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Abstract 
It is a survey of results on the so called weak automorphisms. Con

nections between bijections of a set A and families of operations on A 
are desribed. It could be interested from the point of view of universal 
algebra as well as of that of multiple-valued logic. 
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Introduction 

In this paper we will tray to describe a certain Galois connection between bijec
tions of a set A and families of Unitary operations on A. These investigations 
are situated on the borderline between Universal Algebra and Multiple-valued 
Logics. Topics of the paper are related to the important notion of weak auto
morphism of general algebras. Weak automorphisms of an algebra (with the 
carrier A) induce so-called inner automorphisms of the iterative Post algebra 
(in the sense of A. L Mal'cev [Ma66]) of operations on the set A, of the Menger 
algebras (or n-clones) of n-ary operations on A, and of the Menger system of 
all operations on A (see, e.g., [Whi64] and [ScT79]). We have payed attention 
to importance of the considered Galois connection in our lecture during the 
ICM-90 in Kyoto (see [G190]). Almost all of the results, presented here, was 
announced (in Polish) in the book [G194] (MR 96b:08006). 

This paper was finally completed during the author's stay in Palacky University of Olo-
mouc in 1996 (supported by a grant of The Ministry of Education of the Czech Republic). 
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16 Kazimierz GLAZEK 

1 Preliminaries 
Let A be a non-empty set, 0(A) be the set of all finitary operations over the set 
A, and let a € SA (the set of all bijections of the set A onto itself). For every 
/ £ O(A) (say: n-ary), consider a new (n-ary) operation a(f) denned by the 
equality 

(*(/))(ai , -. . ,an)=a(f(a-1(a1), . . . ^ ^ K ) ) ) . (1) 

Similarly, we can define a new operation (O"-1)" ( / ) . Thus, we have the mapping 
a : Q(A) ~> O(A) (and also the mapping (a)"1: O(A) -> 0(A) ) induced by a. 
Of course, (a)~l = (o~x)~. 

Such mappings a or (o~l)~ have been used by several authors in different 
investigations, first - according to the best of my knowledge - about 1905 by 
C.L. Bouton and E.V. Huntington (see [Hu05], p. 226) in the case of the alge
bra of complex numbers (for a being a homography). Mappings a (or (O""1)") 
also play an essential role in the theory of formal groups and socalled "annal-
ysers" (see [Laz55], p. 338, [Laz75], p. 34). The theory of abstract mean 
values (e.g., the Kolmogoroff-Nagumo Theorem, [Ko30], [Na30], and the de 
Finetti-Kitagawa Theorem, [Fi31], [Ki34]) also uses suitable mappings (a"1)™ 
(see also, e.g., [Ac48], [Ry49], [AcW80], and references in AczeTs book [Ac66]). 
Mappings a and (o~x)~ also appear in a natural manner in theories of several 
functional equations (see, e.g., [Ac49], [Ac61], [Ac66], [Ac69], [Ho53], [Ho54], 
[Kn49], [Vi59], [Vi61]). For some other aplications see, e.g., [KaT79] and [Ri48]. 

An operation / G 0(A) is said to be self-dual with respect to a permutation 
a £ SA if the equality 

* ( / ) = / (2) 

is fulfilled. Several authors have investigated self-dual operations with respect 
to different permutations (see, for instance, [DHM81], [DR83], [EvH57], [Lei72], 
[Mar79], [Mar82], [MarDH80], [Mi71], [Mu59], [P6K79], p. 87, [Ro61], [St86], 
[StM86], [Ya58]). 

If for f,g E O(A) we have g = (a~1)~(f), then - sometimes in the theory 
of multiple-valued logics - the operation g is called similar to f (this notion is a 
natural generalization of the duality for Boolean functions in two-valued logic; 
cf. [Pos41], [Ya58], [YaGK66], [Ly51], [Mi71]). 

