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PREFACE 

Many interesting and important tasks of artificial intelligence can be solved 
converting or reducing them appropriately either to searching problems, when an 
element of a desired property is to be found in a large set, or to sorting problems, 
when the set in question is to be endowed by a structure. As a rule, time and space 
complexity or other demands connected with the resulting searching or sorting 
problem(s) ultimately influence the total time, space or otherwise quantified com
plexity of the program as a whole, in which searching or sorting occur as subprograms, 
and very often are decisive for applicability of the main program. The main attention, 
from the theoretical and practical viewpoint as well, is focused to the cases when 
a blind systematic exhaustive searching or sorting "by force" is intractable either 
theoretically (the universe of discourse is infinite) or practically (this universe being 
finite but too large). 

Under realistic restrictions concerning the abilities of the testing and sorting 
devices (oracles) being at hand and without a more detailed knowledge concerning 
the basic set (universe of discourse) in question, the nature of its elements or its 
possible a priori structuralization, the time complexity of searching and sorting 
algorithms may increase rather rapidly with the cardinality of the basic set increasing. 

The time, space or other demands connected with searching and sorting algorithms 
can be reduced either by a sophisticated use of specific features of particular searching 
or sorting problems, or using some general principles as randomization or paralleliza-
tion. Our effort, in what follows, will be oriented just in this latter direction. Namely, 
our attention will be focused to an appropriate combination of both the principles 
in order to obtain parallel probabilistic algorithms for certain searching and sorting 
problems, with sufficient statistical qualities, and working under realistic conditions 
and within reasonable time limitations. 

It is not the aim of this case study to survey exhaustively everything what has been 
done, or at least what the author knows to have been done, in the domain in question 
in general till now. Rather, we would like to present systematically author's own 
results in this direction, and to offer an introductory study into the domain of parallel 
probabilistic algorithms. For these sakes, as well as in order to make the text self-
explanatory, a rather elementary and detailed formalization of classical as well as 
non-classical kinds of algorithms is presented in Chapters 2 and 3. The argumenta
tions and reasoning of probabilistic nature are mostly the very elementary combina
torial ones, some exceptions being covered by references of textbooks or monograph-
ies on probability theory. Mathematical models, statements and conditions under 
which they hold are always presented at the level of formalization common in math
ematical texts, proofs are introduced only supposing they have not been published 
yet (e.g., the results in Chapters 5 and 6), being replaced by references otherwise. 



Keeping in mind the sequential way of publication of this study, references are 
presented immediately after each chapter to made its use more convenient for the 
reader. Besides the items namely quoted in the text, references introduce some text
books and monographies, most of them of undergraduate level, which can serve 
as sources for preliminary knowledge from mathematical logic, theory of recursive 
functions and probability theory. The list of these textbooks and monographies 
is far from being exhaustive and most of its items may be successfully replaced by 
other ones, perhaps more easily accessible in a particular reader's position. However, 
when forming the list of references, the accessibility of particular titles served as the 
main choosing criterion; it is also why Czech and Russian translations are introduced 
supposing their existence is known to the author. Finally, the supplementary list 
of references contains some items which stand in relatively close connections to the 
investigated problems and which may serve either for an interesting and useful 
confrontation or as an inspiration for further development. This supplementary list of 
references will close the last chapter. 

The author hopes this study to be of certain use for specialists in artificial intelli
gence, applied theory of algorithms and statistical decision making. 

Prague, June 1988 
Ivan Kramosil 
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1. INTRODUCTION 

Instead of beginning this study with some vague, proclamative and rather philo
sophical statements concerning the parallel probabilistic algorithms we shall introduce 
them, in this chapter, from the point of view of their possible applications in the so 
called knowledge systems. Both these notions, "parallel probabilistic algorithms" 
and "knowledge systems", have rather a lot in common. Or, both of them denote 
very young domains of applied science under a very rapid development in our days, 
both of them are very frequented in contemporary science as well as in many con
siderations of various provenience and degree of seriousness and, finally, there is a 
certain shadow of fashionness and sensationalism in both these notions. All this makes 
justifiable our assumption that the reader has already met both the notions in question, 
on the other hand, it is not possible to avoid the case that the context of this meeting 
has not supported too much the reader's serious and moderate image about both 
the domains. Hence, let us use this introductory chapter in order to limit, more 
correctly, the field of our interests in this study keeping in mind, of course, that 
a higher-level preciseness can be given only after having introduced the most necessary 
formal apparatus (in the next two chapters). At the very beginning, let us describe, 
in more details, both the notions introduced above. 

The term "knowledge systems" is often understood as synonymous with that 
of "expert systems", but we do not consider this identification as happy or even 
appropriate, at least in our context. It is caused by the fact that the notion "expert 
systems" seem to be too charged with the idea that the pieces of knowledge contained 
in and handled by the system are exclusively the expressions of subjective and rather 
vague knowledge of human beings-experts, if not taking into account some more 
anthropomorphic imaginations resulting from this idea. 

In the most general form to which we shall always refer in this work, knowledge 
system consists of two parts: of a collection of basic or outcoming pieces of knowledge 
or data (databases), and of a deductive or, more generally, inference mechanism or 
inference machine, which enables to deduce knowledge from the given database. 
In a non-trivial case, of course, also other pieces of knowledge than those explicitly 
put in the database can be obtained. The ways in which the pieces of knowledge are 
inscribed in the database can be rather various: assertions or statements within the 
framework of a natural, but also formalized language, tables of function values, 
graphs (including the well-known semantic nets), or even other objects or structures. 
An integral part of databases are data charged with an uncertainty or vagueness and 
also the ways in which this uncertainty may be expressed are very different: verbal 
expressions like "maybe", "perhaps", "probably", "we cannot avoid that...", etc., 
operators of appropriate modal logics, evaluations of degree with which an assertion 
holds or of degree of belief of a subject that the assertion holds, where the degrees 
can be of numerical, as it is the most common case, but also of non-numerical 
nature, and so on. Vagueness of an assertion, to distinguish it from the uncertainty* 



corresponds rather to certain ambivalence of the used terms which results in a plura
lity of possible semantical interpretation of knowledge contained in the database. 

Also the inference machines can be very different, either from the viewpoint of 
their nature, or when considering the degree of their inference abilities. The most 
simple inference method consists in the verification, whether an assertion, put on 
the input of the system as a question, can be found in the database. If it is the case, 
the answer to the question is affirmative (positive), the answer being negative other
wise. Let us neglect, for an instant, the evident fact that when the database is very 
large or its elements are hard to access, even this "inference machine" is far from 
being simple. The reader familiar with the foundations of the PROLOG programming 
language immediately notes, that the deduction power of this language reduces just 
to this exhaustive searching mechanism supposing that the database does not 
contain any formula with a free indeterminate. By the way, in its full powers it is just 
the PROLOG language which can be seen as a good example of a non-trivial, but 
theoretically as well as practically effective and realizable inference machine. As 
another extremal example of such a machine we may take, in case the data are written 
as well-formed formulas of first or higher-order predicate logic, the full deductive 
apparatus of the logic in question with all consequences concerning the undecida-
bility and incompleteness of those calculi. 

Let us remark, that all the inference machines mentioned till now deal exclusively 
with the so called "certain information", i.e. all the pieces of knowledge put into 
the database are taken as unambiguous and surely valid ones and only those new 
data are derived from the given ones, which follows with logical necessity. However, 
a very topical problem of contemporary theoretical and applicational research effort 
in the domain of knowledge systems is that of deducing some knowledge from 
uncertain premises, namely how to derive the (numerical or non-numerical) degree 
of validity or degree of belief for the deduced assertion or answer on the ground 
of the degrees of belief or validity ascribed to the premises used during the deduction. 
The so called extensional inference machines try to deduce the degree of validity, 
of the resulting answer or statement using only the degrees of validity of premises 
and a universal (in the framework of the knowledge system in question) computa
tional or combinational rule working over the degrees of validity ascribed to the 
premises. The resulting relatively rather low computational complexity of extensional 
inference mechanisms is the most often introduced argument in favour of such 
systems. On the other hand, the extensionality of an inference machine is hardly 
compatible with the possibility to interprete the degrees of validity or belief as 
probabilities. Such an interpretation is possible only under some very strong and 
hard to defend assumptions concerning the statistical dependence of the observed 
events and measured quantities taken as random events and random variables. Hence, 
it is almost natural that among the intensional (i.e. non-extensional) inference 
mechanisms just the systems consequently based on the probabilistic models and 
approaches have already reached the stage of full theoretical foundations and 



following experimental verification. The basic assumption of probabilistic inference 
machines can be expressed in such a way that the simultaneous probability distribu
tion is the only and completely exhaustive description of all the relations among the 
variables which the pieces of knowledge in the database describe. The degrees of 
validity (weights) of the assertions posed as questions to the system, or which are 
output by the system as its answers, are then reduced to the values of corresponding 
conditional probabilities. From the point of view of practical calculation the problem 
is, of course, very far from being trivial and its practical solvability requests some 
compromises, namely when replacing the simultaneous distribution in question by 
its appropriate and theoretically justified approximation or simplification. 

In the connections with the sakes and intentions of this study, however, it will be 
interesting to analyze the inference machines still from another point of view. The 
greatest part of those machines or mechanisms consist, in fact, in the application 
of a computational rule or formula to appropriate arguments. Once these arguments 
having been known, given or found, the application of the rule or the computation 
itself is usually relatively simple and not too much time, space or other expenses 
consumpting. On the other hand, the justification that just the rule or computational 
formula in question are the proper, adequate or reasonable ones may request a great 
portion of theoretical effort and large and complicated theoretical constructions. 
The problem consists in the fact that the arguments must be looked for in very large 
sets or collections, containing a very small portion of "appropriate" ones, if any. 
As a rule, moreover, the set of potential candidates is not structured in a way enabling 
to simplify substantially the seeking for "appropriate" arguments, hence, nothing 
better than the blind exhaustive searching can be recommended, at least within the 
framework of classical deterministic and sequential algorithms (cf. Chapters 2 and 
3 below). As a classical example let us consider the well-known modus ponens 
deduction rule, if A and A -> B ("A implies J5", " i f - t hen B") hold, the the formula B 
holds as well. Having already given or found the formulas A and A -> B, it is not difficult 
to verify that the later formula has the form of implication, that the antecedent 
of the latter formula (A -> B) is identical with the former one (A), if considering 
formulas as finite sequences of elementary symbols (letters), finally, to "cut" (hence, 
"cut rule" in English for modus ponens) the consequent B of the latter formula and 
to joint it with the set of formulas already known to be valid. Another problem is 
crucial: having been given a formula B a s a hypothesis, which is to be verified, or as 
a question which is to be answered by the knowledge system, how to find within the 
set of formulas having been already verified or proved, such a formula A that the 
formula A -> B is also within this set (or how to prove that such an A does not 
exist). When the investigated set is very large and when no rule exists or is known 
which could help as a hint or heuristic during the searching process (and this is 
typical for the modus ponens rule), the searching problem is very difficult. If the 
extent of the checked set quickly (say, exponentially) increases with the size or com
plexity of the original task, the exhaustive searching is practically intractable. 



