$

Now, let us observe that $g_{i}(i=1,2,3)$ are continuous on $[0,1]$ (note that g_{2} is also convex on $[0,1])$. By the convexity of f one has

$$
\frac{1}{2}\left[f\left(t x_{i}+(1-t) x_{j}\right)+f\left((1-t) x_{i}+t x_{j}\right)\right] \geq f\left(\frac{x_{i}+x_{j}}{2}\right)
$$

for all $t \in[0,1]$ and $i, j \in\{1, \ldots, n\}$. By multiplying this inequality with $p_{i} p_{j} \geq 0$ and summing over i and j from 1 to n, we deduce that

$$
\begin{gathered}
\frac{1}{2 P_{n}^{2}}\left[\sum_{i, j=1}^{n} p_{i} p_{j} f\left(t x_{i}+(1-t) x_{j}\right)+\sum_{i, j=1}^{n} p_{i} p_{j} f\left((1-t) x_{i}+t x_{j}\right)\right] \geq \\
\geq \frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(\frac{x_{i}+x_{j}}{2}\right)
\end{gathered}
$$

and since

$$
\sum_{i, j=1}^{n} p_{i} p_{j} f\left(t x_{i}+(1-t) x_{j}\right)=\sum_{i, j=1}^{n} p_{i} p_{j} f\left((1-t) x_{i}+t x_{j}\right)
$$

we get $g_{2}(t) \geq g_{1}(t)$ for all $t \in[0,1]$.
Now, applying Lemma 1 for g_{1} and g_{2} we deduce the first inequality in (2).
For the second part of (2), we have, by the convexity of f, that

$$
g_{2}(t) \leq t \frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(x_{i}\right)+(1-t) \frac{1}{P_{n}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(x_{j}\right)=g_{3}(t)
$$

for all $t \in[0,1]$. By Lemma 1 , applied to g_{2} and g_{3}, we get the desired result.
Remark 1 Jensen's inequality for double sums gives that

$$
\frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(\frac{x_{i}+x_{j}}{2}\right) \geq f\left(\frac{1}{P_{n}^{2}} \sum_{i, j=1}^{n} p_{i} p_{j}\left(\frac{x_{i}+x_{j}}{2}\right)\right)=f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)
$$

which shows that inequality (2) is also an improvement of Jensen's inequality.
Corollary 2.1 Suppose that $x_{i} \geq 0, p_{i} \geq 0(i=1, \ldots, n)$ with $P_{n}>0$ and $p \geq 1$. Then, for all A as above, we have

$$
\left(\sum_{i, j=1}^{n} p_{i} p_{j}\left(\frac{x_{i}+x_{j}}{2}\right)^{p}\right) I \leq \sum_{i, j=1}^{n} p_{i} p_{j}\left[x_{i} A+x_{j}(I-A)\right]^{p} \leq P_{n}\left(\sum_{i=1}^{n} p_{i} x_{i}^{p}\right) I
$$

Corollary 2.2 Let $x_{i}>0, p_{i} \geq 0(i=1, \ldots, n)$ with $P_{n}>0$ and A as above. Then

$$
\left[\prod_{i, j=1}^{n}\left(\frac{x_{i}+x_{j}}{2}\right)^{p_{i} p_{j}}\right]^{1 / P_{n}^{2}} I \leq\left(\prod_{i, j=1}^{n}\left[x_{i} A+x_{j}(I-A)\right]^{p_{i} p_{j}}\right)^{1 / P_{n}^{2}} \leq\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) I .
$$

Another result connected with Jensen's inequality is embodied in the next theorem.

Theorem 4 Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous convex on $[a, b], x_{i} \in[a, b]$ and $p_{i} \geq 0(i=1, \ldots, n)$ with $P_{n}>0$ and A as above. Then

$$
\frac{1}{P_{n}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left[x_{i} A+x_{j}(I-A)\right] \geq\left\{\begin{array}{l}
\sum_{i=1}^{n} p_{i} f\left[x_{i} A+\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right)(I-A)\right] \tag{3}\\
\sum_{i=1}^{n} p_{i} f\left[x_{i}(I-A)+\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right) A\right]
\end{array}\right.
$$

in the order of $A(H)$.