The mapping a is a so-called inner automorphism of the iterative Post al
gebra PA = (®(-4);*,C>r> A, V) m the sense of A.L Mal'cev, and of the pre-
iterative Post algebra P*A = ( 0 ( - A ) ; * , C , T , A) (see [Ma66], [Ma76], and also 
[Mal72], [La79], [Ba80], [Ba81], [GoL83], [G192]). Moreover a is an (inner) au
tomorphism of the (full) Menger algebra (or the n-clone - in the terminology 
of T. Evans; see [Me46], [Me61], [Wh64], [LaN73], and [Ev81]). 

Recall that, if a subset A of 0(A) is closed under the compositions of func
tions, then A is called a closed class of functions in the sense of E.L. Post (see 
[Pos2Q], [Pos41], [Ya58], [YaGK66]). If, besides, A contains all trivial opera
tions ê  (#1, . . . ,xn) = Xi (i = 1, . . . ,n; n = 1,2, . . . ), then A is a clone in 
the sense of Ph. Hall (see [Co65], [McMT87], and [Sz86]). A closed class (or a 
clone) A is called self-dual if the inclusion a(A) C A holds true for all bijections 
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a: A —» A. Such classes have been considered by several authors (see [DH79], 
[DHR83], [DR84], [Mi71]). 

2 Weak automorphisms 

Let now A = (A;¥) be a general algebra, A(c O(A)) be the clone of all term 
operations of A (see [MMT87]), and let a G SU- If 

cr(A) = A, (3) 

then a is said to be a weak automorphism of the general algebra A = (A; F) 
(see [Se70]; this notion is a special case of the notion of the weak isomorphism 
defined by A. Goetz [Go66]). Equivalently, in another terminology, a is a cryp
to automorphism (as a special case of the notion of the cryptmorphism in the 
sense of G. Birkhoff, see [Bi71], [Bi82], [P685]). It is worth adding, that - in the 
definition of the weak automorphism - it is not enought to assume the inclusion 
cr(A) C A. 

As an example, we consider a weak automorphism a of an infinite integral 
domain (R:+, —, 0, •, e) with the unity e treated as a constant fundamental oper
ation. Then a determines new ring operations 0 and 0 defined by the formulas: 

x®y = x + y - cr(0) (4) 

and 
x © y = (x y - cr(0) -(x + y) + a(0) • a(e)) - (a(e) - O-(O))-1, (5) 

where CJ(0) and a(e) belong to the subring (e) of R generated by e, and cr(e) — 
cr(0) belongs to It* (the set of all units, i.e. invertible elements of R). Moreover 
the rings (R; + , •) and (It; 0 , 0 ) are isomorphic. This result, proved in [G170], is 
a generalization of some well-known results for infinite fields ([Lev45], [HNE64]; 
see also [ZaS58], p . 11). If we take a bijection a of the ring R onto itself, such that 
a(0) = e and cr(e) = 0, then we get a case considered by A.L. Foster and B.A. 
Bernstein (see [FoB44]). Considering the mappings x i-> x + e or x *-± —x + e 
(in rings with the unity e treated as fundamental constant operation) leads to 
some generalization of the Principle of Duality for Boolean rings and Boolean 
algebras (see [Fo45], [FoB44], [FoB45], [Yaq56]). 

We will now give some examples of new field operations in finite fields (for 
more details see [G181]). Consider a new addition 0 i in F = GF(7): 

x 0 i y =x + y + 5x2y2(x3 + y3) + 3x3y3(x + y). 

