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Abstract 

In the paper it is proved that the varieties of weakly associative lattice 
groups form an ordered semigroup with one of distributive laws. 
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A semi-order of a non-void set A is a binary reflexive and transitive relation 
"<" on A and (A, <) is then called a semi-ordered set. If for each a, b £ A there 
exist their join a V b and meet a A b then (.4, <) is called a weakly associative 
lattice (wa-lattice). Similarly as lattices, wa-lattices can be equivalently defined 
as algebras (^4, V, A) with two binary operations satisfying the identities 

(I) a V a = a; a l\a — a 

(C) aVb = bVa; ahb — bf\a 

(Abs) a V (a Л 6) = a > a Л (a V b) — a 

(WA) ( ( a Л c ) V ( б Л c))v c- c; ((a VC)ÁЏVC))AC~C, 

(See [2] and [10].) 
If (G, -f) is a group and (G, V, A) is a wa-lattice and if for each elements 

a,b,c}d G A 

(Dy) a + (by c) + d = (a + b + d)V (a + c + rf), 
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then G = (G, +,V,A) is called a weakly associative lattice group (wal-group). 
(For basic properties of wa/-groups see [6] and [7].) The notion of a iva/-group 
is an essential generalization of that of lattice ordered group (/-group) because, 
in contrast to /-groups, there exist many non-trivial finite wa/-groups. 

Let G be a iBa/-group and A a wa /-subgroup of G (i.e. a subgroup of G closed 
under V and A). Then A is called a wal-ideal of G if it is normal in G and if it 
satisfied the following condition: 

Va,6,c G T4, x,y G G; x < a, y < 6 = > (s V jy) V c G -4. 

By [6] and [7], the kernels of wa/-homomorphisms of wa/-groups are exactly all 
wa/-ideals. (In the paper, the fact that A is a iva/-ideal of an wa/-group G will 
be denoted by A<G). 

The class of all iva/-groups is a variety of type S£ = (+, 0, —(.), V, A) of 
signature < 2,0,1,2,2 >. Next we will consider all wa/-groups in the language 
Jfc?. The varieties of iBa/-groups form by [8] a complete lattice W A L which is 
distributive and contains the lattice L of the varieties of /-groups as a complete 
A-subsemilattice. (Infima in both lattices coincide with intersections.) The 
structure of the lattice WAL differs from that of the lattice L. For instance, 
the variety &tff\ of abelian /-groups is an atom in WAL but, contrary to L, it is 
not the smallest non-trivial variety of wal-groups. Further, the variety £%wa\ of 
representable wa/-groups (i.e. the variety generated by all totally semi-ordered 
groups) is not comparable to the variety s$fwa\ of abelian wa/-groups. However, 
finite joins in WAL can be characterized similarly as in L. 

Proposition 1 Let W and Y be varieties of wal-groups and G be a wal-group. 
Then G G *%£ V Y if and only if there are wal-ideals M and N of G such that 
MHN = {0}, G/M G &, and G/N G Y. 

Proo f The lattice J£{G) of wa/-ideals of G is, by [8, Theorem 4], distributive 
and hence the proposition can be proved in the same way as for the analogical 
proposition in [4] for varieties of /-groups. • 

Now we define similarly as for groups (see [5]) and for /-groups (see [4] or 
[9]) the product of varieties of wa/-groups. 

Definit ion If W and Y are varieties of waZ-groups then their product fyW 
will be the class of iva/-groups such that G G <%W if and only if there exists a 
wal-ideal A of G with A G <% and G/A G Y. 

Theorem 2 If W and Y are arbitrary varieties of wal-groups then their product 
^ff is a variety of wal-groups too. 

P r o o f a) Let G G W , A < G, A G W, G/A G Y and let H be a waFsubgroup 
ofG. Denote Hx = HC\A. 

If a E -ffi, x G -ff, 0 < x < a, then x G H n A = Hi, hence Hx is convex 
in H. Consider a,6,c G Hi and x,y G H such that x < a and y < 6. Clearly 
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(x V y) V c £ H. At the same time, A is a wa/-ideal of G, hence (x V y) V c £ A, 
and so (x V t/) V c £ # 1 . That means #1 is a wa/-ideal of # . Moreover, # 1 is a 
wa/-subgroup of A, therefore #1 £ <%/. 

