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Abstrac t 

Continuity conditions for quartic splines as recurrence relations be
tween function values and first derivatives of the spline at the knots are 
used in the algorithms for computing its local parameters. Proper local 
parameters of the biquartic splines on the rectangular mesh are investi
gated for the use of tensor product technique. The appropriate boundary 
conditions for interpolatory biquartic splines are given and the algorithm 
for computing needed local parameters is described. 

K e y w o r d s : Splines, q u a r t i c and b iquar t ic in terpola tory splines. 

1991 M a t h e m a t i c s Sub jec t Classif ication: 41A15, 65D05 

1 Quartic splines 
Let us have t h e set of s imple spline knots 

(Aar) : x0 < xx < . . . < xn < xn+i 

on t h e real axis wi th stepsizes hi = Xi+i — Xj. D e n o t e 5 4 ( A x ) t h e l inear space 
of q u a r t i c p o l y n o m i a l splines wi th t h e defect one si(x) = s(x) £ C 3 on the 

* Supported by the internal grant No. 31103001 of the Palacky University, Olomouc, Czech 
Republic. 
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knotset (Ax) with dim £4(Ax) = n + 5 (see [2], [4]). When we want to use 
information placed at knots of a spline only, such a quartic spline can be uniquely 
determined by 
— conditions of interpolation s(xi) = S{} i = 0(1)ft + 1 (CI) 
— some boundary conditions; the simplest case is to prescribe 

m0=s,(x0)) rnn+1 = s ;(a?n+1). Af* = «"(&*), & E { 0 , . . . , n + 1}. (BC) 
As in the similar quadratic case on the knotset (Air) some unsymmetry in 
the local representation of such interpolatory spline and boundary conditions 
is unavoidable (see [2]). Some another types of boundary conditions can be 
considered too (see [3]). 

1.1 Local representation 

The Taylor's representation of the spline s(x) is often used 

s(x) = Si + rm(x - Xi) + \Mi(x - x{)
2 + ±Ti(x - Xi)3 + ^Qi(x - x2)4 (1) 

for x E {xi,Xi+i) with the notation Si = s(xi), mi = s'(xi), 

Mi = «"(*,), Ti = s"'(xi), Qi = sW(xi) = (7}+ 1 - Ti)/hit i = 0(l)n. (2) 

We will use the simplest pieces of information given in the knots of the spline 
for its local representation—the function values and the values of the first and 
second derivatives. For x E (#», #i+ i ) 3 we can write then a spline s(x) E S^Ax) 
in the local representation 

s(x) = <p0(u)si + <pi(u)si+i + hi[<pl(u)mi + <p\(u)mi+i] + ^hf<pl(u)Mi (LR) 

with basis functions 

(p0(u) = (u~ 1)2(1 + 2u + 3u2), <px(u) = u3(4 - 3t*)-, 

<p\(u) = u(u - 1)2(1 + 2ti), y>}(«) = tx3(i/ - 1), ( S F ) 

^( t*) = i * 2 ( i - u ) i : 

1.2 Continuity conditions 

The quartic pieces of s(x) on (xi,Xi+i) are connected together with the C 3 

continuity. These continuity conditions (CC) we can express in various local 
parameters of the spline. The most simple way is to use the Taylor's parameters 
(2)—we obtain the system of conditions 

Sj + h j m j + ^h2Mj + ^h3Tj+l_h4Q. = Sj+1 

rrij + hjMj + ítfTj + ltfQi = mj+1 

Mi + hjTj + \h)Qi = Mj+1 

Tj + hjQi = Tj+1, j = l ( l ) n - l . 

(CC) 

Computing the local parameters (2) directly from this simple form of (CC) 
leads to some large block systems of linear equations (see e.g.[2]). In the local 
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representation (LR) the continuity of s(x),sf(x) is implicitly included. The 
continuity of the second and third derivatives at knots can be expressed as 

-(mi + rm+i) + ~hi(Mi - Mi+1) = (si+1 - Si)/hi, (3) 

bhip^mi + 3(/iipf + 1ii+1)mi+i + hi+imi+2 + h2pfM4 + h2
+1Mi+1 = 

= Sp^Si + (8pf - 4)si+ i + 4si+ 2 , Pi = hi+1/hi, i = 0(l)n - 1. 