Then (F; +, •) ~ (F; 0 i , •). In the same field we can define the new operations: 

x 02 y=x + y + x2y2 + 3 x V + 6x3y3(x + y) + 5xy(x2 + y2) + 2x2y2(x3 + y3) 

and 

x 0 y = 3x4y4 + 3x4y -f- 3xyA + xy. 
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Then we similarly have (F;+,«) ~ ( F ; © 2 , 0 ) . These new field operations can 
be obtained by using suitable weak automorphisms of GF(7) (which can be 
represented as permutation polynomials; see, e.g., [Ca63], [LaN73], [LN83] and 
[G181]). Namely, for the bijections ai(x) = x5 and o2(x) = x5 + 2x2 of / = 
GF(7) onto itself we have Oi(+) = ©i, CTI(-) = •, o2(+) = ©2, and <r2(-) = 0 . 
Observe that the induced mapping for the first of those weak automorphisms 
preserves multiplication " •". Such weak automorphisms o of field F1, for which 
the induced mappings o preserve multiplication, form a normal subgroup of 
the group WAut(F) of all weak automorphisms of the field F. Denote by the 
symbol AM(F) the set of all weak automorphisms <r for which the mappings o 
preserve field multiplication. Then we have The sequence of normal subgroups 

Aut(F) < AM(F) < WAut(F). (6) 

If F = GF(q) with q = pn, then o G AM(F) iff there exists a natural number 
k < pn — 2 such that (&, q — 1) = 1 and o(x) = xk for every x G F. Of course, 
for <r G AM(F) we have o(e) = e and <r(0) = 0. 

It is worth adding that for finite fields we have a generalization (announced 
in [G194]) of well-known Dedekind Independence Theorem: 

Proposit ion 1 Let Oi, . . . ,<rn be pair-wise distinct weak automorphisms of 
finite field F, such that induced mappings di (i = 1, . . . , n) preserve field 
multiplication, i.e. Oi G AM(F). Then Or, . . . ,<rn are linearly independent 
(as elements of linear space FF over the field F. 

Indeed, we should prove that if Or,..., crn G AM(F), oi ^ Oj for i ^ jf, and 
A i , . . . , An G F, then the following implication 

(V xeF) (\iOi(x) + . . . + \nan(x) = 0) => \i = . . . = An = 0 

holds true. We will prove it induction with respect to n. Let \a(x) = 0 for 
every x G F. Then for x = e we obtain A = A<r(e) = 0, which is the first step of 
the inductive proof. Consider n + 1 distict weak automorphisms oi and assume 

(VxeF) (\iai(x) + ... + \n+ion+i(x)=Q). (7) 

The mappings Or and <rn+i are distinct, thus there exists 6 G F\{0}, such that 
<r1(6) T-: <rn(6), and for arbitrary x G F there is y G F with x = y -6. Therefore 
we have 

Aicri(y)<r1(6) + A2<72(2/)cr2(6) + . . . + An+i<rn+i(y)<7n+i(6) = 0 

and 
AIC7I(2/)<TI(6) + A2<T2(2/)cTl(6) + . . . + An+iOn+x(2/)<7i(6) = 0. 

Further we infer that 

A2(a2(6) - oi(b))o2(y) + . . . + An+ i(<rn+i(6) ~ <7i(6)K+ i (y) = 0. 
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By the asumption of validity of our proposition for n we have An+i = 0, and 
from (7) we get \\a\{x) -f . . . -f- \ncrn{x) = 0 for any x € F. Thus, using once 
more our inductive assumption, we infer Ai = . . . = An = 0, which completes 
the proof of Proposition 1. 

We recall that a more general notion of the 7-weak automorphism (with 
respect to some composition closure 7 over the set 0(A)) was introduced in 
[G193] (see also [G194]). Namely, a permutation O € 5 A is said to be a 7-weak 
automorphism of a general algebra A = {A] ¥) if 

a( 7 (F)) = 7(F) (=7(*(F) ) . (8) 

Denoting by WAut{A) and *yWAut{A) the groups of, respectively, all weak au
tomorphisms and all 7-weak automorphisms of A, one can verify that WAut{A) 
is a normal subgroup of the group jWAut{A). So, we have 

Aut{A) < jWAut{A) < WAut{A). 

It is easy to observe, that if a € 5 A , then for every composition closure 7, 
the mapping a is a monomorphisms of the 7-closure space (©(A.); 7), i. e. a is 
7-closure automorphism. 

