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KYBERNETIKA ČÍSLO 6, ROČNÍK 5/1969 

The Convergence of a Committee Solution 
of the Pattern Recognition Problem 

SVATOPLUK BLAHA 

The paper deals with the problem of the convergence of the error-correction training procedures 
with a correction increment for the committee solution of pattern recognition problem. The 
training procedure converges, if the angles between solution vectors and weight vectors are 
reduced at every step of training process. It has been proved that the described type of training 
procedures cannot secure the convergence to the solution of the problem. Only stochastic training 
can be succesful. 

1. INTRODUCTION 

A basic pattern recognition problem is the assignement of each of the given set 
of patterns to one of two disjunct subsets. If no limiting conditions are put on the 
decomposition of pattern in the space, then this problem cannot be generally solved 
by using single threshold logic unit. The two-layer parallel network of the threshold 
logic units - the committee machine — working as piecewise linear system has 
more chance to be successful [1]. The proof that the solution of this problem exists 
have been published in [2]. Many experiments were made with committee machine 
with different training procedures. They were published for instants in [1]. The 
purpose of this paper will be the solution of the convergence problem of training 
methods for committee machine. 

This paper is the continuation of paper [3] and there is very useful for the reader 
to get acquainted with it. Many notations and mathematical derivations in this 
paper are the same as in [3] and it is not suitable to repeat them with the exception 
of the most important of them. 

Let us assume, that there exist two disjunct subsets <Wt and ®/2 of t n e patterns 
and its union 

(1.1) <y = <&l\j<&2 



is the training set. Each pattern is represented by a D-dimensional vector Yk (k —• 475 
= 1,2,...) and one of its components is identically equal to + 1 (threshold input) 
[1, ch. 4.2]. It means that the patterns lie in the (D — l)-dimensional hyperplane 
which is at distance 1 from the origin. The committee machine consists in the first 
layer of the odd number — P — of threshold logic units. Each unit is represented 
by a D-dimensional vector W(,) (i = 1, 2 , . . . , P), the components of which are the: 
weights of distinct inputs. The decision fayperplanes, all passing through the origin: 
and normal to the vector W(l) separate correctly the patterns of both subsets in a 
part of the hyperplane. The boundary between subsets is put together from parts of 
decision hyperplanes so that every pattern is put on the correct side of the majority 
of the decision hyperplanes. The patterns are classified by the signum of a dot pro
duct Yk . W(i). (For the linear separable subsets <Wt and <W2 is the dot product Y% . W( i) 

positive for all patterns belonging into <Wl and negative for others). Such a dichotomy 
problem can be solved using the single threshold logic unit [1,3]. 

For economy of description the following adjustment of the training set <% will 
be used. 

Let us denote the adjusted pattern vectors by the symbol Yk; then 

Y^ = YI if y ° e % , 

** = - n if Y°keW2. 

The advantage of this adjustment is the fact that the patterns of both classes will be 
correctly classified, if the scalar product Y'k. W^° is positive. The training procedure 
can be defined only by one equation e.g., (2.1) or (3.1). More details can be found 
in [ l , Ch. 5.2] or in [3, Ch. 1]. The cases when the patterns are correctly classified 
will be eliminated for the simplification of the notation; only the reduced training 
sequence of the pattern vectors and the weight vectors will be considered [1,3]. The 
members of the adjusted and reduced training sequence will be denoted Yk and the 
members of the reduced weight sequence will be denoted Wk\ 

The convergence conditions for the training procedure depend in the reciprocal 
positions of the solution vector W^°, the weight vector Wt

(,) and the pattern vector 
Yk. These reciprocal positions will be described by the angles between the vectors. 
Let us denote for the fc-th step 

(1.2) ^rW ( i ) , W(i> = to ( i ) , 

^w(i), n = ^ \ 

<w ( i ) , Yk = ep. 

The training procedure converges to the solution of the problem if the limits of 
the sequences of the angles between solution vectors W%1) and the weight vectors 



Wf'are: 

(1.3) limcoii) = 0, i = 1, 2, ..., P , 
fc-00 

where index fc denotes fc-th step of training process. It is supposed, of course, that 
any two or more weight vectors do not converge to the same solution vector. The 
training process can be represented at each step by the points in angle-space. 

The values of angles a>k, rjk and £k are delimitated and the limits are derived from 
the geometrical positions of the vector in the space [3]: 

(1.4) a>i» - 4° < W , 

& £ a? + I? for 4 0 + ^ ; ) < . K , 

| [° < 2K - o4° - 4° for ©i0 + tii° > K . 