Given the boundary values mo,mn+i,Mk we can all remaining 2n local pa
rameters needed in (LR) compute from the system of 2n equations with the 
more simple block structure. Another relations follow from the fact, that the 
derivatives s^^(x) of s(x) are splines from S4-j(Ax) (see [3]—we can obtain 
them also as consequences of some subset of relations (CC)). In case of the 
equidistant mesh, the recursions between parameters Tj,Sj obtained by divid
ed differences technique are mentioned yet in [1]. Using symbolic computing 
means (e.g. MATHEMATICA), we can choose some proper subsets of (CC) for 
elimination of chosen subset of parameters to obtain recurrence relations be
tween remaining local parameters of s(x) (see [3] for more details). So we have 
obtained the relation (which follows also from known Hermite interpolation for
mula, hidden yet in (3)) 

Mi = (6//i0)(mo + mx) + M0 + (12/h2)(s0 - sx). (4) 

The following recurrence relation 

aiMi^ + 2M,; + dMi+i = fi i = l ( l )n (5) 

Qi = hi/(hi-i + hi), d- = 1 — a,-, fi = 3[ci(rai+i - mi)/hi + ai(m{ - mi_i)//ii] 

is the consequence of the fact that s'(x) G Ss(Ax) and the corresponding (CC) 
for the cubic splines on the knotset (Ax) (see [3]). We can compute then 

Mi, i = 2(l)n + 1 by recursion using (4), (5) from know values 
{si,mi, i = 0(l)n + 1} and some given M/-, k £ { 0 , . . . , n + 1}. 

The values {mi, i = l ( l )n} we can compute from continuity conditions ex
pressed in terms of local parameters Si, mi by elimination of another local pa
rameters from some proper subset of (CC) (or by elimination of Mi from the 
first equation in (3) and substitution into the second equation in (3)) as 

Po(6 + 5p0)m0 + 3(1 + po)2mi +m2= (6) 

= (4/h!)[-pg(2p0 + 3)*o + (2Po + 3prj ~ l)*i + s2] - ftaM0(l +Po), 

p-_iPim*~i +a7P i [ ( l+P i_ i ) (3 + 2pi) +pi-1pi]mi+ 

+[1 + (2 + 3pi_i)(l +Pi)]mi+1 +Timi+2 = 

= ^ | -P f_ iP iS i_ i -p i [2&i + 

__ 1 + P i - i T- 1+P i - iP i __ 3p i_ i+p i hi+i m 

o>i = - — , bi = — — - . Ci = — — , pi = -—; i = l ( l j n - 1. 
1 + Pi 1 + Pi 1+ Pi hi 
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Given m 0 , m n + i , M 0 ) the system (6) consist of n linear relations for n unknown 
parameters m;, i = l ( l ) n . The matrix of that system is nonsymmetric, with 
four nonzero diagonal band. 

In the equidistant case hi = /iwe obtain the following system 

24 (12mi + m 2 ) = ^ M O B o + 16«i + 4s 2) - — M 0 - — m 0 

1 1 1 
— ( l l m i + l l m 2 + m 3 ) = — (~s0 - Ss1 + 3s 2 + s3) - — m 0 

^ ( m t _ i + l l m i + llm,-+i + m > + 2 ) = Fr(~" s *~i - 3 * f - + 3s,-+i + ^ - + 2 ) . 

i = 2 ( l ) n - 2 , (7) 

1 1 1 
— ( m ^ 2 + l l m n _ ! + l l m n ) = ^ ( - ^ - 2 - 3s„-i + 3 s n + Bn+i) - — m n + i . 

1.3 Algorithms for computing ID local parameters 
Let us summarize the results of the Sections 1.1 and 1.2 into two algorithms 
for computing the local parameters of the one-dimensional quartic spline under 
boundary conditions (BC). 

Algorithm (m,M) 

Given the data Uxs.sA. i = Ofl^n-4-1) on the knotset (Ax) and boundary values 
iv •J - / ' \ / • J \ / ^ 

m0, m n + i ,M/c 
1. compute hi,pi for given knotset (Ax); 

2. compute the components of the matrix and of the right-hand side of the 
system (3); 

3. solve the block system of equations (3) for the parameters (m,M); 

, 4- u s e the computed local parameters {s,m,M} in the local representation 
.; (LR) for the full description of the spline s(x) (e.g. graphic visualisation, 

applications). 

