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A Graph Method for Markov Models Solving 

JAROSLAV M A R K L 

Abstrac t . In this note a useful tool for Markov models solving is presented. A simple 
method for finding stabilizied probabilities is stated and proved. The method is based 
on graph representations of Markov processes and gives analytical solutions in a non-
algebraic way. 

K e y w o r d s : 

1991 M a t h e m a t i c s Subject Classification: 60J10, 60J27, 68R10 

1. Problem statement 

We only consider stable Markov processes with finite state sets. Recall that Markov 
process is said to be stable if a steady-state distribution (stabilizied probabilities 
of states) exists and does not depend on the initial distribution (the initial prob
abilities of states). 

Let S = {l ,2 , . . . ,n} be the state set. Then the steady-state distribution is 
given by a stochastic vector 

P==(pi,P2,...,Pn)T (1.1) 

which coordinates fulfil the conditions 

0 < p . < l , ieS, (1.2) 

£ > = i. (i-з) 
»=i 

The steady-state distribution is uniquely determined by the transition rates 
matrix Q = (<ftj), i,j £ S (for stable Markov processes with continuous time) 
or by the transition probabilities matrix P = (Pij), i,j € S (for stable Markov 
processes with discrete time). 

The problem under discussion is to find vector p if matrix Q (or matrix P) is 
given. 

Elements of the Markov process theory can be found e.g.in [1]. They include 
the standard solution sketched in Section 2. The nonstandard (graph) solution is 
described in Section 3. 
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2. Standard algebraic solution 

Let us consider the case of continuous time first. The elements of transition rates 
matrix Q fulfil the conditions 

qij > 0, ij e 5, i 7 - j , 

n 

] P qij = 0, ie S. 
i=-

Condition (2.2) can be rewritten as follows 

Qü t'Є 5. 

(2.1) 

(2-2) 

(2.3) 

The steady-state distribution p can be obtained as the solution of the linear 
equations system 

QT.p = 0 (2.4) 

together with the normalization condition (1.3). From (2.2) it follows that the 
system (2.4) is linearly dependent and also that arbitrary one equation can be 
omitted. Let us omit the last equation and replace it by equation (1.3). We get, 
using (2.3), the following system of n linear equations of n unknown quantities p t . 

/ -ЦjŕiЯhj 92,1 

Яi,2 -ЦJЃ2Я2J 

Яl,n-1 

1 
Ç2 f n- l 
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\ Pn / 

r 
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V i / 
Let us denote this system by 

A.p = b. (2.5) 

From the assumed stability of Markov processes it follows that system (2.5) has 
exactly one solution. Consequently, det(A) ^ 0 and the solution of (2.5) is given 
by the formulas 

Pi = det(Ai)/det(A), i € 5, (2.6) 

where Ai is the matrix obtained from matrix A by replacing the z-th column by 
the column-vector b. Notice that (1.3),(2.6) imply 

det(A) = Y^dtt(Ai). (2.7) 
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Thus, det(A) need not be independently computed. 
Let us now consider the case of discrete time (Markov chains). The elements 

of transition probabilities matrix P fulfil the conditions 

0 < p , i < l , i,jes, (2.8) 
n 

5 > o = i, ieS. (2.9) 
j-=1 

Condition (2.9) can be rewritten as follows 
n 

PH = I- Y, po-1 ieS- (2-10) 
i=i,j¥« 

The steady-state distribution given by vector p can be found as the solution of the 
linear equations system 

PT.p = p (2.11) 

completed by the normalization equation (1.3). Due to (2.9), system (2.11) is 
linearly dependent and arbitrary one equation can be omitted. The system (2.11) 
can be rewritten as 

(PT - I).p = 0. (2.12) 

Replacing the last equation of (2.12) with the equation (1.3) we get - using (2.10) 
- a system of n linear equations of n unknown quantities p, which is formally 
quite identical with the system (2.5). The only one difference is that the rates 
qij are replaced by the probabilities p , j . The assumed stability of Markov chain 
guarantees the existence and uniqueness of the solution. 