3 A certain Galois connection 

Consider a set A, with card(A) > 1, and the set 0{A) of all (unitary) operations 
on the set A. Let now B C Q(-4), a € SA, and let a € S®(A) be defined by (1). 
Define the relation 

P<r C SA x 2 ° W (9) 

by the equality 
B = cr(B). (10) 

The relation p<-- determines a Galois connection or a polarity in the sense 
of G. Birkhoff ([Bi40]; see also [Or44]). Investigations of such a connection for 
the relation pa were initiated by us in 1989 and reported during ICM-90 in 
Kyoto, Japan (see [G190] and [G194]), but we are still in the initial stages of 
investigations. The suitable Galois correspondence in the sense of 0. Ore (see 
[Or44]) between subsets G C SA and families T of subsets of 0{ A) are given by 
two mappings: 

G !-> T{G) = {B C O(A) I (Vo- £ G)(B = cr(B))} (11) 

and 
F H» G(JT) = {a € 5 A I (VB G ̂ ) ( B = cr(B))}. (12) 

Note some simple properties of mappings (11) and (12), and a relation the 
notion to the notions of weak automorphism (see [Se70]) and of 7-weak auto
morphism (see [G193] and [G194]). The following statements are easy to verify: 

(i) G({E}) = G({0^(A)}) = SA. 
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(ii) E, O(A) € F(G) for every G C SA. 

(iii) Let B = {/} and A = (A- / ) . Tften G({B}) = Aut(A). 

(iv) Lei ,4 = (A;B) /0r some B C 0(A). Tften G({B}) C WAut(A). 
Moreover, if B = (B) = T(̂ 4) is a clone of operations over A, then 
G({B}) = WAut(A). More generally, if B = 7(B) for some composi
tion closure 7 on Q(A) (see [Gla93]), then G(B}) = 7PVylwt(A). 

(v) Let a e SA. If B 6 JF({O-}) and A = (A;B), iften 0- £ TV-4uf(yl). 
Moreover, t/ B = (B), tten B C .F (M) it iff a e WAut(A). More 
generally, if B = 7(B) (/or some composition closure j), then B G ^({o"}) 
i# a e -yWAut(A). 

(vi) Let G = (G) 6e a subgroup of SA and A = (A;B). I/ B G /"(G), tten 
G < PVAni(yl). Moreover, t/ B = (B), and G < WAut(A), then B <E 
^(G). 

fvttj If 7; 2°(j4) —r 2 ° ^ is a composition closure on O(A) (i.e. for every 
B C O(A)) we nave B̂ C 7(B) C (B)) and B G J*(G), tf*en 7(B) <E T(G). 
In particular, if B € .F(G), tfien (B) € JF(G). 

Property (vii) shows that the family T(G), where G C SA, is very extensive. 
The next two properties also emphasize this fact: 

(viii) If BC JF(G), tten a/so B (n) € T(G) for every n = 0,1, ... . 

t>; I/ Bi,B2,Bi E F(G) (i e I), then Bx UB2 € £(G) ana1 U B < € •£(<?). 
iGI 

It is worth noting that: 

(x) T(G) = T((G)) = U -^(i0"}); wftere (G) is £fte subgroup of SA generated 
*€G 

by the set G of permutations. 

(xi) G(F) = U «({B}) < SA. 
Be-F 

(xii)Gc U WM(^;»))-

(xiiî ) (.?"(5^b(5A)); C) is a complete lattice with the lower bound T(SA) and 

the upper bound T({idA}) = 22°W (= JF(0)). 

Taking into account the results of G. Birkhoff and O. Ore we immediately 
have 
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Proposition 2 The mappings (11) and (12) establish a Galois connection be
tween subsets G C SA and subsets of2®(A\ i.e. we have: 

G i C G 2 c S ^ J ( G 2 ) c f ( G i ) c 2 ° ( A ) (13) 

f i C f 2 C 2°<A) => o(_F2) c G'JtU (14) 

G C G(F(G)), (15) 

F C f(G(F)), (16) 

HG&(G))) = HG), (17) 

G(J-(G(^))) = G(JF). (18) 

It is easy to observe that equalities (17) and (18) follow from (13)-(16). 