Algorithm (m) 

Given the data {(#*, s2), i = 0(l)n + 1}; m 0 , m n + i , M 0 

1. compute hi, pi £ (6) (in the general case); 

2. compute components of the matrix and right hand side in (6) or (7); 

. 3. solve the system (6) or (7) for mi ; 

4. compute Mi from (4) and Mi recursively according to (5); 

; 5. use the computed local parameters in (LR) for computations with s(x). 
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2 Biquartic splines 

We use the tensor product technique now for construction of biquartic spline on 
the rectangle D with the grid (A): 

D = (x0, xn+1) x (j/o,2/m+i), (^ ) = (Aa?) x (At/), (A) 

(Ay) ~yo<y1<..-<ym< ym+i, (? = iy+i - % • 

Let us denote further 

Dij = (xitXi+i) x (yj,yj+1), i = 0(l)n, j = 0(l)m (the local rectangles), 

s(x, y) = ]T\ . 0 aijX%yJ—the biquartic spline s G C ' (D), 

544(A) the linear space of biquartic splines on (A), 

skl(x, y) = Sn^s(x> V) M = 0 , 1 , 2 , . . . the derivatives of s(x, y). 

To apply the tensor product technique to the construction of biquartic spline 
s(x,y) on D, we have first to consider some appropriate local parameters of 
s(x,y) on the subrectangle Dij. 

2.1 Local parameters 

It is preferred usually to choose 25 local parameters of the biquartic spline in the 
vertices of the subrectangle D%j; we have to do it in a proper way to guarantee 

• existence and uniqueness of s(x, y) determined by such a parameters, 

• storage economy (a low number of local parameters over the whole grid), 

• the possibility of repeated use of the one-dimensional algorithms for the 
calculation of parameters and of the spline function values for (x, y) E Dij. 

T h e o r e m 1 The following 25 local parameters uniquely determine biquartic 
spline s(x,y) over D^ = (a?,-, xi+1)x(yj, j/j+i), i € { 0 , 1 , . . . , n } , j G { 0 , 1 , . . . ,m} 

1° the values of a,*10,*01, s20, s11 ,*02 ,*21 , s12,s22 at (xuyi); 

2° a ^ V 1 , * 1 1 , * 0 2 , * 1 2 (Xi+uyj); 

3° a , * 1 ^ * 1 1 , * 2 0 , * 2 1 (*«,Vj+i); 

4° a, a10, a01, a11 (*<+i,Vj+i) 

(see Fig. la). 

Proof The matrix of linear relations between coefficients a -̂ and parameters 
(FP2) has a nonzero determinant, as can be easily verified. Let us denote by 

(LP2) 

IV-Ь 

Эtj 
Si+lJ лo лo ft20 

7ij °г+lj òij 

5 Ь J + 1 5 г + l j + l S Í , І + 1 S i + l , j + l s » j + l 

c 0 1 c 0 1 c l l c l l c 2 1 
bij òi+lJ Sij Si+lJ Sij 

„01 c 01 .11 c l l „21 
SІJ + 1 SІ+1J + 1 SiJ + l Si+lJ + l SiJ + l 

„02 S, 02 S ^ 2 

5 u 
Д 2 P 22 

(8) 

"*j °. + l,J ° i j °« + l,J " U 

the "mapping matrix" of 25 chosen local parameters of s(x, y) on A"j-
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Remark 1 We need to store only 9 local parameters (LP2) at every grid point 
for the full description of s(x, y) on D. 

s,sw,s01 

sn,s20,s21 

2/i+i 

Fig. l a Fig. l b 

2.2 Algorithm for computing function values in 2D 
We can use repeatedly the one-dimensional local representation (LP) for com
puting s(x,y) from two-dimensional local parameters (LP2) in Dij. 