3. Graph solution 

The non-standard method is based on usual graph representations of Markov pro
cesses. With any stable Markov process we associate a weighted directed graph 
< V,E,f > , where V is a set of vertices, E is a set of edges (a subset of cartesian 
product V x V) and / is a mapping from E into the set of positive real numbers 
(weights of edges). The graph < VQ,EQ,$Q > associated with a Markov process 
v/ith transition rates matrix Q = (qij), i,j € S, is defined as follows: 

VQ = 5 = { l , 2 , . . , n } , 

EQ = {(ij) : ij eSM^j A qij > 0}, 

/g((»ii)) = »i ^^KhJ)eEQ. 

Similarly we define the graph (Vp,Ep,fP) associated with a Markov chain 
with transition probabilities matrix P -= (pij), i,j E S: 

Vp = s={l,2,...,n}, 

Ep = {(i,j): i,j G S A t ^ j A Pij > 0}, 

fp((i,j)) = Pij for all (i, j ) e EP. 
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Notice that the assumed stabilitity of a Markov process implies connectivity of 
its graph representation (otherwise there exist at least two different steady-state 
distributions). 

In what follows we use the graph theory notion of the tree. By a tree we 
always understand a directed (rooted) tree where edges are directed to the root. 
A spanning tree of a given graph is a (directed) tree containing all the vertices. By 
the weight of such a tree we mean the product of weights of all edges belonging to 
the tree. More about basic notions of the graph theory can be found e.g. in [2]. 

The essence of the graph method for Markov models solving (finding vector p 
if matrix Q, resp. P is given) is expressed in the following theorem: 

T h e o r e m . Let G be the graph associated with a stable Markov process (it means 
that G =< VQ,EQ,}Q > or G = < Vp,Ep,fp >). Then the stabilizied probabil
ities of the process are given by formulas 

Pi=Bi/Y,Bh ieS, (3.1) 
i€S 

where Bi (i 6 S) is the sum of weights of all the spanning trees of G which have 
their roots in vertex t. 

PROOF: The assumed stability of the Markov process implies that there exists 
at least one spanning tree of G (namely for every state i £ S with property 
Pi 7-= 0 there is a spanning tree with the root in vertex i). Weights of all edges are 
positive real numbers and therefore the weight of any spanning tree is positive too. 
Consequently, the denominator of (3.1) has a non-zero value and the quantities p, , 
i € S, always exist. From the formulas (3.1) it is also clear that quantities pi fulfil 
the conditions (1.2), (1.3). 

To prove the theorem we have to show that quantities p, given by (3.1) are the 
solutions of the linear equations system (2.5). The fulfilling of the last equation of 
(2.5) follpws immediately from (3.1). It remains to prove validity of the first n — 1 
equations of (2.5). The j - t h equation (j = 1,2,..., n — 1) is of the form 

n n 

( - £ <Zi*)-Pi+ £ <7.rPi=0. (3.2) 
fcs'l, *9-j 1=1, i*j 

Substituting (3.1) into (3.2) we get 

n n 

£ Bi.qij-Bj. £ qjk. (3.3) 
t=1, Mi *=1, Mi 

The left side of (3.3) is a sum of products of the form bi.qij(i E S}i ^ j) where 
bi is the weight of some spanning tree of G having the root in vertex i. Similarly, 
the right side of (3.3) is a sum of products bj.qjk(j ^ k) where bj is the weight 
of some spanning tree of G having the root in vertex j . Recall that any such 6j, 
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resp.bj , is also a product (of weights of all edges that belong to the relevant tree). 
Hence the expressions bi.qij , resp.&j.tfjjb, are elementary addends of the left, resp. 
the right side of (3.3). 

The theorem will be proved if we show that every elementary addend from the 
left side occurs also on the right side and vice versa. With every addend from the 
both sides we can associate a spanning tree with an additional edge from the root 
to another vertex; let us call it a "shorting edge" (it causes a cycle in the graph). 