A similar situation occurs when considering the well-known resolution principle 
for automated theorem proving: two clauses (Aly A2y..., An9 C) and (Bl9 B2J ..., Bm, 
"1C) where 1 C stands for "negation of C", are to be replaced by single clause (Al9 ... 
..., An9 Bi9 ..., Bm), and it is very simple supposing the two former clauses are given 
or known. What makes troubles is to find two clauses of this form in a large set of the 
already proved clauses (in the case of the propositional calculus). Still more difficult 
problem is that of finding two clauses together with a substitution for free indetermin-
ates of these clauses which converts them into formulas to which the resolution rule 
can be already applied (in the case of predicate calculus). Last but not least, the 
problem to find a substitution for indeterminates occurring in formulas of PROLOG 
language enabling to match the resulting formula with one already being in the data
base, belongs also to this class of tasks. The last two examples, i.e. resolution principle 
and PROLOG, are interesting and important also because of the fact that they 
demonstrate the possibilities as well as the limits of possibilities of practical computer 
implementation of tasks leading to searching problems in large databases. 

Now, we may already close the first part of this introductory explanation, having 
already created a sufficient background to turn our attention back to the notion of 
parallel probabilistic algorithms. On an informal level, parallel algorithms can be 
described as computational programs, during the implementation of which two or 
more computations run simultaneously and independently, hence on two or more 
computational devices, with the further processing of the particular results by 
another computational device-processor. The most simple and notorically knowr 
attempt in the direction of parallelization is the bracketing of arithmetical expressions; 
the expressions within mutually disjoint pairs of brackets can be evaluated indepen
dently, hence, simultaneously, in parallel. What matters for the next computation 
are just the resulting values evaluated inside particular pairs of brackets. Consider 
an example the triviality of which may seem perhaps too exaggerated. When evaluat
ing the expression (5 + 4) x (3 + 6), the task to compute 5 + 4 may be delivered 
to one processor; another one simultaneously computing 3 + 6, consecutively 
realizing the final multiplication. Evidently, in a trivial case like this one the loss, 
following from the necessity to divide the computation among the two processors 
and then to cummulate their results, significantly exceeds the savings reached due 
to parallelism. However, taking into consideration a computation consisting in the 
multiplication of numerical values of two or more define integrals of some hardly 
integrable functions, the savings of time reached by a parallel evaluation of particular 
definite integrals on particular processors will become very evident and remarkable. 

In the context of our explanation on knowledge systems and keeping in mind the 
above mentioned separation of the work of inference machine into its "searching" 
and "computational" parts, the parallelization can be immediately seen to be a very 
hopeful tool in order to make the work of inference machine substantially more 
rapid and effective. The testing, whether some elements of the basic space under 
investigation are "appropriate" arguments of the used decision or deduction rule 
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or function, in the positive case followed by the computation, deduction or decision 
making in question, all this can be performed independently, hence, simultaneously 
for different candidates from the universe of discourse. The limits of this paralleliza-
tion are given by the extent of this basic universe (theoretically), by the expenses con
nected with the obtaining of the processors, and by the time or other demands 
connected with the necessity to ensure the necessary synchronization of their work 
together with an inspection and cummulation of their results (practical limitations). 
Some of these problems will be dealt with in the next chapters. So we may already 
specify the subject of this study by saying that our interest will be focused to parallel 
algorithms for searching tasks resulting as subtasks during the implementation 
of inference machines in knowledge systems. The most simple kinds of such algorithms 
will be investigated in Chapter 4. Chapter 5 deals with their modifications in the 
case of testing oracles with limited reliability and with generalized loss functions. 

When considering some problems solved by knowledge systems, it may be of 
great importance not only to find appropriate (in a sense) elements in a large set of 
potential candidates, but also to know the (relative) frequency of these appropriate 
elements in this set. Also this problem can be solved in parallel, and we shall investigate 
the degree of soundness of such a parallelization in Chapter 6. 

Parallel algorithms can also serve as a tool to introduce a structure in large sets, 
according to certain criteria, with the aim to make easier their further searching or 
investigating. In Chapter 7 we shall deal in more details with algorithms introducing 
a linear ordering in a set with respect to decreasing or increasing values of a numerical 
or ordinal criterion the values of which are ascribed to the elements of the set in 
question. Finally, Chapter 8 deals with parallel probabilistic searching algorithm 
with a certain degree of co-operation among their processors; this co-operation is 
supposed to be of stochastic nature. To make this survey of the contents complete 
let us turn back to Chapters 2 and 3. They introduce an appropriate formal apparatus 
to describe and to handle the notion of algorithm or effective computational procedure 
in the classical deterministic sense (Chapter 2), as well as their non-deterministic 
and, namely, probabilistic variants (Chapter 3). 

In order to specify, once more, the subject of our interests, let us say that we shall 
consider only parallel algorithms of probabilistic nature. Probabilistic algorithm 
can be understood as the usual algorithm with an additional argument (Input, 
parameter), which is obtained as the result of a random sample made from an ap
propriately chosen sampling space and according to an appropriate probability 
distribution defined over this space (cf. Chapter 3 for more details). Using an input 
or parameter sampled at random makes the computation qualitatively more rapid 
and effective, and with a probability large enough, but not the unit one in general, 
the result of the computation or decision making is the correct one. The positive 
probability of an error or failure is, hence, a penalty we have to pay for the pleasure 
of much more rapid computation. It is a matter of purely extra-mathematical nature 
to judge, how large probability of error can be taken as acceptable according to the 



nature of the problem or computation in question and according to the resulting 
time, space or other expenses savings. What is important in our context is the fact, 
that in probabilistic algorithms for searching problems the random sampling of the 
side input value can be often reduced to a sequence of more simple and statistically 
independent random samples which can be, therefore, taken in parallel. Also the 
computation or evaluation following these independent random samples can be, 
in a more or less degree, divided into a number of independent computations which 
can be realized, for particular samples or their subgroups, simultaneously and in 
parallel. Hence, probabilistic algorithms with independent random samples can be 
considered as important potential outcome when building parallel algorithms and 
we shall take profit of this possibility several times in the sequel. 

So, let us summarize once more: in what follows, we shall investigate parallel 
probabilistic algorithms for searching over large database collections, for computa
tion or estimation of numerical characteristics of such collections and for introduc
ing a structure into such collections, with the aim to arrive at substantial simplifica
tions of searching subprograms of inference machines in knowledge systems. 
Of course, such a specification is very far from giving an exhaustive list of all possi
bilities of applications of parallelism and parallel algorithms. Let us mention, by the 
way the possibilities of parallelization in order to make more effective some matrix 
operations (multiplications and inversions of matrices). However, including parallel 
algorithms of this and similar kinds into the scope of our considerations, we would 
cause this study to be Intractably large and we would also menace its thematical 
homogenity. It is why we have decided to limit ourselves to the domain described 
above and during all this study we shall consider ourselves being kept by this promise. 

2. MATHEMATICAL MODELS OF CLASSICAL ALGORITHMS 

In this chapter we would like to show, how the notions of effective computability 
and decidability can be formalized and investigated within the framework of an 
appropriate mathematical apparatus. Or, developing theoretical foundations of 
nondeterministic, parallel and probabilistic algorithms, we shall often use as building 
stones the notions and constructions offered by the classical theory of deterministic 
and sequential algorithms. To tell the truth, we shall do so because of the simple 
fact that no other, principally different conception of nondeterminism is at hand, 
at least not at a level of a sufficient and detailed enough mathematical formalization. 
It is why this chapter is devoted to a very brief recapitulation of basic notions of the 
classical theory of algorithms. Doing this, we shall take profit of the excellent 
Davis' monograph [3], not aiming, of course, to duplicate it neither in the extent 
nor in the degree of mathematical perfection. On the other hand, we do not feel as 
the best solution to replace all this chapter by giving a simple reference to [3], as 
we would like to offer to the reader at least the first insight, even if not completely 
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formalized, into the notions and ideas in question. So, this chapter should be taken 
as something like a compromise between the two extremities, in spite of all the 
problems involved by all compromises in general. It is also why we do not separate 
and formalize, in this chapter, explicitly definitions, statements and informal com
ments. 

During a very long period, in fact, since its antic origins till the end of the last 
century (and still later in some applications), the intuitive and informal conception 
of effectiveness and effective computability has seemed to be quite satisfactory 
for mathematics. It was the intuition and erudition of mathematicians who was 
believed to be able to distinguish an effective computation from a noneffective one 
case by case without referring to a general theory of effective computability. The crisis 
in mathematics involved by the occurrence of paradoxes in set theory resulted in 
the Hilbert's program of remedy of mathematics through their re-formulation into 
a finitely axiomatizable deductive theory with formally described, exclusively combi
natorial and, hence, semantically irrelevant and meaningless deduction rules. The 
failure of this conception and its principial nonrealizability was proved by GodePs 
results from the beginning of the fourth decade of this century. They implied also, 
as far as the computation theory is concerned, that a strict and purely combinatorial 
definition of the notion of effective calculation is necessary in order to assure the 
soundness and consistency of proposed computational structures. But, on the other 
side, it plays a role of a principial limitation defending to suggest a universal system 
enabling to realize all intuitively valid derivations "under one roof". The occurrence 
of first computers, in a rather short time distance, offered also another, quite practical 
motivation of building a formalized theory of computations. Or, only the computa
tions formalized in such a way can be, at least potentially, realized by an appro
priate technical device. From the fourth decade of 20th century originates also the 
conception of Turing machine which we introduce here as one of a number of 
mathematically equivalent formalizations of the notion of "effective computation". 
This choice is caused by our personal belief that this conception in the best way 
joins the demand of mathematical perfection with the possibility of an informal and 
intuitive interpretation. 

Like other models, the notion of Turing machine is built recurrently and inductively; 
some elementary operations are claimed to be effective by definition (at the formal 
level) and by repealing to their evident effective realizability (at an informal level). 
Similarly, some ways how to combine operations are proclaimed to be effective 
in the sense that the application of such a way of combination to effective operations 
results in another effective operation. In more details, Turing machine can be de
scribed as follows. 

Consider an infinite, both-sides unlimited tape divided into infinite number 
of boxes. Every box can be either empty (in other words said, it contains a symbol 
b = blank), or it contains just one symbol or letter of a finite nonempty alphabet A, 
an alphabet with a single letter suffices. The "active" part of Turing machine is called 
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head and in every moment (the work of the machine is supposed to be executed in a 
series of discrete moments) the head is in one of internal states q0, ql9q23.>., moreover, 
the head is situated just over one box of the tape and "reads" its contents. Depend
ing on the internal state of the head and of what is read, the machine chooses among 
the following actions. 

(1) it erases the contents of the read box and inscribes in it either a letter from A 
or a "blank" (i.e. the box is empty). Specially, the contents may be unchanged — 
"rewritten by the former contents", in formal. Then the head changes its internal 
state, the new state may be, of course, in some cases identical with the former one. 
A formal description of this action can be given by a quadruple (qiSjSkqi), where qr 

is the original and qt the resulting state, and Sj (Sk, resp.) is the former (the newly 
inscribed, resp.) contents of the read box. Hence, the quadruple (qjSjSjqiy corresponds 
to an "empty action" or non-activity, the quadruple <g *£/£/#/>, I + j , deals with 
the case when the machine, having read the box under inspection, changes its internal 
state without changing the contents of the box. When reading the same box once more, 
the machine may, of course, choose another action due to the foregoing change of 
its internal state. 