Consider now the factor wa/-group # / # i = # / ( # f» A). By [6, Theorem 
13], ( # + A)/A £ # / ( # fl A) (as wa/-groups), and since ( # + A)/A is by [3, 
IH.2.12] a waZ-subgroup of G/A, # / # i £ Y. That means # £ W . 

b) Let G and G' be waZ-groups, G £ W , J4 < G, A £ ^ , G/A £ r , and 
let <£> : G —• G' be a surjective waZ-homomorphism. Denote A' = <p[A]. Since 
kernels of waZ-homomorphisms and ivaZ-ideals coincide, we have, by [3, IIL2.13], 
that A' is a waZ-ideal of G'. By the assumption A £ ^ , hence A' £ <% too. 

We will show that G'/A' £ Y. If K = Ker y?, then the following possibilities 
can come: 

a) K C A: Then by [3, IIL2.13] G'/A' S G/A, and thus G'/A' £ r . 

/?) A C K: Then A' = y?[A] = {0'} and G' S G/K. Moreover, by [6, 
Theorem 12], G/K S (G/A)/(K/A), and because of G/A £ r we have 
G/K £ r too, and so G'/A' £ Y. 

7) K || A: By [6, Theorem 12], G/(K + A) £ (G/A)/((K+A)/A). Moreover 
^[K + A] = A', thus, by [6, Theorem 12], we have G/(K + A) 2 G'/A'. 
By the assumption, G/A £ r , hence also G/ (K + A) £ r , that means 
G'/A'eY. 

Therefore we get G' £ ^ T , hence the class ^ T is closed under waZ-homo-
morphic images. 

c) Let Gi (i £ / ) be waZ-groups such that G{ £ fflP for each i £ I. Then 
for each i £ I there is a waZ-ideal A; < G? such that A* £ ^ and Gi/Ai £ r . 
Denote G = J J i € / G* and A = []*.=/ -4*- ^ *s e a s y t o v e r ^ y t n a t -4 is waZ-ideal 
of G. Moreover A £ ^T. 

Further, the mapping <p : G/A ~+ Wi^Gi/Ai that for each element g — 
(9i)i€i £ G assigns to g + A in G/A the element (</,- +*fi4t),€j in Y\ieI "</-4f» *s 

a waZ-isomorphism. Hence G/A £ r , that means ]~ItG/ »̂* G * ^ - D 

Theorem 3 WAL is an ordered semigroup with respect to the multiplication 
of varieties and to the order by inclusion. 

Proof The associativity of the multiplication of varieties of waZ-groups can be 
proved likewise as the associativity of varieties of groups in [5, Theorem 21.51]. 
The validity of the implications 

f c r = ^ <Wf <1YW and mtCWV 

is obvious. • 

Theorem 4 If % and Y{ (i £ I) are varieties of wal-groups then 

(f)Уi)w = Ç)ГiW . 
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Proof It is evident that the left side of the equality is contained in the right 
one. Conversely, let G E f]i£l Vffl. Then for each i £ I there exists a wal-ide&l 
Hi <G such that Hi E r t- and G/H{ E «T. Set H = f]ieIHi. Then H is a 
wa/-ideal of G and H E n*€j ̂ »-

Denote 99 : G/H —» fl2 G / G/FI? the mapping such that for each x E G, 
<£>(# -f- H) = (# -F Hi)i£i. It is clear that <£> is an isomorphic embedding and that 
<p[G/H] is a wa/-subgroup of Yli£l G/Hi. And because of Yliei G/Hi E <%£ we 

haveGE(a e I rO^- D 

Remark For the varieties of /-groups, also other distributivity laws (distribu-
tivity of multiplication over lattice operations from the left or the right) in the 
ordered semigroup L of /-varieties are valid too. (See [1, Theorem 6.1], [9, The
orem 10.9.7].) It remains an open question which of those laws are valid in 
WAL 
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