As the cases when the patterns are correctly classified are eliminated, it means that 
only such situations will be considered when 

(1.5) hK < tf> < K . 

The values of angles a>k
l) are evidently 

(1.6) 0 < c4° < K . 

The values of angles rt^ can be 

(1.7) 0 < r/<° < \K 

if the training set is linearly separable and 

(1.8) 0 < ifi° < 7t. 

in general case. From the relation (1.5) follows 

(1.9) \% < co[l) + n^ < IK . 

The region of the permissible angles a>, rj and a>, 17, £ are illustrated on Fig. 3.1 and 
Fig. 3.2. 

2. THE CONVERGENCE CONDITIONS FOR SINGLE THRESHOLD UNIT 

Let us assume, that for the correction of the weight vector will be used the rule 

(2A) Wk+1 = Wk + ckYk, fc-.l,2,..., 

where the correction increment ck is the positive constant. If the classifying problem 
can be solved by the single threshold unit, than for the values of angle r\k the in-



equation (1.7) is valid (regions s4x, ..., sf4 in Fig. 3.1). The convergence conditions 477 
for error-correction training procedures have been discussed in detail in [3]. The 
result has been following: 

1. The representing point must be approaching the point 

S.(?j = i n ; a; = 0) . 

2. In the neighbourhood of the point Sx it is necessary that the correction incre

ment is sufficiently small. The training procedures converge with this condition in 

the regions s/l, s/2, ^3 and in the part of region s/4 where the inequality is valid 

(2.2) |cos Ц < COSt?Ł 

ІCOS fflj 

In the remaining part of the region stf4 the training procedures converge only if ck 

is sufficiently great. This condition cannot always be fulfilled. The area 

/~ ~\ 1 1- 1 cos nk 

(2.3) |cos Sk\ = -i-
|cos cok\ 

is on Fig. 3.2 illustrated by the dash lines and there is supposed at first, that the coup
les of vectors W£° and W[l) are known for all i = 1, 2, . . . , P. 

3. THE CONVERGENCE CONDITIONS FOR COMMITTEE MACHINE 

Let us assume, the committee machine has in the first layer P threshold logic 
units and this number is sufficient for solution of the problem. Each threshold logic 
unit is characterized by the weight vector W£°, i = 1, 2, ..., P, k = 1, 2 , . . . If the 
pattern Yk is uncorrectly classified, then is necessary to change the minimum number 
of weight vectors Wj° to obtain the correct result. The vectors choosen to be changed 
in certain step k can be selected from the set of uncorrectly classifying vectors in 
different ways: the magnitude of the weight vectors, the value of the scalar product 
W£°. Yk, the angle £k

i} etc. can each be used. The kinds of selection have an influence 
upon the convergence of the training process. These methods will be not discused 
in this paper. 

The changes of weight vectors are given by the equations 

(3A) w<?1 = w f + 4'-%, 

where 4 ° a r e positive constants which must be determined. The necessary and the 
sufficient conditions for the relation (1.3) to be true for arbitrary initial weight 
vectors and any sequence of pattern vectors are 

(3.2) c4 i j1^f f l [ ° , 1-1,2,.. . ,? 



Fig. 3.1. o 

Fig. 3.2. 



and the equality is valid, when the vector was not corrected. The problem, if this 
necessary condition can be always satisfied, will be solved in the bellow. The con
vergence of the training procedure must be considered in the regions which are 
illustrated in Fig. 3.L The convergence condition in regions s/u ..., sf4 have been 
discused in detail in [3]. The similar way can be used for regions s/5, ..., s/s too. 
The functions cos2 cok can be substituted for cok in (3.2). The inequations 

(3.3) 
w(i)||w(í 

WU) 

W<0| | i y ( 0 

" * " * + i 

is equivalent to the inequation (3.2) if 0 < coU) < \%. The relation (3.3) is valid 
conversely if T̂T < coU) < n. We shall obtain the different results for distinct regions 
s/5, ..., sf8. To make the point clear they are given in table (3.4): 

(3.4) 

0 < COk < -§71 
(cos tj < 0, 
cos co > 0) 

^7C < COk 5 Í TC 

(COS TI < 0, 
COS co < 0) 

cos2 cok — COS2 Г}k > 0 

c t < '. . ' Aul 

Шл<ï 

cos2 cok - cos2 цk < 0 

?lw( i )l 

ш 

ct<
2Шл« 

where 

(3.5) ( í ) _ cos coU) (cos цU) + |cos Č,U)\ cos COU)) 

cos2 co^ — cos2 ц(

k

l) 

The training procedures can converge, if the inequations (3.4) are fulfilled for the 

positive ck. In the region s/5 is cos rfk

l) < 0, cos coU) > 0 and the denominator of 

Ai° is positive. It is necessary for the numerator of AU) to be positive, too: 

(3.6) cos cou\~ |cos f7[°| + |cos S,k

l)\ cos cok

l)) > 0 . 