(2) having read the contents of the box, it is left without any change, but the head 
itself moves to the right to be placed under the neighbour box, moreover, the head 
changes its internal state (again, of course, with a special possibility not to do so). 
As a formal counterpart of this action may serve the quadruple <qfSfcJRgj>, where 
qt (qh resp.) is the original (the resulting, resp.) state of (the head of) the Turing 
machine and Sk is the original and unchanged contents of the box read at the beginn
ing of the action. 

(3) an operation analogous to the just described one, but with the move of the 
head of the machine to the left, as a formal description may serve the quadruple 
<qiSjLqiy. 

From the formal point of view, Turing machine is completely determined by a finite 
set of quadruples of the types introduced above supposing that the consistency of 
application of the machine is assured. It is why we must demand, when defining 
a Turing machine, that there is no pair of quadruples inside the corresponding set 
of quadruples, which would agree in the first two items but which would differ 
in the other two items, i.e. a pair of quadruples (qiSjXix2y, (qiSJy1y2y with <x!X2> + 
#= <yiy2>. This condition assures that, no matter which the internal state and the 
content of the read box may be, at most one quadruple is applicable. 

An instantaneous description of the Turing machine is the expression aqjp, where 
a and /J are finite sequences consisting of the letters of the alphabet A or of b's (blanks),, 
formally, a, /? e (A u {b})*. The interpretation is as follows: when the instantaneous 
description is aqjp, the machine is in the internal state qj and in the read box occurs 
the first (the leftmost) symbol of the sequence /?. The other symbols from /? are 
inscribed, sequentially, in the next boxes to the right from the read one. All other 
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boxes till more to the right, not occupied by the symbols from /? are supposed to be 
empty. Similarly, the sequence a describes the contents of the boxes situated to the 
left from the read one with the last (rightmost) symbol of a inscribed into the box 
immediately preceding the read one. All boxes more left from those occupied by 
symbols from a are supposed to be empty. Evidently, this definition covers only 
cases when only a finite number of boxes are occupied by letters from A, but because 
of the fact that we shall investigate only configurations resulting from finite words 
over the alphabet A by a finite number of operations, we may accept this definition 
as sufficient. Its non-constructive generalization to the case with pe (A u {b})00 

and a taken as an inversely written word from the same set would not be too difficult. 
Now. supposing the quadruple (q^jXq^ is applicable to the instantaneous 

description ccqsft, i.e., if q{ = qs and /? = Sj * /?*, this application uniquely determines 
the new (resulting) instantaneous description a'qj?', where 

(a) if X = Sk, then a' = a and /?' = Sk * f}*9 

(b) if X = R, then a' = a * Sj and 0' = /?*. 
(c) if X = L, then a' = a* and /?' = Sn * a, where a = a* * S„. 

In all cases, * denotes the concatenation operation. So we may leave, from this 
moment on, any intuitive images of "head", "tape" and "internal state", taking 
Turing machine as a consistent finite set of quadruples of the form (qiSJXql)9 

X e {Au {b}, R, L} which defines a partial mapping of the space of instantaneous 
descriptions into itself. Supposing an original instantaneous description cp0 is given, 
the application of the Turing machine to this description can yield the three follow
ing results. 

(a) no quadruple from the set of quadruples defining the machine if/ in question 
is applicable to <p0, hence, the work of the machine over <p0 terminates before it 
started with the result \j/(<p0) defined by <p0. 

(b) there exists a sequence <p0, <pl9 ...,<pn such that i//((pi) = <pi+1 # <pt for i = 
= 0, 1, ..., n — 1, and no quadruple is applicable to <pn, i.e., ij/(<pn) is not defined. 
In such a case the machine i/t stops (terminates its work) after n steps with the result 

$(<Po) = <Pn-

(c) there exists an infinite sequence <p0, <px, <p2, ... such that (̂<P;) = <pi+1 4= (p^ 
i = 0, 1, . . . , then \}(<p0) is not defined. 

The just introduced apparatus of Turing machines can be simply used in order 
to define and describe the effective computations of functional values. Let us introduce 
just the case of functions defined in the set of non-negative integers 31 = {0, 1, 2, ...} 
and mapping this set into itself, as the generalization to other countable argument 
and value spaces is merely a matter of technical routine. For n e 31, let n be a code 
of n in the alphabet A. The coding is supposed to be fixed, e.g. if A = { | }, then 
n = \n+l, i.e. n + 1 strokes, if card A S; 2, then n is the card .4-adic code of n, etc. 
The Turing machine \J/ begins to work over the (conventionally stated) instantaneous 
description bq0n and the function /^(n) is defined as follows: if }j/(bq0n) is defined 
and $(bq0n) = b^m for some qx and some me 31, then /^(n) = m, otherwise, 
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f^(n) is undefined. The definition can be immediately generalized to functions defined 
over vectors of non-negative integers; if the argument is a /c-tuple (nu n2,..., nk} of 
non-negative integers, the original instantaneous description is of the form 
bqi)nlbn1bn?)b ... bfik and the value/^(n, n2, ..., nk) is defined by <m1, m2, ..., mky 
if and only if 

$(bq0nibfi2b ... fe«fe) = qimihm2b ... bm& (2.1) 

for an internal state q{. Through a simple transformation and without any loss 
of generality we may achieve, that in case of halting the machine is situated in a specific 
"final" or "terminal" internal state. A function / : dl -* 91 (/: 91fc ~> 91*, resp.) is 
called effectiuely computable or partially recursive, if there exists Turing machine 
\jt such that / = /^, the adjective "partially" reflects the fact that / need not be 
defined for each argument value from 91 or 9tfc. 

The construction of Turing machines together with the following definition of the 
class of effectively computable functions was described, above, as it is just this class 
of functions which is accessible for computers or other technical devices. Hence, 
the description of a computation or decision problem in the form of function effec
tively calculable by a Turing machine is a necessary condition for its computer 
solvability. It may be taken as quite intuitive to take a function computable by 
a Turing machine as an effectively computable one in the common sense. Or, suppos
ing that f(n) is defined, we are able to obtain this value after a finite number of 
operations, even if the number of these operations cannot be known a priori, and 
each of these operations seems to be elementary enough to be taken as intuitively 
effective. Of course, an open question remains, whether each function taken as effec
tively computable in the intuitive sense can be also computed by a Turing machine. 
Evidently, a question like this cannot be answered, neither positively nor negatively, 
within the framework of a mathematical formalism, or it confronts a formal con
ception with an informal one. On the other hand, only formal conceptions can be 
compared at a mathematical level, and possibly their identity or difference may be 
stated. The positive answer to the question just mentioned, i.e. the assumption that 
the class of functions computable by Turing machines covers all functions taken as 
computable in informal sense, is generally accepted as the so called Church or 
Church-Turing thesis. The generality of its acceptance refers rather to practical 
applicability. As far as the acceptance of this thesis at level of theoretical argumenta
tion is concerned, e.g. when replacing a technically difficult routine construction 
of a Turing machine for a given function by simply referring to the intuitive computa-
bility of this function, the positions of various authors differ. Because of the orienta
tion of this text toward practical algorithms, and due to the fact that the greatest 
part of work which will be mentioned or referred to in what follows accept the Church 
thesis, we shall accept it as welL 

The reader who does not believe or accept the Church thesis, evidently cannot 
be persuaded or forced to do so on the ground of a purely mathematical argumenta-
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tion and she or he may refuse all proofs based on this thesis by ascribing them just 
the status of an informal hint or heuristic. This position is defended, e.g. by Davis 
himself in [3], who introduces Church thesis, but does not take profit of it, giving 
careful and detailed constructions of all Turing machines necessary for his explana
tions. From the point of view of pure and correctly formalized mathematics it is 
quite a legitimate position and the main argument against it is, and necessarily must 
be, again of an informal and heuristic nature. Namely, there has not been given 
or discovered, till now, an intuitively computable function not computable by an 
appropriate Turing machine. Nevertheless, even when accepting the Church thesis, 
we must always keep in mind its special nature and the serious consequences follow
ing from such a decision. 

As an important practical argument in favour of Church thesis let us mention the 
well-known fact that there are several, independently developed, formalizations 
of the notion of "effectively computable function". These conceptions are equivalent 
in the sense that the class of functions declared to be effectively computable is the 
same and is identical with the class of functions computable by Turing machines. 
Among the well-known alternative formulations are Markov (or normal) algorithms, 
Post machines (or grammatics) and partially recursive functions. Let us mention 
the last ones in more details. 

Consider functions ascribing natural numbers to finite sequences of such numbers. 
Elementary functions are, by definition, the following ones: 

(a) constants, i.e. functions of the form f(xl9 x29 ...,xn) = k, for all n9 ke^l, 
n = 1. 

(b) projection functions, i.e. functions of the form f(xl9 x2, ..., xn) = Xj for all 
j9 n e % 1 ^ j ^ n. 

(c) successor function f(x) = x + 1. The class of primitive recursive functions is 
then defined as the smallest class of functions containing all elementary functions and 
closed with respect to the composition and primitive recursion. Hence, iff(yi,..., ym) 
is a primitive recursive function of m arguments and gt(xu ..., xn), g2(xl9 ..., xn)9 . . . 
..., gm(xl9 ..., xn) are primitive recursive functions, each of them with n arguments, 
then also 

f(gi(*u • --> *«), 9i(xu • •> xn)9..., gm(xl9..., xn)) (2.2) 

is a primitive recursive function of n arguments (composition). If f(xl9..., xn) and 
g(xl9 ..., xn9 y9 z) are two primitive recursive functions, then the function h of n + 1 
arguments, defined by 

h(xl9 xl9..., xn9 0) = f(xl9 xl9..., xn) , (2.3) 

h(xl9 x29..., xn, y + 1) = g(xl9..., xn9 y, h(xl9..., xn, y)) , 

is also primitive recursive (primitive recursion). 
As can be proved in a rather routine matter, each primitive recursive function 

is computable by a Turing machine (the corresponding construction having been done, 
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e.g., by Davis in [3]). However, the class of primitive recursive functions can be 
easily seen not to cover the class of all functions computable by Turing machines, 
e.g., because of the fact that each primitive recursive function of n arguments is 
defined on the whole space 9T. So partial functions, undefined for certain n-tuples 
from W\ cannot be primitive recursive, but some functions of this kind can be 
defined and computed by Turing machines (within their definition domains). As 
an example of total, effectively computable, but not primitive recursive function 
we may take the well-known Ackermann (or Ackermann-Peter) function (cf. [2], 
e.g.). So we add, to the rules already accepted, a new minimization rule. A function 
hof n — 1 arguments x2, x3, ..., xm n Sg 2, is called to be obtained by minimalization 
from a function / of arguments y, x 2 , . . . , xn9 if 

h(x29 x3, ..., xn) = min {y: y e %f(y, x 2 , . . . , xn) = 0} (2.4) 

supposing that for x2, x3, ..., xn in question such an y exists, if it is not the case, 
h(x2, ...,xf |) is not defined. Now, the class of partially recursive functions is the 
smallest class containing all primitive recursive functions and all functions obtained 
when the minimalization rule is applied to a primitive recursive function. Just one 
application of this rule can be proved to be sufficient to obtain the class in question. 
As already mentioned above, the class of partially recursive functions is identical 
with the class of functions computable by Turing machines. Accepting the Church 
thesis, it is identical also with the class of intuitively computable functions. 