Define the operators V on 2sA and A on 22 in the following way: 

W(G) = G(T(G))= ,.Qx 
= {a e SA I (VI C Q(i4)) ((Vr € G)(f(B) = B) =*• (5(B) = B))}, ^ ! 

Д ( Я = J F ( G ( ; F ) ) = 

C O(Л) | (Vo- Є Sл)((VF Є Ж * ( F ) = F) => (cŕ( 
(20) 

Like in the classical Galois theory, we can easily verify that the operators A 
and V are closure operators over 2SA and 22 , respectively. Moreover, the 
closed elements with respect to these operators are of the form G(T) and T(G). 
Taking into account the general theory described by O. Ore (see [Or44]) we get 
the following results (announced in [G190] and appeared in [G194]): 

Proposition 3 The mappings (11) and (12) determine one-to-one correspon
dence between families of sets V(G) and A(T), defined by (18) and (19). re
spectively. Moreover the families 

{V(G) | G C SA} and {A(T) \ T C 2°<A>} 

form complete lattices with respect to suitable inclusions, and these lattices are 
dually isomorphic, i.e. the following rules: 

^ ( V ( G i ) n V(G2)) = A(T(V(G1))U T(V(G2))) = A(T(G1)U T(G2)), (21) 

and 

£(V(Gi) U V(G2)) = A(^(V(GX)) n f(V(G2))) = A(.F(GX) n F(G2)) (22) 

for the operator T hold, and the analogous rules for the operator G hold. 
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4 Some stabilizers 

Finally, for any family T C 2°^>, define the "stabilizer" of it: 

G0(T) = {a e SA\(yfe {M\Be T}) (a(f) = / ) } , (23) 

i.e. the largest subset of SA such that every operation / from any family B of 
T G 22 is self-dual with respect to each permutation a € G0(T). Then 
we obtain a generalization of the well-known fact, proved independently by 
J. R. Senft ([Se70]) and E. Plonka (see [DuP71]), that for an arbitrary general 
algebra A the group of all automorphisms of A is a nomal subgroup of the group 
of all weak automorphisms of A, namely: 

Proposit ion 4 Let A be a set with card(A) > 1 and let G0(T) and G(T) 
be defined by (23) and (12). respectively. Then the sets G0(T) and G(T) are 
subgroups of the group SA of all permutations of the set A, and G0(T) is a 
normal subgroup ofG(T). 

Indeed, it is clear that the sets G0(T) and G(T) are subgroups of SA- Let 
now a E G0(T), r £ G(T) and let / E B ( n ) , where B 6 T. Then we have 
r(f) = 9 € B = f(B), 9(g) = g and 

( ( r - ^ o a o r f ( / ) )(«! , . . . ,xn) = r^(((a o r)~ (f))(r(xx), ... ,r(xn))) = 
= r x ( ( a o T ) ( / ( ( r ^ O - x or)(x1),..., (r l o a x o r)(xn)))) = 
= ( r - 1 o a ) ( ( f ( / ) ) ( ( a - 1 o r ) ( ^ ) , . . . , ( a " 1 o r)(xn))) = 
- ( r " 1 o a)(g((a~i o r ) ( * i ) , . . . , ( a" 1 o r ) ^ ) ) ) = 
= 7" H ^ W J W ^ i l . M ' ^ W ) ) = ((T ^ ^ ( g ) ) ^ ! , . . . , ^ ) -=/(a?i , . . . ,a? n) . 

Therefore r " 1 o O- o r £ G0(T), which completes the proof of our proposition. 
Let A = (_4;F) be an algebra. Take T = {B}, where B is the set of all 

term operation of the algebra A. Then we can get—as an easy corollary from 
Proposition 4—that Aut(A) is a normal subgroup of WAut(A). 
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