Let us denote u = (x — Xi)/hi, v = (y = yj)/lj for (x, y) E Dij. 
With the one-dimensional basis functions y?o, <p\i <p\i <p\i <p\ given in (BF) 

we can compute stepwise the values 

1° s(x,yk) = p o O - ) s i * + M M ) 5 i + i , * + f t ^ 

2° s01(x,yk) = <p0(u)s°£ + Mu)s°iU,k + **Vo («)*** + M W * J + i , * + 

+ | A ? ^ ( w ) ^ ; * = i , i + i; 

3° s02(x,Vj) = ^o(«)«?/ + ^ i H ^ l u + AivS(u)«J/ + M ( « ) * " i , i + 

4° ,s(x, 2/) = p0(v)«(ar, yj) + ^i(v)s(ar, uj+1) + lj<pl(v)s01 (x, yj) + 

+tj(p\sQ1(xjyHl) + \q<pl(v)s™(x,yj). (FV2D5) 

Remark 2 The values computed in the steps l°-4° are shown on Fig. lb . 

Remark 3 Using the mapping matrix M ^ , we can write 

s(x,y) = [<po(v)} <pi(v), lj<pl(v)i lj<p\(v)i ЏWo(v)) -Mij 

<p0(u) 

<pi(u) 

hi<pl(u) 

hi<p\(u) 

(9) 

as a symbolic description of the algorithm presented in a matrix form. 
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2.3 Boundary conditions 

According to the construction of 544(A) we have 

d i m 5 4 4 ( A ) = (n + 5)(m + 5) = (n + 2)(m + 2) + 3(n + 2) + 3(m + 2) + 9. (10) 

The conditions of interpolation 

*(*«•> Уi) i = 0(l)n + l, j = 0(l)m + l (CI) 

represent altogether (n + 2)(m + 2) given parameters. 
The remaining conditions for the unique determination of s(x,y) we have to 
prescribe e.g. as boundary conditions on D in such a way to enable us to compute 
all local parameters for s(x, y) on every subrectangle Dij. 

T h e o r e m 2 Given the conditions of interpolation (CI) on the grid (A) in D, 
the following boundary conditions given at the boundary gridpoints determine 
uniquely the biquartic spline s(x,y) on D: 

1° the values s10,s20 in the (*o,Уi) 
s10 

2° s01,s02 

s01 

boundary (xn+i,yj), 
points (xi,yo) 

(XiyУm+l), 

j = 0(l)m + l 

І = 0(l)n + 1 

3° sn,s21, s12 s22 in the (zo,Уo) 
sn,s12 

sn.s21 

corners (Xn + ltУo) 

(BC2) 

,11 (xn + l,ym+l) 

(see Fig 2. for the location of boundary values prescribed). 

Proof will be given in the next section as an algorithm for the computing all 
local parameters on Dij from (CI) and (BC2). 

,*2 1 ' s 0 1 s 1 1 

[ S

1 0 , s 2 0 D 
s 1 0 

1 
s01,s02 

sn,s21,sí2,s22 sn,s12 

Fig. 2 



Jiří KOBZA 

2.4 Algorithm for computing 2D local parameters 

We will repeatedly use the one-dimensional Algorithm (m) in x and y direct
ions applied to skl(x,y) on grid lines for computing all local parameters of 
s(x,y) in every subrectangle Dij from given (CI) and (BC2). We split the 
whole algorithm into two stages. 

2.4.1 Comput ing local parameters on the boundary lines ( B L P ) 

on lines function 
values 

boundary 
values 

computed 
local parameters 

1° X = x0ìxn+1 5 s01,s02 s01 s01,s02 

У = УOiУm+l s s10,s20 s10 s10,s20 

2° x = xQ,xn+г s 1 0 sn,s12 s " sn,s12 

У = 2/0jî/m+l s 0 1 sn,s21 s " sn,s21 

3° X = x0,xn+1 s 2 0 s21,s22 s 2 1 s21,s22 

У = 2/Ojž/m+l s 0 2 s12,s22 s 1 2 s12,s22 

2.4.2 Comput ing local parameters inside the rectangle (LLP) 

When we apply the Algorithm (m) now to the horizontal and vertical inner 
lines of our mesh grid, we can compute 

on lines function 
values 

boundary 
values 

computed 
parameters 

1° У = Уi s s10,s20 \s10 s 1 0 , s 2 0 

X — Xi s s01,s02 \s01 s01,s02 

2° У = Уj s 0 1 sn,s21 \sn sn,s21 

X — Xj s 1 0 sn,s12 | s " (sn),s12 • 

3° У = Уj s 0 2 s12,s22 s 1 2 ( s 1 2 ) , s 2 2 * 

(* —only recurrences for the second derivate in Algorithm(m) can be used, 
because the first derivatives are known yet from foregoing step.) 