The formulation presented above could involve an idea or impression that the 
apparatus of Turing machines as introduced is not general enough in the sense that 
each effectively computable function requests its own "particular" Turing machine, 
"independent" of the machines enabling to compute other functions. The notion 
of universal Turing machine proves this idea not to be quite correct. For example, 
let us consider Turing machines which compute functions of one argument. From 
the formal viewpoint they are nothing else than finite sets of quadruples, hence, 
finite sequences of symbols. So, they can be effectively ordered (lexicographically, 
say), enumerated, and their order numbers (indices) can be encoded in an appropriate 
alphabet A, e.g., by the word having the same index in the fixed lexicographical 

00 

ordering of the free monoid .4* = U a". There exists a Turing machine over the 
= 0 

alphabet A, which works as follows: given x e 91, it decomposes x into a pair <xl5 x2> e 
e 91 x 91 using a fixed effective decomposition rule. Then the machine takes xt 

as the index of a Turing machine, namely \j/Xl with respect to the defined ordering, 
it generates the set of quadruples corresponding to \j/Xl and, finally, applies \f/Xl 

to the argument value x2 and computes \[/Xi(x2). Hence, this "universal" Turing 
machine can "simulate" the computation of a machine xj/ over an argument value x 
by working over argument value j / (^ , x) defined in such a way that its fixed de
composition yields the index (often called Godel number) of xj/ and the argument 
value over which i/t is to operate. Informally, y(\jj, x) corresponds to the input se-

16 



quence for a computer, which the computer itself divides into program, i.e. the code 
of the algorithm which is to be executed and which is written in a special alphabet 
called programming language, and into data, i.e. values which are to be substituted 
for the free indeterminates of the program and to which the program is to be applied. 
Let us notice the fact that from the highly theoretical and abstract notion of (universal) 
Turing machine we have arrived very close to the realistic and highly practical 
notion of computer. Otherwise said, universal Turing machine can be seen as an 
idealization of computers, abandoned of the limitations resulting from the fact 
that each computer is a physical finite system (device). Still briefly said: universal 
Turing machine is a usual computer with unlimited memory and unlimited execution 
time (unlimited means infinite in the potential sense). 

The last phrase seems to re-capitulate everything important, what the practically 
and rather toward applications oriented reader should keep in mind when reading 
the next chapters. In orientation toward a reader whose interests are more mathe
matical and theoretical, the aim of this chapter was to show, in which sense the notions 
like "algorithm", "algorithmical", "effectively computable" or "effectively decidable", 
etc. are to be understood. In what follows, these expressions will be used very often 
as basic, elementary and no more analyzed building stones of our further consider
ations and constructions. The explanation presented in this chapter has been, as 
already mentioned, taken from the already classical Davis' monography, up to 
a notion of oracle which is introduced in the next chapter. Several most important 
monographies or textbooks dealing with the classical theory of algorithms and 
attainable in our conditions are listed below, cf. [1] —[7]. 

R E F E R E N C E S 

[11 M.A. Ajzerman: Logika, automaty, aîgoгitmy (Logic, Automata, Aîgorithms — in Czech). 
Academia, Prague 1971. 

[2] C Calude: Theories oí Computational Complexity. North Holland, Amsterdam 1988. 
[3] M. Davis: Computability and Unsolvability. McGraw-Hill, New York 1958. 
[4] Z. Manna: Mathematical Theory of Computation. McGraw-Hill, New York 1974. Czech 

tгanslation: SNTL, Prague 1981. 
[5] J. Mikloško and V. E. Kotov: Algorithms, Software and Hardware of Parallel Computers. 

Springer-Verlag, Berlin and Veda, Bratislava 1984. 
[6] H. Rogers: Theory oî Recursive Functions and Efïective Computability. McGraw-Hilí, 

New York 1967. Russian translation: Mir, Moseow 1972. 
[7] K. Wagner and G. Wechsung: Computational Complexity. VEB Deutscher Verlag der Wissen-

schaften, Berlin 1986. 

17 



3. MATHEMATICAL MODEL OF NONDETERM1NISTIC, PARALLEL, 
PROBABILISTIC AND BAYESIAN ALGORITHMS 

Considering once more, and from a certain distance point of view, the notion 
of algorithm together with the way in which this notion has been formalized, three 
basic attributes of the classical paradigma of theory of algorithms, and computational 
processes in general, arise. A step by step omitting of these attributes will bring us 
to non-classical conceptions of algorithms which will be the main subjects of our 
investigations in this chapter. 

(a) Correctness and reliability of the result. Supposing an algorithm pretends 
to the role of tool for computation of a function / over its definition domain D, 
then this algorithm must for every value x from D, this value being introduced 
on the input of the algorithm, produce in a finite time the value/(x) as the correspond
ing output. In case the function / takes its values in a continuous set of real numbers, 
the algorithm must be able to produce, in a finite time and given xe D and natural 
number n 2j 1 as input values, a value y which differs from/(x) by less than \\n. 
No other incorrectness or unreliability of the result is admitted. If, in spite of this 
demand, the computation uses a procedure or device charged by such an incorrectness 
or unreliability, such an approximation can be justified only by reason of utiliary 
and extra-mathematical nature. These reasons, if applied, are in a position of onto-
logically independent side inputs and cannot be defended within the framework 
of classical theory of algorithms and computational processes. 

(b) Sequential nature of the algorithm work. No matter how elementary or 
complicated (in an informal sense) may be the operations declared as atomic and 
non-analyzed during the description and implementation of the algorithm, the 
algorithm is always executed as a linear sequence of operations. Hence, when execut
ing an operation — a member of a sequence of operations, all foregoing operations 
are supposed to be already executed and their results to be known and to be at the 
disposal of the algorithm. The evaluation or estimation of computational complexity 
of the algorithm (of the corresponding computational process, resp.) is also based 
on the sequential understanding. Even in case some operations are executed in parallel 
at the level of their practical hardware realization, this fact is not taken into consider
ation at the theoretical level. Besides other reasons, this sequential conception 
reflects the classical paradigma of mathematical work taken as an individualistic 
intellectual creative activity or effort of human subject which cannot share his work 
with somebody else by an appropriate co-ordination of their efforts. 

(c) Worst-case analysis — the minimax criterion of quality of algorithms. This 
attribute is very close to that one introduced ad (a) above and consists in the fact 
that the quality of algorithm which computes the values of a function / over its 
domain D is uniquely determined by that case, i.e., by that value xe D, which is 
the worst from the viewpoint of the criterion in question. E.g., the time, space or 
in other way quantified demands connected with the computation of f(x) are, in 
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this case, the highest ones. It does not matter how "larger" or "important" subset 
in D is represented by these extremum cases, it does not matter as well, whether 
these cases are "typical" or "non-typical", or even "pathological" from the point 
of view of an intended practical application of the algorithm. Supposing that these 
extremum cases cannot be avoided from considerations by an appropriate re-defini
tion of the function in question (by an explicit narrowing of its definition domain, 
e.g.), we have to accept, when accepting the classical paradigma of algorithm theory 
and computational complexity theory, the decisive role of extremum cases when 
classifying the qualities of algorithms and computational processes. 

We shall not take into consideration, at the moment, a number of practical and 
extra-mathematical reasons for which the three principles introduced above cannot 
be defended, or at least cannot be taken as rational, in many practical situations. 
Some considerations of this kind can be found in [5] and we shall discuss them in 
the following chapters when introducing some particular classes of non-classical 
algorithms. The aim of this chapter, however, is to present appropriate theoretical 
foundations for nondeterministic algorithms general enough to cover all the classes 
of algorithms mentioned in the title of this chapter. Moreover, we would like to make 
clear in which sense the non-classical algorithms can be understood as special cases 
of nondeterministic algorithms. The notion "nondeterministic algorithm" will be 
used throughout this work in spite of the fact that some authors (cf. [10], e.g.) 
refuse it in principle as "lapsus linguae" or "contradictio in adjecto", i.e., as a contra
diction, postulating, in this way, determinism as an attribute of algorithmicity. 
However, it should be clear, in what follows, when this term is used in an informal 
and rather alegorical sense, when it is used in a formal sense, and which is its precise 
formalization in the case in question. 

Let us briefly survey some possibilities how to introduce nondeterminism into our 
considerations. Because of the chosen way of explanation the shortest way to 
nondeterministic models of computational processes goes through the notion of 
nondeterministic Turing machines. Such a machine is defined, again, as a finite set 
of quadruples of the form (q^jXq^, XeAu {R,L}, but this time without the 
consistency condition. Hence, the set of quadruples may contain, simultaneously, 
(qiSjXq^y and (qiSjYqry with <X, qty =J= <Y, qr>. This definition is as close as 
possible to the formal model introduced above, even if it is, maybe, not too intuitive; 
an equivalent and better known formulation will be given later. The disadvantage 
of this model consists in the evident fact, that without a decision rule solving the 
problem which among two or more quadruples applicable in an instant will be 
actually applied, the model admits only a "parallel" interpretation. It means that 
the computational process splits into two or more simultaneously executed branches 
each of them starting by the application of one of the applicable quadruples. As we 
shall consider as useful, for the sake of our further explanation, to be able to indi
vidualize particular branches of computation and to parametrize them appro-
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priately by elements of a parameter space, we shall not take nondeterministic Turing 
machines as our outcoming point in what follows. 

Another model of nondeterminism is introduced in [2] under the notion of A0~ 
Turing machine, where A0 c 91 = {0, 1, 2,...} is a subset of the set of all natural 
numbers. A^-Turing machine is a finite set of quadruples of the form ^ q ^ K g j ) 
satisfying the consistency condition as in the foregoing chapter, however, with 
X € A u {R, L] u {q0, qA, . . . } . The quadruples {g/Sp^g/X (g^Jvq j) and (q^jlq^ 
have the same interpretation as above, the quadruple ^qiSJqkql} means: if the internal 
state of the (head of) the Turing machine is qt and the read box on the tape contains 
Sj, verify, first, whether the instantaneous description on the tape corresponds 
to a natural number with respect to a chosen and fixed way of coding of natural 
numbers in the alphabet A. If it is the case and if this number is in A0, the new 
internal state of the machine will be qk, its new state being qt otherwise. In both 
the cases, the contents of the tape is left without any change. Informally, ^40-Turing 
machine contains an oracle which is able, in each step, to answer, whether the natural 
number, the A-CO&Q of which the machine has obtained, belongs to A0, or not, 
and the further work of the machine depends on this answer. The class of functions 
computable by ^-Turing machines is the class of A0-partial recursive functions. 
This class of functions is defined in the same way as the class of partial recursive 
functions in the foregoing chapter with the only exception that the characteristic 
function (identifier) %AQ of the set AQ is classified as an elementary function (together 
with constants, projection function and successor function). Here XA0

: ̂  ~~* {0> 1}-
XA0(

n) = 1 iff n e A)- Evidently, if ^40 is a recursive subset of 91, i.e., if XA0 *S a t o i a* 
(for each n e 91 defined) recursive function, then the class of ^40-partial recursive 
functions agrees with the class of partial recursive functions. If /1 0 is not recursive, 
the class of partial recursive functions is substantially enriched (at least by the func
tion XAQ)-

As can be easily seen, the same behaviour and result of the machine can be achieved 
by considering another, side input of the Turing machine in question. The values 
of this side input are 0 or 1 and the next run of the computation depends on these 
values. So we have arrived at the model which will play the basic role in our further 
considerations. 

