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Abstract 

A short description of a convolution product of periodic distributions 
is presented together with its applications to the Dirichlet problem for the 
Laplace equation on the unit disc with distributional data. 
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1 Periodic distributions 

Let V denote the set of all smooth complex 27r-periodic functions defined on 
E. Similarly, the symbol L?,n will be denoted the space of 27r-periodic locally 
square integrable functions on R. Denote by 

(џ>,ф):=^j <p(t)ф(t)dt 

the usual inner product of <D and ip in L\^. Pu t by definition 

k 

tø,V0*:=E(*)(v>Ш'Л (1) 
i=o 
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for <p,ip G V. For every k £ No formula (1) gives an inner product in V. Of 
course, V is not complete with any of them. But we can consider the complection 

i 
Vk of V under the norm || • ||& := (•, - ) | . 7^ is a Hilbert space with respect to 
the norm || • \\k. It is easy to see that 

IMlLg. = IMIo<IMI i< . . .< IMU<. . . (2) 

for ip G V. Vk may be regarded as a subspace of L?2lT ([1]). It is easy to 
check that ip is in Vk if and only if its distributional derivatives Da(p G L\n for 
a = 0 , 1 , . . . fc. From above, it follows that tp has weak derivatives tp^ = D^V, 
a = 0 , 1 , . . . k and (D^-1) is an absolutely continuous function on IR. It may be 
shown that (1) is true for <D,̂ > G Vk, too. 

Theorem 1 A function (p from L\n is in Vk if and only if 

] T ( i / 2 + l)k\cv((p)\2 < oo, cu(tp) := (p,e„), (3) 

where ev := elv^. Moreover, 

iMi^E^2 + 1)fci^^)i2- (4) 

Proof See [2]. D 

Let us equip the vector space V with the family of the norms (2). The dual 
space of V will be denoted by V. If A G V then it will be called a periodic 
distribution. Each periodic distribution will be extended by continuity on some 
space Vk- This extension of A may be regarded as an element of V-k, where 
V-k is the dual space of Vk- A function tp G L\^ is identified with the linear 
form (tp, •). It may be shown that 

V D ...DV-kD ...DV-1DVo-L\7^DV1D ...DVkD ...DV (5) 

(see [1]). 
As an immediate corollary from the Riesz theorem we obtain 

Theorem 2 A linear continuous form A in V-k may be written as follows 

A(¥>) = ( /A,V)* , (6) 

where f\ is a fixed element of Vk and tp runs trough Vk • 

2 Convolution product 

If tp and if) are in L\n then we take 

(tp * I/J)(X) := 2TT(^(X - -),V>). (7) 

Since tp(x - •) is in L\n for each x G E therefore formula (7) is sensible and 
tp*ip eL\n. 
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Theorem 3 For <D. ip G L\^ we have 

cv((p * \l>) = 27rcv((p)cv(^)1 v £ Z. 

Proof See [4, p. 168]. • 

We are now in a position to define a convolution product of a linear form 

AG V-k and (p G Vk. 

Definition 1 If A(-) = ( /A , •)& then the function 

(A*<p)(x):=2n(fA(x--),tp)k (8) 

is called the convolution product of A and (p. 

It is easy to verify using integrating by parts that if A G V-kx and <p G Vk2 

ki,k2 G No, ki < k2, then 

(fk(x~-)><P)ki =(fA(x~'),<P)k2 

provided f\, f\ are different representations of A given by Theorem 2. 

Theorem 4 If A G P_jfe and (p £ Vk then 

cv (A*(p) = 2TTCV (A)CV (tp), (9) 

where cv(A) := A(ev). 

Proof Note that 

k 
k\(tU) „(i)i c,(Л) = Л(e„) = (/A,Є„)fc = ^ l.ШJPЉ 

j=0 ^3' 

-sgC)£rf><«x«-) и '-
=ègC) (- i )J£љ<"<e"'")< и , л 

èèG)(-ч í(-^£љ<<)e" i"'<" 2 - l-o 

= ( l + z, 2 )*c,(/ A ) . 

In accordance with Definition 1 we have 

(A*<p)(x) = 27r(fA(x- -),Jp)k 

= 2nf^(k)((fA(x-^\lp^) 
A—n \J / І=0 

k 

Ei-D'fi)^*^)^)-
i=o V J / 



206 Urszula SZTABA 

Hence, by Theorem 4 we obtain 

b(A*<p) = 2.т£(-l)i(*W/л M Л 
j=0 \JJ 

= 2^(-lvffc)(/^,e,)(^),Єl,) 

= ^ҡcЛUУĄtp) £(-1) ' ' (*) (-iv)j(-iv) 

- 2TT(1 + v2)cv(fA)cv(<f) = 2TTCV(A)CV(<P). 