To fulfil it, it is necessary that 

(3-7) |cos <_°| > |CQS m 
cos co 

(01 

,(») 



The inequations (3.7) and (1.4) define the subregion in stfs, where the training pro
cedures based on the equation (3.1) converge: 

(3.8) arccos l ^ i # l < -JO < ,(«) + ffl(0 f o r ,.(0 + „(.) < „ , 
COS 0)], 

arccos l C 0 S ?-|L < {<» < 2n - -.<*> - cy<° for -.<" + co[l) > n . 
cos a>[} 

The correction increment must be sufficiently small. 

In the remaining part of st5 the numerator of A[l) is negative, i.e. A[l) is negative 
too and the training procedures can converge to the solution of problem for c[l) < 0 
only, but it conflicts with the supposition that c[l) is always positive. 

In the region srf6 the denominator of A[l> is negative, because it is evidently 

(3.9) cos o)[° < |cos r\[l)\ . 

It means that |cos ?y(

c'
)[/cos co1^ > 1 and 

i n.i 

(3.10) |cos $? 
cos Щk 

(0 

for all r][l) and co[l) in stf6. The numerator of A[l) is negative and A[l) positive. By the 

(3.4) the value of correction increment c[l) must be sufficiently great. 

The convergence condition (3.3) in si6, which means that 

(3.11) 

is valid until 

(3-12) 

The convergence condition (3.11) should be fulfilled for small changes of the 
weight vector W[l), because for such changes the Eq. (3.12) will be satisfied. But 
the convergence conditions (3.4) in the region stf6 is fulfilled only for 

(3.13) a)£+1 + co[l) > % 

and it means, that co[llx > co[l), because in the region si'6 is co[l) < %n. The con
clusion is, that the convergence condition (3.2) cannot be fulfilled in the region stf 6 

for positive value of correction increment c[l). 

In the region s^1 is cos co[l) < 0, cos r\[l) < 0 and |cos to[l>\ < |cos r)[l)\ so that 
the denominator of the A[l> is negative for all t][l) and co[l) from stf7. The numerator 
of A[l) is evidently positive. The value of A[l) is negative inside the whole region s/7. 
By the (3.4) the correction increment would have to be negative for the convergence 



condition to be fulfilled. In region s^1 the training procedures of this type cannot 
converge. 

In the region stf8 is |cos co(
k
l)\ > |cos rjk

l)\, it means that the denominator of the 
A(

k
l) is positive. The numerator of A(

k
l) is always positive similarly as in the region 

S^T The value of the A(
k
l) is positive, so that the correction increment ck

l) must be 
positive and sufficiently great. 

The solution of the problem is on the abscissa S,S2, (co — 0; in g t] < n; £, = ^n) 
(Fig. 3.1). In the neighbourhood of point St the training procedures converge if the 
correction increment is sufficiently small. Evidently it is impossible to fulfil the 
different conditions in individual regions stfs, ..., srf8, because we do not know, in 
which of these regions the representative point is in a certain step. 

After correction the representative point moves along the axis a in Fig. 3.1. This 
point moves to the left if the convergence condition of the proper region is ful
filled. This case is the convergent step. The point moves to the right in the opposite 
case. The convergence of the training methods can be secured in the regions s4 u 

s42, stf3 and in the parts of the regions stf4 and stf5, if the correction increment is 
sufficiently small. On the contrary the representative point will move to the right 
(the angle co(l) will increase — the divergent step) if it lies in the remaining part of 
the region s/, because the correction increment must not be negative. 

The representative point moves also after input of the new pattern vector and it 
moves in this case along the axis rj. The point can pass from a region, where the 
training methods do not converge, into a region where they do and vice versa. 

It is necessary to consider that the pairs of vectors W^, Wk
l) (i = 1, 2, ..., P) are 

not fixed. P different representative points correspond to every corrected weight 
vector W(

k
l); each representative point is determined by three angles between vectors 

Yk, W
(
k°, W^ (i = 1, 2, ..., P). These points lie in different regions s£ 1% ..., s/8; 

it means that convergence conditions can be satisfied for one or several or all repre
sentative points, or for none. Considering a particular step, a single weight vector 
Wfc!) can converge to a selection of solution vectors W^ when the convergence 
conditions are satisfied for their representative points. The weight vector W[l) di
verges with regard to all others solution vectors. The distinct weight vectors con
verge usually to the different solution vectors during the training process. 