Consider a function / defined on a subset Df of a set s4 and taking its values 
in a set M. Suppose that the elements of the sets s/ and 33 can be encoded (enumerated) 
in an effective one-to-one way, by natural numbers or finite sequences of natural 
numbers. So we may speak, after all, about (partial) recursiveness of the function / 
or other functions defined through / Let V be a nonempty set the elements of which 
can be, again, encoded by natural numbers or finite sequences of such numbers. 
A function Gf taking the Cartesian product sd x if into 3$ is called a nondeterminis
tic algorithm for (computation of the function) / , if the function Gf is partial re
cursive and if there exists, for each x e Df, at least one y eir such that Gf(x, y) = 
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The demand that there exists at least one value y eir enabling to compute the 
value f(x) through the computation of the value Gf(x, y)9 is rather weak. So, the 
practical use of the notion of nondeterministic algorithms conceived in this way 
depends on the three following factors: 

(a) on the accessibility of a value y = y(x) e if such that Gr(x, y) = f(x), given 
x e stf9 or on the achievability of an oracle which is able to generate such a value; 

(b) on the degree in which the use of an auxiliary value y reduces the computational 
complexity (suppose, for a moment, that this notion has been already appropriately 
defined) for Gj(x9y)9 if compared with the computational complexity off(x), iff 
is partially recursive and can be computed directly, i.e. not through Gr(x, y); 

(c) on our abilities to recognize the value f(x) among values Gf(x9 y) for various 
/ s supposing we are not sure that a given y e ir is such that G;(x, y) = f(y). 

Hence, an application of a nondeterministic algorithm Gf as a tool for computation 
of values of the function f can be seen as prospective in two cases. Either, in case the 
set V(x) c if of auxiliary values giving a successful computation of f(x) through 
Gr(x, •), i.e. the set 

V(x) = V(Gf9 x) = {y: y e f\ Gf(x9 y) = f(x)} (3.1) 

is a sufficiently large or prevailing majority of the set if constituting subset of the set 
if. If this sufficient cardinality of V(x) is defined in such a way that, taking an ap
propriately defined random sample from the set if 9 with a probability sufficiently 
close to one an element from V(x) is sampled, we arrive at the notion of probabilistic 
algorithm (cf. below for more details). The other situation when nondeterministic 
algorithms may be of practical use is, that the set if is relatively small and it is within 
our powers to compute simultaneously (in parallel), using a number of identical 
computational devices (processors), the values G/(x, y) for all y e ir, in the optimal 
case for each particular value of y on a separate processor. Now, of course, the demand 
ad (c) above is of importance, as we must be able to recognize which of the proces
sors has computed the correct and desired value of f(x). This approach leads to the 
idea of parallel algorithms which are also described and investigated below in more 
details. Perhaps, the reader may be surprised that it is as late as now when the notion 
of parallel algorithms, even if contained in the title of this work, for the first time 
comes into the scene. Briefly said, we have preferred, in what has been already told, 
first of all to describe motivations and ways of reasoning leading to parallelism, 
postponing the introduction of the parallel algorithm till the time when we are able 
to offer not only an intuitive description with a non-negligible danger of misinterpreta
tion, but also a certain formalized background. Moreover, our intention is to pick 
up the difference between more theoretically conceived non-deterministic algorithms, 
when the inspection of outputs is outside the scope of the algorithm, and practically 
taken parallel algorithms when this inspection cannot be negliged. 

Now, we may specify probabilistic algorithms in details as a particular subclass 
of the class of nondeterministic algorithms. As we have already noted, the specifica-
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tion consists in the fact that instead of simple non-emptiness of the set V(Gf9 x) 
for all x from the domain o f / t h i s set will be requested to be "sufficiently large". 
If the set if is finite, the relative frequency of elements from V(x) in if 9 i.e. the ratio 
card V(x)/carci if of cardinalities of both the set could be considered as a criterion. 
However, for an infinite set if or for more complicated or sophisticated sampling 
models (mechanisms), which will be investigated below, this simple quantitative 
criterion can be seen or easily proved to be unsatisfactory. It is why we shall consider, 
from the very beginning, a more a general approach based on the abstract measure 
theory. The basic notions of measure theory and probability theory can be found, 
e.g., in [3], [4], [8], [9], or elsewhere. 

A system 3S0 of subsets of the set if is called a sigma field supposing it is closed 
with respect to the set-theoretical operations of difference and countable union. 
Hence, if .£, F are sets from 38 09 then also E — F = {x: xeE9x$F} is in 38 0 and if 

00 

Ei9 E29 ... is an infinite sequence of sets from 3$0 then also their union \J Et is in 38 0. 
i- 1 

A function L> mapping 380 into the unit interval <0, 1> of real numbers is called 
a probabilistic measure defined on CM09 if it is a non-negative, normed and sigma-
additive function on 380. Hence, 0 ^ pi(E) fg 1 for each EG3S09 fi(if) = 1, and for 
each infinite sequence El9 E29 ... of mutually disjoint sets from 380 we have 

oo oo 

H (\J Et) = ]T fx(Ei). As the most simple and, in a sense, extremum cases of sigma-
i = l 1 = 0 

fields defined over if let us introduce the two-element sigma field (0, ir} (0 being 
the empty subset of if)9 and the sigma-field &(yf) (sometimes denoted by 2r) of all 
subsets of the set ir. 

So we may define probabilistic algorithm for a computation of a function f: 
Bf —> 3S9 2)f a si with the probability of error uniformly majorized by a positive 
value s and with respect to a set if of side inputs, a sigmafield 380 cz 3P(if) and 
a probabilistic measure fi defined on 380. In what follows, the expression will be 
substantially abbreviated supposing the parameters are evident from the context. 
It is defined as a total recursive mapping from the Cartesian product si x if into 38 
and such that, for each x e Df9 the set V(Gf9 x) ( = {y: y e if. Gf(x9 y) = f(x)}) is 
in 380 and fi(V(Gf9 x)) = 1 — &. Because of the simple fact that only nonempty sets 
can be of positive probabilistic measure, s < 1 yields that V(Gf9 x) is not empty 
for each x e Df. Hence, the definition actually species a subclass of nondeterministic 
algorithms. 

The probability measure \i over if enables to measure the extent of some (i.e. 
measurable) subsets of the set if in an "absolute" sense. Because of the fact that 
during practical applications of probabilistic algorithms elements of the set if are 
accessible just through random samples, we would like to re-define the measure jx 
on if in such a way that the values of ft for subsets from 38 correspond to probabilities 
with which the sampled value is in the subset in question. Such a modification can be 
achieved when introducing the notion of probabilistic (random, stochastic) oracle. 
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Any triple <.Q, if, P>, such that Q is a nonempty set, if is a nonempty tr-field 
of subsets of the set Q and P is a probability measure on £fy is called probability 
space, the pair <.(3, if) is called measurable space. As special examples of probability 
space and measurable space we may consider the structure (ir, 0§, L*> and <f ~, 3$) 
defined above. Probabilistic oracle is a random variable X defined on (Q, if, P) 
and taking their values in (f\ ^). This is nothing else than a measurable mapping 
which takes Q into if hence, such a mapping that the image of each set from iM is 
in if, formally, 

{{co: co e Q> X(co) e £} : E e £9} c if . (3.2) 

Now, probabilistic algorithm, which computes a function / with a probability of 
error uniformly majorized by a value s > 0 and with respect to a probabilistic oracle 
X, is a recursive mapping Gf: si x V -» 0$ such that, for each x e Dr, 

P({o>: OJ e £2, K(o>) e F(G /? x)}) = 

= P({co: co e Q, Gf(x, X(co)) = /(x)}) = 1 - e . (3.3) 

Evidently, this definition agrees with the one above supposing the probability me
asure /i is replaced by the measure \xx defined, for each E e rM, by 

fix(E) = P({co: co e Q, X(co) e E}) . (3.4) 

It is not the aim of this work to investigate, in more details, theoretical and abstract 
features of probabilistic algorithms and some particular algorithms will be discussed 
in the next chapters. However, let us turn back, very briefly, to the items a) — c) 
presented in the beginning of this chapter and let us reconsider them from the point 
of view of probabilistic algorithms. The limitations imposed by (a) are evidently 
overcrossed; the computation of the value Gf(x, y) may be wrong, i.e. this value 
may differ from/(x), the only we need is that the probability of such an error should 
be small enough for all x e Df. Using our notation, the item (a) corresponds to the 
demand V(Gf, x) = ir for all x e- Dr However, our conception of probabilistic 
algorithms respects the demand (c), or, the minimal value e0, for which Gf(x, y) 
is a probabilistic algorithm with uniformly majorized probability of error, is given 
by the simple relation 

s0 = 1 - inf {pt(V(Gf, x)): x e Df} . (3.5) 

Hence, the quality of algorithm is uniquely determined by its worst-case quality, 
i.e., by the x e Df for which the probability measure pt(V(Gf, x)), or the probability 
of sampling an element from V(Gf, x), are the minimal ones. When calling this idea 
by minimax principle we were inspired by the statistical hypothesis testing theory, 
where, in case the losses arising from a decision making cannot be minimized uniform
ly over all sampling space, we must be satisfied when minimizing the potential 
maximum value of these losses. Nevertheless, the already mentioned statistical 
hypothesis testing theory offers at least still another solution, known as Bayes 
principle. When applying this principle to our problem how to compute f(x) using 
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Gf(x9 y), and when supposing, for the sake of simplicity, that Df = j / , the situation 
may be described as follows. 