Together with the known values s we have thus (uniquely) computed all local 
parameters in each subrectangle Dij. 

Remark 4 We can obtain variants of the Algorithm (ILP) by changing the 
directions in steps l°-3° in 2.4.2. 

Remark 5 The one-dimensional Algorithm (m,M) can be used in formally 
a quite similar way. 
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3 Examples 

Example 1 Let us have the function 

f(x) = 3 z 2 - e - * \ 

On the Fig 3.a we can see plots of f(x) and 54(x) on the knotset (Ax) = 
{xi = i, i = 0(1)10} and with (BC) computed from the function f(x). On the 
Fig 3.b the plot of s$(x) is given with mo, m n + i , M o approximated from given 
data Si as mo = (s\ ~ s0)/h, m n + i = (sn+i - sn)/h} M0 = (s0 — 2si -f s2)/h2. 

On the Fig 3.c we see 54(2?) for the knot set (Ax) = {xi = 0.5 - i, i = 0(1)20} 
and (BC) approximated as in Lb. 

On the Fig 3.d the foregoing knot set is used and (BC) are computed exactly 
from the formula for f (x). 

Fig. Зa Fig. Зb 

Fig. Зc Fig. Зd 
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E x a m p l e 2 Let us have the knot set {x, = i, i :-= 0(1)20} with the prescribed 
function values 

s = [*] = [15,11,3,5,0,-2, - 7 , -1,6,10,12,16,19,17,13,12,8,6,4,1,0]. 

The unstable error propagation is demonstrated on the following figures: 
Fig 4.a shows s4(x) with mo, m n + i , Mo approximated from the values s,-, 
Fig 4.b—s4(x) corresponding to small changes in Si] ra; are computed from 

Si on the boundary and Mo = 0. The changes of Mo seemed to have a small 
influence on the plots. 

0 2 4 8 8 10 12 14 16 18 20 

Fig. 4a 

*• 

o 

-3 

-10 

8 10 12 14 18 18 20 

Fig. 4b 
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Example 3 Shape preserving properties 

On the Fig 5.a we can see that for the monotone data 

« = [1,2,5,6, 7,12,15,22,24,25,35,36,37,45,47,48,55,56,58,59,60] 

the spline S4(x) needn't be monotone. 
On the Fig 5.b the interpolating spline 54 (a?) preserves convexity of the data 

s = [0,7,13.9,20.5,26.9,32.9,38.4,43.2,47,49.3,49.6,48.7, 

46.8,44,40.6,36.8,32.3,27,20.7,12.4,0] 

Fig. 5a Fig. 5b 

E x a m p l e 4 Let us have the 2D data shown in the Fig 6.a (n = 4,m = 7). 
When we compute s10 , s01 on the boundary from differences and put s20, B11, s02, 
s12, s21 , s22 equal to zero, then the corresponding s44(x, y) is plotted on Fig 6.b. 

Fig. 6b 
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E x a m p l e 5 For the function f(x,y) = (x3 + 3 ^ ) ^ and meshgrid (A) = 
{(x{,yj); Xi = 0(5)30, yj = 0(3)12} there is no significant difference between 
plots of 8A4(x,y) for exact (Fig 7.a) and rounded (Fig 7.b) boundary values of 

20CK 

Remark 6 The above examples were worked out with MATLAB. The cor
responding M-files can be obtained from the author. 

References 
[1] ДЫberg, J . H., Ni lson, E. N., Walsh J. L.: The Theory of Splines and Their Applications. 

Й^cad. Press, New Vork, 1967. 

[2] Ќ o b z a , J. : Splajny. NakL.UP, Olomouc, 1993, 224 pp. , (textbook-—in Czech). 

[3] Kobza, J . : Spline recurrefiçes for quartic spline. Acta Univ. Palacki. O l o m u c , Fac. rer. 
n a t . 3 4 (1995), 75-89. í 

[4] Schumaker, L. L.: Spline Functions. Basic Theory. Wiłey, New York, 1981. 

[5] S p a e t h , H . : Eindimensionale Spline-Interpolations-algorithmen. R. Oldenbourgh Verlag, 
1990, 391 p p . 


		webmaster@dml.cz
	2012-05-03T22:32:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