It is evident that the training process necessarily consists of the convergent and the 
divergent steps. The training process will converge, if the effect of the convergent 
steps predominates over the effect of the divergent steps. It is evident, that this ratio 
depends on the training sequence of the patterns and on the random positions of 
initial weight vectors Wj° (i = 1, 2, ..., P). A training sequence can be also considered 
as a random or quasirandom sequence. 

The convergence of the training method is influenced also by the rule for selection 
of weight vectors which shall be corrected. This influence can be shown in a simple 
example without specification of the rule. Let us assume, that all weight vectors of 
the committee machine with the exception of one of them correspond to the solution 



482 vectors: 

Wjp = W^ ; 7 = 1, 2 , . . . , 2r; 2r + 1 = P . 

(Half of the number of these vectors WlJ) (j = 1, 2, ..., r) classify pattern Yk correctly 
and the other half (j = r + 1, . . . , 2r) do not. So the position of the remaining 
weight vector WlP> is decisive for the classification and it is necessary to change 
just this vector, to obtain the solution of the problem. But also any of the weight 
vector W^ (j = r + 1, ..., 2r) uncorrectly classifying the pattern Yk can be selected 
for the correction. Such a step of the training method is evidently divergent. The 
selection depends on positions of weight vectors and the pattern vector in the space. 
It can be considered as a random process regardless of which rule is used. 

The sequence of the angles {co{l)} converges to a limit, if and only if an index exists 
for any small positive number e, such that for every ku k2 > k0 is Icoĵ  — cok

l)\ < s. 
It is clear that the part of a training sequence {Yk} beginning from an arbitrary k can 
be such, that the condition mentioned above is not satisfied. The conclusion is that: 
it is not possible to secure the necessary condition for the training procedure of type 
(3.1) to be convergent for any sequence of pattern vectors Yk and any initial weight 
vectors W[i}. 

The solution of the recognition problem can be reached, by luck, as well as by the 
convergent algorithmus, though the latter is improbable. 

4. THE RANDOM SOLUTION 

In the previous chapter it has been shown that it is necessary to consider changes 
in the weight vectors as random changes. Let us investigate the possibility of acquiring 
a solution for this model. 

The accuracy of measurement and adjustement of weight vectors is limited in 
every practical case. It means that for every weight vector only a finite number of 
different positions exist. It means that the angle space can be divided only into a 
finite number of small cJ-regions, determined by the small space-angle 5. The solution 
of the problem is reached, if all the weight vectors are identical with the solution 
vectors; it is only valid for the case when a single solution of the problem exists. Two 
vectors are identical (in this supposition) if they lie in the same <5-region. 

There exist different probabilities for the transition of each weight vector from its 
position to another one. The probabilities depend only on the old and the new 
positions. Such a process is the Markowian process. Let us find, what is the proba
bility that all weight vectors fall simultaneously into solution regions. If we suppose 
that the number of changes is unbounded then it is evident that 

(4.1) l imp (Vy ( i ) e? r ( i ) ; i - 1, 2 , . . . , P) = 1 , 
Jt-00 

where #" ( , ) are the solution regions around the vectors W^. 

(Received January 15th, 1969.) 
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Konvergence většinového řešení rozpoznávání obrazů 

SVATOPLUK BLÁHA 

Základní problém rozpoznávání obrazů, tj. třídění prvků dvou daných disjunkt
ních množin může být vždy řešen učícím se strojem sestaveným z lichého počtu 
paralelně spojených lineárních prahových jednotek v první vrstvě a jednou majo
ritní logickou jednotkou v druhé vrstvě (committee machine). Je znám důkaz existen
ce řešení a byly experimentálně ověřeny i trenovací algoritmy pro takový stroj. 
Článek je věnován konvergenci trenovacích metod s korekčním inkrementem. 
Konvergence trenovací metody znamená, že se zmenšuje úhel mezi vektory řešení 
a příslušnými váhovými vektory. Ukázalo se, že žádná z popsaných trenovacích 
metod nezaručuje konvergenci k řešení problému. Řešení problému je dosaženo na 
základě zřejmé skutečnosti, že při neomezeném počtu pokusů a při konečném počtu 
možností nastane žádoucí situace s pravděpodobností rovnou jedné. 

Ing. Svatopluk Bláha CSc, Ústav teorie informace a automatizace ČSAV, Vyšehradská 49, 
Praha 2. 
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