Not only the auxiliary argument y9 but also the main argument x, used when 
Gf(x, y) is to be computed, is supposed to be sampled at random, As the quality 
criterion for the probabilistic algorithm we take not the worst case, i.e. minimum, 
but the "average", "typical" one, or, using mathematical terms, the expected value 
of the probability jx(V(Gp x)). Formally written, we suppose to have defined a cr-field 
(€ of subsets of the set si together with a probability measure v on c€. The Bayes risk 
()(Gf) is then defined by 

e(Gf) = jn(V(Gf,dv)). (3.6) 

If the set si is finite or countable, i.e. s/ -= {al9 a2, . . . } , then v is uniquely defined 
through the values vt ascribed to each at (to singletons {at}9 more correctly), and 
(3.6) can be rewritten into a more lucid form 

Q(Gf) = \Zvili(V(Gf,a^). (3.7) 
a,-e.fi/ 

When requesting Q(GJ) to be majorized by e we arrive, clearly, to a substantial 
weakening of the original demand fi(V(Gf, x)) ^ e for all x e Df (x e s/ in our case). 
A function Gf(x, y) satisfying the demand g(Gf) ^ s is called bayesian probabilistic 
algorithm which computes the function f with probability of error majorized by e 
and with respect to apriori probability distribution v. As can be seen, when replacing 
probabilistic algorithms with uniformly majorized probabilities of error by their 
appropriate bayesian modifications, we arrive at a substantial, even exponential 
speed-up of the computation. So the time needed by the bayesian algorithm is just 
a logarithmic function of the time needed by probabilistic algorithm with uniformly 
majorized probability of error, some examples will be presented in the next chapters. 
However, we must always keep in mind, that the quality of a bayesian probabilistic 
algorithm ultimately depends on the apriori probability distribution v in question. 
E.g., when choosing v appropriately, we may completely avoid the influence of a given 
proper subset of si as far as the quality of the algorithm is concerned. We simply 
ascribe to this subset (to all its elements, if s/ is finite or countable) the zero value 
of the apriori measure v. Of course, this is a much more general and philosophically 
deeper problem of bayesian approach in probability theory, mathematical statistics 
and in monographs, textbooks and special papers from those domains we can find 
much more profound and sophisticated discussions going far beyond the intended 
scope of this work. For our sakes we may be satisfied by the quotation that Bayes 
algorithms are of use and importance in such cases, when the nature of the solved 
problem or the domain of intended application yields sufficiently strong and sharp 
theoretical or practical reasons for an actual choice of the apriori distribution v, 
or at least for its limitation to a relatively narrow class of probability distributions 
over the input arguments, i.e. over particular instances of a more general problem 
in question. In certain situations, supposing the domain of the function / is finite, 
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the Laplace principle can be considered as acceptable. Roughly said, this principle 
reads: "the lack of reasons for preferring A to B or B to A is a sufficient reason 
for taking A and B as-equivalent". This leads to the equiprobable apriori distribution, 
i.e., v({a}) = (card Df)~~l for each a e Df. In every case, we must keep in mind 
that no choice of the apriori distribution can be justified by argumentation inside 
the theoretical model of nondeterministic algorithms. Such a choice will always play 
the role of an ontologically independent side input with all the philosophical and 
methodological consequences. 

As we have already mentioned, within the framework presented above, parallel 
algorithms can be understood as actual variants of potentially conceived nondetermi
nistic algorithms. This phrase should be interpreted in such a way that considering 
nondeterministic algorithm we suppose that just one of the possible variants of the 
computational process will be actually realized (an oracle decides which of them), 
with all other alternatives resting in the sphere of potentiality which is taken as qualita
tively different from the modus of actual realization. In the case of parallel algorithms 
all paths are realized simultaneously and through different, separated, but as a rule 
identical from the viewpoint of their computational abilities, devices (processors). 
This approach is of practical use namely when the set ir is relatively small, at least 
if compared with time saving or other advantages following from such a paralleliza-
tion. A common example is that consisting in separation of a computation into 
several cases which can be solved independently, hence, simultaneously. This point 
of view stands rather close to the common understanding of parallel algorithms 
as implementational realizations of nondeterministic algorithms with nondetermi
nistic algorithms taken, on the other hand, as appropriate theoretical models of 
parallel algorithms. It follows, from what we have said, that this approach cannot 
be completely refused, however, its weak point consists in the fact that certain 
idealizations, perhaps acceptable at the theoretical level, but not justifiable at the level 
of implementation, are projected into the notion of parallel algorithms. Let us men
tion them very briefly. 

The idea of a pure potentiality of non-realized computational paths leads to 
a complete neglection of time or other demands connected with a rational and 
systematic distribution of particular values y e V to particular processors which 
will compute the value Gf(x, y) using the commonly given input x and a program 
for the function Gf. Similarly, the idealized approach neglects the time and effort 
necessary to inspect the results yielded by particular processors, to verify, which 
of them offered the correct result, and to send this result to the main processor in 
order to output it. In both the cases, the idealization neglects time and other demands 
following from a non-effectively and existentially formulated part of the definition 
of nondeterministic algorithms as presented above: "there exists y e f such that 
Gf(x9 y) = / (* )" . As a rule, should this problem be explicitly stated, then only at the 
hardware level, as a technical problem to be solved by proposing an appropriate 
computer architecture. This approach is supported by the fact that the first variants 
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of parallel processors were projected as space compact devices of relatively small 
and negligible dimensions and with a practically instant and faultless connections 
between various components. However, let us consider a system of computers, 
separated in a large space and with limited or noised possibilities of communication. 
Evidently, the problem of inspection and cumulation of results yielded by particular 
computers can be immediately seen as far from being a trivial one. 

Similarly, when accepting some realistic assumptions, another non-trivial problem 
is that whether two or more processors can share the same item in a database in the 
same time instant. A much more sharp form of this problem occurs when a processor 
not only reads the item, but subjects it to some further manipulations e.g., replaces 
it, either in the computer storage or even in the real world. Suppose, e.g., that the set 
of objects or items is to be re-arranged with respect to a given criterion. In such a case, 
of course, the operations of two processors over the same item may be contradictory, 
hence, not realizable simultaneously. In what follows, this problem will be investigated 
in more details when re-arranging a given set with respect to the values of a given 
numerical criterial function and the most simple conflict control strategy will be 
accepted: supposing two or more processors ask for the same item from the database 
simultaneously, none of them reaches it, in this step of computation. Even if we could 
and should consider some finer, less drastic and more flexible conflict control strate
gies, theunlimited increase of the number of processors (of the degree of parallel ization) 
is evidently seen not to improve the situation. It even makes it worse, so that the 
optimalization of the number of processors becomes, again, a non-trivial theoretical 
and practical problem. 

So far, we have not mentioned the reasons for which an "indirect" computation 
of the value f(x) through the computation of Gf(x9 y) for all or for some j e f 
should be interesting or desirable in spite of risks (in the case of probabilistic algor
ithms) or of implementation difficulties (in the case of parallel algorithms) connected 
with such a decision. In case the function f itself is not recursive, the situation is 
clear: an appropriate side input offers the only possibility how to compute effectively 
the value f(x). If there is an algorithm enabling a direct computation off(x), the 
reason to choose an "indirect" computation is that it is of substantially lower com
putational complexity. What does it mean "substantially lower" may be, of course, 
interpreted in different ways and during a practical application this interpretation 
will depend on the nature of the problem in question. However, from a rather 
theoretical viewpoint at least two conceptions, a "weaker" and a "stronger" one are 
considered. Suppose that we have defined, somehow, the size of the input into the 
algorithm which computes f(x). Hence, the size of the value x is expressed by natural 
numbers. E.g., supposing that x is a natural number, its size may be defined by the 
length of its binary or decadic code, or it may be the number of edges or vertices 
in a graph, rank of a matrix, cardinality of a set, etc., Let F(n) be an integer-valued 
function with the property that for each input x of the size n the time computational 
complexity of the computation off(x) is majorized by F(n). Let the time compu-
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tational complexity for the value Gf(x9 >7) be majorized by the value H(n) of a func
tion H for all x of the size n and for all y e f'\ The time computational complexity 
of the function Gf is, in the weak sense, substantially lower than the time compu
tational complexity off, if H(n) belongs to the ^(F(?i))-class, hence, lim H(n)JF(n) = 

n ~* co 

= 0. The time computational complexity of the function Gf is, in the strong sense, 
substantially lower than that off, if H(n) belongs to the ©(log (F(^))-class, hence, 
if there exists K < oo such that H(n) < K log F(n) for almost all n e 91. This latter, 
stronger conception is important because of the fact that the so called exponential 
speed-up, achieved in this case, is usually inaccessible, for many practically as well 
as theoretically important tasks, by improving the algorithm within the framework 
of the classical (sequential and deterministic) paradigma, hence, without accepting 
nondeterminism and (or) a risk of unreliability of the algorithm. A close connection 
with the P-AT problem, and NP-completeness — two attractive and topic domains 
contemporary computer science is evident. The stronger interpretation of what 
"substantial reduction of computational complexity" means is sometimes presented 
in a weakened form demanding that H(n) belongs to ©((log F(rc))k)-class for a fixed 
k > 0. Evidently, this notion still remains substantially stronger than the weak 
version presented above. However, we shall not solve the problem, how efficient 
the reduction of computational complexity may be when applying the principles 
of nondeterminism, at this level of generality. In every of particular cases of non-
deterministic and probabilistic algorithms investigated below it is explicitly introduced, 
which reduction of computational complexity and under which conditions can be 
achieved. Hence, it is the reader or the user himself, who is to compare the offered 
reduction with the corresponding risks and to judge their acceptability from the 
viewpoint of an intended application. 

So far in this chapter we have always taken parallel and probabilistic algorithms 
as close notions mainly because of their derivation from a common ancestor — 
nondeterministic algorithm with a side input. The connection between both the 
types of algorithms can be seen, however, from a more utilitary viewpoint. Consider 
a probabilistic algorithm Gf(x, y) which computes a function f, where the set 1f 
of side inputs is the set of all finite sequences of elements of a set Q). Hence, *V = 3)*9 

or, what yields the same, "T is the set of all infinite sequences of elements of Q) with 
the f/-field & generated by finite cylinders. A random variable X, defined on an 
abstract probability space <;Q, $P9 P> and taking its values in the measurable space 
<®°°,#'>, can be defined by a sequence Xl9X29... of random variables defined 
on <f2, £f, P> and taking their values in @J. From the practical viewpoint the most 
interesting case occurs when the random variables Xl9 Xl9... are mutually statistically 
independent, let us consider this situation. Let there exist functions Gl

f(x, y), i = 
= 1, 2 , . . . , a function H, and an integer-valued function k such that, for all x e Df 

and all coe Q, 

Gf(x,X(co)) = G(x, {X1((O),X2(CD), . . . » = 
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- H(G\(x, * . (» ) ) , Gj(x, X2(co)),..., Gk/*\x, XkM(co))) . (3.8) 

As can be easily seen, in such a case the sample of values X^co) and the computation 
of values Gl

f(x. Xj(a))) for i = 1,2,..., k(x) can be realized simultaneously, i.e., on 
parallel processors. The central or main processor (supervisor) cumulates the 
results and computes the corresponding value of the function H (cf. [6] for a more 
detailed theoretical model). Probabilistic algorithms and probabilistic oracles 
realized by sequences of statistically independent random samples offer a new 
possibility for parallelization so that we have arrived at the notion of parallel 
probabilistic algorithm with which we shall meet very often in the sequel, perhaps 
on a less general and abstract level. The reasons for this rather late introduction 
of such an important notion are the same as presented at the occasion of parallel 
algorithms above. A further reason consists in our aim to present this notion of 
parallel probabilistic algorithms at a rather general level, so that all types of parallel 
or probabilistic algorithms described above could be easily seen to be special cases 
of this notion. When considering a practical utility of such algorithms we have 
to compare, again, the computational complexity of the functions Gl

f(x, y), k(x) 
and H, with the computational complexity of the function f and with the probability 
of error. This problem will not be solved here at this level of generality, but only in 
connection with special parallel probabilistic algorithms investigated below in the 
next chapters. 

When closing this chapter, the three following comments seem to be worth in
troducing. 