In Fig.l a diagram corresponding to an expression bi.qij from the left side is 
sketched; (i, j) is the shorting edge. The unique successor of vertex j is denoted by 
k. Notice that the path from vertex k to vertex i can content several vertices and 
edges ((fc,0 € E or k = i being special cases). The graph depicted in Fig.L can 
be interpreted in the way depicted in Fig.2. - as a spanning tree having the root in 
vertex j with the additional shorting edge ( j , fc), i.e. as a graph corresponding to 
some expression bj.qjk from the right side of (3.3). It means that every elementary 
addend from the left side of equation (3.3) occurs also on the right side of this 
equation. 

In a similar way we can prove the inverse. Every elementary addend bj.qjk 
from the right side of (3.3) corresponds to a graph like the one sketched in Fig.2. 
By i we denote the immediate predecessor of the root j that lies on the unique 
branch from vertex k to the root j . The graph depicted on Fig.2. can now be 
interpreted in the sense of Fig.L - as a spanning tree having root in vertex i with 
the shorting edge ( t , i ) , i.e. as a graph corresponding to some expression bi.qij 
from the left side of (3.3). The proof of the theorem is completed. D 

The just proved theorem has a simple natural meaning: the steady-state (sta-
bilizied) probabilities are proportional to overall transitions rates (measured by 
the quantities J?,-) directed to the corresponding states: 

P\ : Pi : • • • : Pn = B\ : B2 : ... : Bn. 

4. Examples 

Let us give some simple examples to illustrate the graph method. 
E x a m p l e 1. For the Markov process represented by the diagram in Fig.3. it 
holds 

Bi = aia2 ... ai-.tbi+ibi+2 ...bn 

for every state i € S = { 1 , 2 , . . . , n } . For every vertex there exists only one 
spanning tree with root in that vertex. In the special case, when a,- = a, 6,- = 6 
for every i € 5 , we get Bi = a,'"16n"~, and hence we obtain for the stabilizied 
probabilities 

n 

Pi = (ai-lbn-i)/J2(a'~1bn-i), i € 5. 
i=i 
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Example 2. For Markov chain defined by the graph depicted in Fig.4. it holds 

B\ =P32-P21 +P31-P21 +P23-P31 

B2 =Pl3-P32 +P12-P32 +P31-P12 

# 3 =P21-Pl3 +P23-P13 +P12-P23 

For every vertex there exist exactly three different spanning trees that have root 
in that vertex. The stabilized probabilities of states are: 

Pi;= Bi/(Bi + B 2 + B3), t = 1,2,3. 

Example 3 . Consider the Markov process presented by the graph diagram in 
Fig.5. The solution is as follows: 

Bi = b.d.h.g + b.d.h.f = b.d.h.(g + / ) 

B2 = a.d.h.g + a.d.h.f = a.d.h.(g + / ) 

B3 = a.c.h.g + a.c.h.f + a.e.g.h = a.h.(c.g + c.f + e.g) 

B4 = a.d.e.h 

H5 = a.d.e.g 

There are two spanning trees for every vertex 1 and 2, three spanning trees for ver
tex 3 and one spanning tree for every vertex 4 and 5. The steady-state probabilities 
are: 

Pi = Bi/(BX + B2 + ... + B5)y i = 1,2,..., 5. 

The solutions of all three examples can be read directly from the graph dia
grams. For more complex Markov processes (with many states and many possible 
transitions between them) it is not so easy to find all spanning trees by only view
ing the diagrams. There is a serious danger that some of spanning trees will be 
omitted. In this case, we must use an algorithm, that systematically generates all 
spanning trees for given finite graph and given vertex of it (formulation and proof 
of such an algorithm is behind the scope of this paper). 

Finally, let us note that an analytic solution, independently of whether it was 
obtained by the standard method or by the graph method, is valuable only if it 
is not too complex. Only in this case the solution can be effectively analyzed 
by mathematical tools. Otherwise we have to content ourselves with numerical 
solutions and to use simulations techniques for analysis. 

5. Conclusion 

In this note an original graph method for Markov models solving was presented. 
Most of Markov models widely used in reliability theory, renewal theory, queue 
theory and many other related theories can be solved by this method much more 
easily and quickly than by the standard algebraical methods. 
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