This finishes the proof. O 

Theorem 5 A linear form A is in V„k, k > 1 if and only if 

Y,pl%<oo (10) 
*-t ("2 + i r 
ve£ 

Proof See [2]. • 
As an immediate consequence of Theorem 3 and Theorem 4 we have the 

following 
Theorem 6 If ip G Vh (fi G Vk, A G P-&. fc,/ G N 0 and I > k then 

(A * </?) * ty = A * ((/? * -0). (11) 

3 The Poisson integral 

In this sequel we shall need the function 

Pr(t) = J2 rWleiu\ 0 < r < 1, t € R (12) 

(see [3]). It is easy to show that Pr(t) = Pr(-t) and Pr(t) G E. 
Let cv G C for z/ G Z and 

l imsup|ev |- < 1. (13) 
|iv|-»oo 

Theorem 7 For every sequence (Cu)V£Z fulfilling (13) the function 

oo °° 
v(x, y) := J^ c»zV + Yl c~»{zY, z^x + iy (14) 

v=0 u=l 
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of real arguments x and y is harmonic in B\(0) = {(x,y) : x2 4- y2 < l } . More
over, the function 

u ( r , t) := ] T cvr^eiv\ 0 < r < 1, t € R 

veZ 

is a polar representation of v. 

Proo f From (13) it follows that the series in (14) are almost uniformly con
vergent on JBI(O). Therefore v is a harmonic function. For z = relt we obtain 

CO CO CO oo 

u(r, t) = 5 3 cvr^eivt + 5 3 c-vr^e~M = 5 3 w " + 5 3 C~»W = "(*, »)• 
iV = 0 i V = l i V = 0 l / = l 

Of course, u(r, •) £ P . This finishes the proof. D 

Theorem 8 For every distribution A € V, Pr * A is a polar representation of 
a harmonic function. Moreover, if A G Vk then 

l i m ^ - ( P r * A ) = A (15) 
r—fl Z7T 

in Vk for every k > 0. but if k < 0 then the (15) holds in the sense of weak 
topology in Vk-

Proo f Let A = Yl1/eZcvev From Theorem 1 and Theorem 5 it follows that 
there exists k G Z such that X ^ Z ^ 2 + -O^l^l2 < °°- Therefore condition (13) 
is fulfilled. According to Theorems 7, 3 and 4 the function 

Pr(t) * A = 2TT Y, cvr
Meiv\ 0 < r < 1, teR (16) 

is the polar representation of the harmonic function given by (14). 
Now, we shall prove (15) for k G N0 . According to (4), we have 

| - ? - ( P r * A) - All2 = 5 3 (1 + ^2) f c |r>lc„ - c„|2 = 5 3 (1 + P2)k\cv\
2(l - rM) 2 . 

II Z7T \\k z—•£ z—' 

Let e > 0 and v0 G N such that 

J2 (l-rv2)h\cv\
2(l-r^)2<e. 

W\>"0 

Put M := maxj^j^^ |ev|(l + v2)k. There exists r0 , 0 < r0 < 1 such that 

(1 - r ^ ) 2 < e for r > r0 and \v\ < v0. Therefore 

| | ^ - ( P r * A ) - A | | 2 < e ( M + 1) 
II Z7T \\k 

for r >r0. This ends the proof of (15) if k > 0. 
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In case when k < —1 we have to show that 

lim J L £ (Pr * A)(t)<p(t)dt = A(» (17) 

for <p £ P|jfc|. Put (p(t) := <p(—t). In accordance with Theorem 6 we have 

/

7T pTC 

(A * Pr)(t)(p(t) dt= (A * Pr)(0 - t)(p(t) dt 
-TC J — TV 

= [(A * Pr) * ^](0) = [(A * Pr) * ^](0) = [A * (Pr * ^)](0) 
= [A * (Pr * <p)](0) = [A * (Fr * ̂ )](0) 

= 2TT(/A(0 - •), Pr'* <p)k = Mh, Pr * V>)k = 2nA(Pr * if). 

It was shown in the first part of this proof that Pr*(p —> 2mp in "P\k\- Therefore, 
by continuity of A we have (17). This finishes the proof. • 
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