(1) The level of generalization and abstraction adopted in this chapter is perhaps 
higher than necessary for the sake of further considerations. The reason is that we 
would like to offer a theoretical and formalized background for further investigations, 
development and modification of the parallel probabilistic algorithms introduced 
below, and also to cover a class as wide as possible of future parallel probabilistic 
algorithms of various sorts. 

(2) As far as the author knows, there is still no practical experience with parallel 
probabilistic algorithms. On the other hand side, a parallel implementation of some 
already successfully implemented sequential probabilistic algorithms should not be 
too difficult. Or, all these sequential algorithms are based on independent random 
samples which can be easily taken in parallel by a number of identical copies of the 
device executing the original sequential probabilistic algorithm, not supposing any 
degree of co-operation or synchronization among different processors. 

(3) Our considerations concerning the implementations of parallel probabilistic 
algorithms have brought us very close to the so called chaotic and asynchronous 
algorithms (cf. [1] as a very good informal introduction). These algorithms can be 
taken as parallel probabilistic algorithms with appropriate physical processes in the 
role of the source of uncertainty and randomness. The physical laws governing these 
processes serve as the main tool for deriving the mathematical and computational 
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properties of the corresponding algorithms. A more detailed investigation of the 
relation between chaotic and asynchronous algorithms and the general notion of 
parallel probabilistic algorithm as introduced above would be worth a more detailed 
investigation. However, because of the fact that such an investigation would exceed 
the intended extent and scope of this work, let us postpone it till another occasion. 

R E F E R E N C E S 

[1] V. Černý: Fyzikálne aspekty v matematickej informatike (Physical aspects in mathematical 
informatics - in SІovak). SOFSEM 1987, pp. 8 1 - 1 0 3 . 

[2] M. Davis: Computability and Unsolvability. McGraw-Hill, New York 1958. 
[3] W. Feller: An Introduction to ProbabШty Theory and its Applications, I, II. J. Wiley and 

Sons, New York 1957 (vol.I, 2nd edition), 1966 (vol. II) . Russian translation: Mir, Moscow 

1964, 1967. 
[4] P. Halmos: Measure Theory. Van Nostrand, London, 1968. 
[5] I. Kramosiî: Paralelní pravd podobnostní aîgoritmy jako prezentace nového paradigmatu 

ve znalostních systémech (Parallel probabilistic algorithms as presentation of new paradigma 
in knowledge systems — in Czech). In: Uplatn ní expertníeh — znaíostních systémů ve sta-
vebnictví, Prague 1987, pp. 6 — 23. 

[6] I. Кramosil: Extremum-searching hierarchicaí paralłel probabiíistic algorithms. Kybernetika 
(Prague) 24(1988), 2, pp. 1 1 0 - 1 2 1 . 

[7] M. Loève: Probability Theory. Van Nostrand, Princeton, 1955. Russian translation: IIL, 

Moscow, 1962. 
[8] A. Rényi: Teorie pravděpodobnosti (Probability Theory — in Czech). Academia, Prague 

1972. 
[9] J. Št pán: Teorie pravděpodobnosti — matematické základy (Probabilíty Theory — 

Mathematical Foundations — in Czech). Academia, Prague 1987. 
[10] V. A. Uspenskij and A. L. Semenov: What are the gains of the theory of algorithms — 

basic development connected with the concept of aígorithm and with its application in 
mathematics. In: Algorithm in Modern Mathematics and its Appîications — Proceedings 
of the Symposium, Urgench 1979, pp. 100—234. 

4. PARALLEL PROBABILISTIC SEARCHING ALGORITHMS 

Searching problems belong to the basic, and from the deseriptional point of view 
the most simple ones to which many more complicated and sophisticated tasks 
of artificial intelligence can be converted. Moreover, the time and perhaps other 
demands or expreses, involved by the solution of the corresponding searching problem 
decide about the computational complexity and applicability of the resulting solution 
of the original tasks as a whole. A general model of searching problem, very simple, 
but sufficient for our further reasonings, can be described as follows: Consider 
a finite but, as a rule, very large set A = {au a2, ..., aN} of N elements and a subset 
V c A. We have at our disposal an oracle working on the black-box principle, which, 
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having been put an element from A on its input, decides in a finite and, for the sake 
of simplicity constant, time, whether this element belongs to Vor not. Assume again, 
for this instant and for the sake of simplicity, that this decision is reliable and fault
less. Moreover, this oracle is our only tool of "communication.' with the set V. 
No other knowledge concerning the set Vis at our disposal, neither being obtainable 
by, say, an analysis of the way in which the oracle works and decides. 

The question whether the set Vis empty or not can be answered by a sequential 
exhaustive searching and testing of all elements of A. This procedure requests in the 
worst case, supposing we take this worst case as the decisive one as common in the 
classical theory of computational complexity, N operations. Taking, in the first 
approximation, these operations as equivalent, the resulting sequential computa
tional complexity is in the #(iV)-elass. Now, consider an M-times sequentially 
repeated independent random sample from A, with the same probability 1/iV of 
sampling ascribed to each element of A at each step. If V contains v elements, then 
with the probability (1 — vJN)M all samples lie outside of V. Supposing that, having 
tested all the elements and having seen that none of them is in V, we decide that the 
set Vis empty, then (l — vJN)M is the probability of error with which we can arrive 
at such a wrong (if v + 0) decision. This probability of error is evidently maximum, 
if v = 1, and if we want this probability to be majorized by an a priori given e > 0 
even in this worst case, we must have M }£ (in s" l) N, as a simple calculation yields. 
Hence, again M = M(N) is in (P(iV)-class with the multiplicative constant being 
even greater than one if e < e" l = 0*36 ..., i.e. for every "reasonable" e. The choice 
of the uniform probability distribution over the set A can be justified by the mentioned 
above Laplace principle and by the fact that we have no reasons for another probability 
distribution. Here we do not take into consideration the sampling without giving 
back the sampled elements, as this sample violates the demand for statistical inde
pendence of particular samples. Moreover, when applying the uniform probability 
distribution over the set of not yet sampled elements, it is equivalent to the sys
tematic exhaustive search. 

Now, suppose to have at our disposal a greater number of identical copies of the 
testing oracle, which may test in parallel, hence, simultaneously, a number of elements 
of A. If this number of identical copies is finite, the resulting time complexity is again 
in the $(!V)-class, no matter whether we consider the systematic deterministic ex
haustive search or the randomized solution described above. When the number 
of processors-copies increases and equals, say, N (the cardinality of the basic set A), 
the resulting time complexity is in both the cases constant, i.e. independent of N9 

i.e. in the (P(l)-class. This assertion holds, of course, under the assumption that it 
is sufficient to find an element of V by at least one processor and that no time or 
other demands concerning the inspection of the outputs of particular processors are 
taken into consideration. This assumption is, as a rule, accepted in the theory of 
nondeterministic algorithms, but in our context we shall take it as too idealized and 
non-realistic and we shall not accept it in what follows. From this point of view, 
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of course, the problem to inspect the outputs of N processors is far from being 
trivial. In fact, it is a duplicate of the original problem, or at least its computational 
complexity is equivalent to the original one. Hence, neither a non-limited parallelism 
is an adequate solution to our searching problem which would reduce, either in the 
weak sense or in the strong sense, the time complexity of the sequential deterministic 
exhaustive search. Therefore, we shall investigate in this chapter, whether a sophisti
cated combination of parallelism and randomization into one algorithmic structure 
could yield such a qualitative time reduction. As can be seen, this problem can be 
positively solved. 

So, consider the searching problem informally described above, formally defined 
by a pair (A, V>, A = {ax,a2, ...,aN}, V cz A, and consisting in answering the 
question whether V = 0 or not. Consider also an abstract probability space (Q, Zf, P>, 
natural numbers m, n, k, and a system SC = <{^/}'f=ij = i> {^/}i=i> of mutually 
statistically independent random variables defined on (Q, Sf, P>. Each Xu takes 
its values in A, each Zt in the set {1,2, ..., m) of integers, and for all a e A, i g m, 
j S n, I S kand s :_ m, 

P({co: coeQ, Xu(co) = a}) = N~x , (4.1) 

P({co: co e Q, Zt(co) = s}) = m"1 . (4.2) 

Hence, the values Xu(co) represent independent random samples from the uniform 
probability distribution over the set A, the values Z^co) represent independent 
random samples from the uniform probability distribution over the set {1, 2, .... m) 
of integers. The system X is called two-level hierarchical parallel probabilistic 
searching algorithm (HPPSA) for the searching problem (A, V>. It is understood 
as a random variable, the value of which, given (A, V>, is defined by 

X((A, V>, co) = 1 iff £ £ Xv(XZl(m)J(co)) > 0 , (4.3) 
i = i j = i 

X((A, V}, co) = 0 otherwise , 

Xv is the characteristic function or identifier of the set V. The result X((A, Vs), co) 
is correct, if X«A, V>, co) = 1 and V + 0, or if X((A, V>, o>) = 0 and V= 0. 
The error of the first kind occurs, if X((A, Vs), co) = 0 and V #= 0, the error of 
the second kind occurs, if 9£((A, V>, co) = 1 and V = 0. Evidently, :T(<AL, V>, co) = 1 
iff at least one among the parallel processors, represented by n-tuples (Xil9Xi2,... 
. ..,Xin), i ^ m, samples an element from V and, at the same time, at least one 
processor with this property is sampled during the random inspection of the outputs 
of particular processors realized through random sampling of their indices by random 
variables Z l 5 Z 2 , . . . , Zk. Hence, supposing that all testing oracles are completely 
reliable and fail-proof, the error of the second kind cannot occur in the presented 
model. Or, the decision that V 4- 0 is always based on the fact that at least one 
element of V has been found by a first-level processor. 
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The unit time computational complexity TCU{3E) of a given HPPSA 3C with 
parameters m, n and k is defined by 

TCL/(if) = a-n + a2fc + a3 , (4.4) 

for appropriate positive (al9 a2) or non-negative (a3) constants. The logarithmic 
time computational complexity TCL{SE) is defined by 

TCL{3E) = ftn log2 N + fS2k log2 m + p3 , (4.5) 

for appropriate positive (/?1? /?2) or non-negative (/?3) constants. Hence, the unit 
time complexity takes each random sample taken by X(j or Zl as being of the same 
complexity no matter how large the sample space {A or {1,2. ..., m}) may be. 
The logarithmic time complexity supposes the complexity of random samples to 
increase linearly with the logarithm of the size of the sample space in question. 
When taking the logarithm to the base two, the logarithmic time complexity of 
a random sample corresponds to the number of coin tosses, by the mean of which 
the random sample in question could be realized. 

An easy proof (cf. [ l ] or [2]) yields the following assertion. 

Theorem 4.1. Let (A9 V} be a searching problem, let 

£ = <{Xtj}7-j-u{zi}i-i> (4-6) 

be a HPPSA for {A, V> with parameters m, n and k, let e > 0 be given, let 
PEj{S'9 A9 V) be the probability of error of the first kind, let v = card V9 N = card A. 
If mn = v M(ln (2/e)) N and k £ (In (2/e)) m, then P£7(^, A, V) < e. 