Proof It is sufficient to prove the first inequality in (3). We have, by Jensen's inequality, that

$$
\begin{aligned}
& g_{2}(t)=\frac{1}{P_{n}} \sum_{i, j=1}^{n} p_{i} p_{j} f\left(t x_{i}+(1-t) x_{j}\right)= \\
& =\sum_{i=1}^{n} p_{i}\left[\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} f\left(t x_{i}+(1-t) x_{j}\right)\right] \geq \sum_{i=1}^{n} p_{i} f\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j}\left(t x_{i}+(1-t) x_{j}\right)\right)= \\
& =\sum_{i=1}^{n} p_{i} f\left(t x_{i}+(1-t) \frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right)=g_{1}(t)
\end{aligned}
$$

for all $t \in[0,1]$.
Since the above mappings g_{1} and g_{2} are continuous convex on $[0,1]$ and $g_{2}(t) \geq g_{1}(t)$ for all $t \in[0,1]$, hence by Lemma 1 , we get $g_{2}(A) \geq g_{1}(A)$. This completes the proof.

Corollary 3.1 Suppose that $\left.x_{i} \geq 0, p_{i} \geq 0 i=1, \ldots, n\right)$ with $P_{n}>0$ and $p \geq 1$. Then for all A as above one has:

$$
\sum_{i, j=1}^{n} p_{i} p_{j}\left(x_{i} A+x_{j}(I-A)\right)^{p} \geq\left\{\begin{array}{l}
P_{n} \sum_{i=1}^{n} p_{i}\left[x_{i} A+\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{i}\right)(I-A)\right]^{p} \\
P_{n} \sum_{i=1}^{n} p_{i}\left[x_{i}(I-A)+\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right) A\right]^{p}
\end{array}\right.
$$

Corollary 3.2 If $x_{i}>0$ and $p_{i} \geq 0(i=1, \ldots, n)$ and A as above. Then

$$
\left[\prod_{i, j=1}^{n}\left(x_{i} A+x_{j}(I-A)\right)^{p_{i} p_{j}}\right]^{1 / P_{n}} \leq\left\{\begin{array}{l}
\prod_{i=1}^{n}\left[x_{i} A+\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right)(I-A)\right]^{p_{i}} \\
\prod_{i=1}^{n}\left[x_{i}(I-A)+\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right) A\right]^{p_{i}}
\end{array}\right.
$$

For other inequalities for self-adjoint operators in Hilbert space, see [8-9] and [10] where further references are given.

References

[1] Dragomir, S. S., Ionescu, N. M.: On some inequalities for convex-dominated functions. Anal. Num. Théor. Approx. 19 (1990), 21-28.
[2] Dragomir, S. S.: An improvement of Jensen's inequality. Bull. Math. Soc. Sci. Math. Roumaniè 34 (1990), 291-296.
[3] Dragomir, S. S.: An improvement of Jensen's inequality. Math. Bilten (Skopje) 15 (1991), 35-37.
[4] Dragomir, S. S., Ionescu, N. M.: A new refinement of Jensen's inequality. Anal. Num. Théor. Approx. 20 (1991), 39-41.
[5] Dragomir, S. S.: Some refinements of Ky Fan's inequality. J. Math. Anal. Appl. 163 (1992), 317-321.
[6] Dragomir, S. S.: Some inequalities for convex functions. Macedonian Acad. Sci. Arts, Contributions 10 (1989), 25-28.
[7] Dragomir, S. S.: Some refinements of Jensen's inequality. J. Math. Anal. Appl. 168 (1992), 518-522.
[8] Mond, B.: An inequality for operators in a Hilbert space. Pacific J. Math. 18 (1966), 161-163.
[9] Mond, B., Shisha, O.: A difference inequality for operators in Hilbert space. Blanch Anniversary Volume (B. Mond, editor), Aerospace Res. Lab., United States Air Force 1967, 269-275.
[10] Mond, B., Shisha, O.: Difference and ratio inequalities in Hilbert space. In: Inequalities, Vol. II (O. Shisha, editor), Academic Press Inc., New York, 1970, 241-249.
[11] Pečarić, J. E., Dragomir, S. S.: A refinement of Jensen's inequality and applications. Studia Univ. Babes-Bolyai 34 (1989), 15-19.
[12] Pečarić, J. E., Dragomir, S. S.: Some inequalities for quasi-linear functionals. Punime Mat. 4 (1989), 37-41.
[13] Riesz, F., Nagy, B. Sz.: Functional Analysis. Translated from the 2nd French edition by Leo F. Boron, Frederick Ungar Pub. Co. (1965).