As mentioned above, if V= 0, then an analogous assertion for the probability 
of error of the second kind holds trivially for all m, n, k and e > 0. Because of the 
fact that in the conditions of Theorem 4.1 just the product m . n is bound, a natural 
question arises, which ratio between m and n is the optimal one in order to minimize 
the corresponding unit or logarithmic time complexity. To arrive at a more correct 
formalization, the following auxiliary notions will be of use. 

HPPSA SJE is called e-admissible {strongly e-admissible resp.) with respect to the 
searching problem (A, V} and w.r. to a given e > 0, if V =j= 0 and PEt{SE9 A9 V) < 
< e (V 4= 0 and the conditions of Theorem 4.1 hold, resp.). HPPSA 9£ is called unit 
^-optimal {unit strongly ^-optimal9 resp.). if 9C is e-admissible (strongly e-admissible, 
resp.) and for each e-admissible (strongly e-admissible) HPPSA SE' the relation 
TCU{S£) ̂  TCU(^v) holds. Logarithmically ^-optimal and logarithmically strongly 

's-optimal HPPSA's SE are defined in an analogous way. 

Theorem 4.2. Let SE be a HPPSA for the searching problem <_4, V} with parameters 
m{N)9 n{N)9 and k{N)9 where N = card A9 let v = card V > 0. Then SE is unit 
strongly e-optimal, if 
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m(iV) = f(Va1MM)ViVl? (4.7) 

n(N) = f(ln (2/e)) (J*2lJ(*tv)) V1V] (4.8) 

k(V) = [(In (2/e)) m(jV)] . (4.9) 

In the case of TCL explicit expressions for the values of parameters are much 
more difficult to obtain so that we have to introduce an implicit formulation with 
unspecified ^(V^-functions. Hence, if if* is logarithmically strongly e-optimal, then 

m(N) = ( V & M i M log2 e)) JN + #(JN), (4.10) 

n(N) = (In (2/e)) (V(/?2 log2 e ) / V ( M ) W + ^(V-V) , (4.11) 

k(N) = (In (2/e)) m(jV) + ^(VN) . (4.12) 

Hence, if at = a2, then for v = 1, m(N) = [ V ^ ] and n(jV) = [In (2/e)) V-V] accord
ing to (4.7) and (4.8). Corresponding proofs can be found, again, in [1] and [2], 

Hence, there exists a HPPSA the probability of error of which, when solving 
the searching problem, is majorized by a given e > 0 uniformly for each V a A. 
Its unit time computational complexity is cx + c2 ^/N with cx and c2 depending 
on e but independent of N, so that this complexity is in 0(vjV)-class. The logarithmic 
time complexity of the same algorithm is ct (V(V))logjV + c2 s/(N) + c3, hence, 
is in $((V(V)) log V)-class, In both the cases the reduction of time computational 
complexity is substantial (in the weak sense) when compared with the results achieved 
by simple randomization or by the maximal parallelization, when the resulting time 
complexity was in the (9(N)-, or &(N logjN)-class. 

The assertions of the two theorems just presented immediately involve the question, 
whether a multiple use of the hieararchical principle presented above would reduce 
the time complexity more substantially i.e. would bring this complexity into the classes 
*(\/N) or #((y/(N)) log V). The following example shows that this is possible. 

Again, consider the searching problem (A, Vs), where card A = N, card V = 
= v > 0, let e > 0 be given. Suppose, for the sake of simplicity, that N is of the form 
2K, so that K = log2 V. Set S = e\K, Nt = V/2*", i = 1,2, ...,K, and consider 
Nt = jV/2 processors of the first level. Each of these processors takes [2 In (l/<5)] 
independent random samples from A with respect to the uniform probability distribu
tion ascribing the probability of sampling N"1 to each element of A, in each step, 
and by each processor. Access conflicts are not taken into consideration, so that each 
element of A is accessible simultaneously to all the processors by which it has been 
sampled. For each i rg jVx the output value of the /th processor equals to one suppos
ing at least one element from V was sampled by this processor, the output value 
being zero otherwise. Now, set jY2 = Nt\2 = jV/4 and consider N2 second-level 
processors, each of them taking, again, [2 In (l\Sf\ independent random samples 
from the set {1, 2, ..., Nx} of integers and w.r. to the uniform probability distribution 
ascribing the probability jV^T1 to each result in each sample. For each i ^ jV2, the 

33 



output of the ith second-level processor takes the value one supposing that at least 
once a first-level processor with the unit output value was sampled by this second-
level processor, in the opposite case the output value of the ith second level processor 
is zero. Set IV3 = IV/8 and proceed analogously. At the Kth level we have just one 
Kth level processor which takes [2 In (l/<5)] random samples from the two-element 
set of (indices of) the (K — l)-st level processors. If at least once a (K — l)-st level 
processor with the unit output value is sampled, also the (unique) Kth level processor 
takes one as its output value and we decide that V 4= 0. This decision is certainly 
correct, as we have discovered at least one element of V at the basic level. In the 
opposite case the output value of the Kth level processor is zero, we take the decision 
V = 0, which may be charged by a positive probability of error; let us compute this 
probability. 

At the basic level of our hierarchy (IV/2) [2 In (l/<5)] random samples have been 
taken altogether from the uniform probability distribution over the set A. As this 
number is at least IV In (l/<5), the same argumentation as above or a simple calculation 
yield that if V #= 0, then with a probability greater than 1 — 3 at least one element 
from Vis sampled by a first-level processor. Denoting by At the set {1, 2, . ..,IV,} 
of integers, and by Vt the set of indices of those first-level processors, the output 
value of which is one, we obtain, that with a probability at least 1 — 3 the set Vi is 
nonempty. The second-level processors can be considered as the first-level ones w.r. 
to the new searching problem (Al9 Vj>, the argumentation can be repeated by induc
tion and after K steps we obtain, that the probability with which the (unique) K-th 
level processor output value is one, under the condition that V #= 0, equals at least 

n ( l -Si)> 1 - X * = 1 - e (4.13) 
i= i 

(recall that 5 = 8t -= ajK for each i = K). Accepting the unit criterion for measuring 
the time computational complexity of random samples we obtain that the total 
number of sequentially taken random samples, which defines the time complexity, 
equals 2K[In (l/<5)]> i.e. [2 In (l/<5)] samples at each of the Kth levels. After an appro
priate substitution this expression reads as 

2(log2IV)ln[((log2IV)/a)]5 (4.14) 

which is in the $(log IV log log IV)-class for each fixed e > 0, hence, it is trivially 
in the ^(V-V^class. In the case of the logarithm criterion the corresponding time 
complexity can be computed as follows (setIV0 = IV): 

K log2N 

£ 2[ln (1/<5)1 l°g2 Ni = I 2[ln ((log- iV)/e)] log2 (iV/2;) = 
i = 0 i = 0 

l0g2N 

= £ 2i[ln ((log2 N)/e)l = 2[ln ((log2 N)/e)] (1/2) log2 iV(log2 N - 1) = 
; = o 

= [In ((log- iV)/e)l ((log2 N)2 - log2 N) , (4.15) 
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and this expression is in 0((log IV)2 log log IV)-class, hence, again in *((y/(N)) log IV)-
class. As can be easily seen, our assumption that IV is of the form 2K is not substantial 
for the validity of the obtained qualitative result. 

The hierarchical structure informally described above can be formally defined 
as follows. 

Many-level (particularly, K-level, K ̂  1) hierarchical parallel probabilistic 
searching algorithm (MLHPPSA, or K-HPPSA) for the searching problem 
<v4, V} is the system 

^r = <{Z^f = 1 ) f i 1 ^ = 1 > (4.1.6) 

of mutually statistically independent random variables defined on an abstract prob
ability space <£>, S?9 P> in such a way that N1 > N2 > . . . > NK = 1 and each 
Xkij takes its values in the set Ak_l = {1, 2, ...,IVfc_,} of integers (where A0 = A) 
w.r. to the uniform probability distribution. I.e., for each k g K, j :g Nk, j ^ nk, 
r ^ -V/k-i (here iV0 = IV) we have 

P({co: COEO, X^-H = r}) = I d . (4.17) 

The vector <<IV1? rii>, <IV2>
 n2>> •••> <Nfc, %>) of pairs of positive integers is called 

characteristics of the MLHPPSA %\ 

As in the case of two-level HPPSA's described above 9C can be understood as 
a statistical decision function which solves the searching problem (A, F>, i.e. as 
a random variable 3C((A, V),.) taking its values in the binary set {0, 1}. This value 
will be defined by induction. Set V0 = Fand define, for each r S K, 

Vr(co) = {i: i £ Nr. (3/ ̂  nr) (X
r
u(co) e Vr^(co))} = 

[i:išJV„IzKr_ l (<D)(^X«>))>0}- (4-18) 
7 = 1 

Namely, 

7.(0)) = {f: i S N» I Zv(̂ !Xo>)) > 0} , 
7 = 1 

which agrees with the definition of HPPSA as presented above. Moreover, for 
r = K, 

VK(co) = {i: i ̂  1, (3; ̂  «,) (X?j(co) e VK^(co))} , (4.20) 

so that 
nK 

VK(co) = {1} = AK o I *FK_ K ^ O ' M ) > 0 , (4.21) 
7 = 1 

r » = 0 o"f ZF,.l(.)(-f») - o • (4-22) 
1=1 

As can be easily seen, if Vk(co) = 0, then also Vt(co) = 0 for each k ̂  I ^ K. Now, 
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set K 

{co: a) e O, #•«__, V>, co) = 1} = fi {̂ >: G> e «, Vfc(a>) # 0} , (4.23) 
fc = 0 

S*(<_4, V>, a>) = 0 otherwise. Both the kinds of error as well as their probabilities 
are defined in the same way as in the case of HPPSA's above. Again, the error 
of the second kind is impossible on the ground of the same argumentation as above. 
The corresponding unit and logarithmic time complexities read 

K 

TCU(a;) - X a_n_ + %o , (4.24) 

TCL{<£) = £ ptnt log2 Nt + fi0 (4.25) 
i - 1 

for appropriate positive cci9..., aK, fll9..., pK and non-negative a0, /?0. In what 
follows, we shall investigate only the simple case with af = a, /?f = /? for all t = 
= 1,2,...,K. 

Denote by pk9 h = 1,2, ...,K, the conditional probability 

Pfc = P*(#) = P({o: w e _ , V,(o)) * 0}/{CD: OJ G __, Vfc.^Q)) 4= 0}) , (4.26) 

supposing it is defined. As can be easily seen, if V #= 0, then 

1 - ?£,(#, _4, V) = P({o>: co e Q9 2£({A9 V>, co) = 1}) = 

= P({n{o>:O>e^, Vfc(o>)*0})== 
fc= ! 

/_ K 

= f i P({^- to e fi, Vfc(cw) * 0}/{co: co e fi, Fk_ .(o) 4= 0}) = [ J P*(#) • 
t - i »__ ( 4 _ 2 7 ^ 

If 1 — p t __ ek for each /c = 1, 2, ...,K, i.e. pk __ 1 — ek, then 

n A _ s n ( l - - _ ) _ 5 l - i « _ , (4.28) 
fc = 1 fc = 1 fc = 1 

K 

hence, the probability of error of the first kind, PEt{X9 _4, V), is majorized by ]T efc. 
fc=i 

An optimalization of many levels HPPSA's, i.e. the problem to find a number 
of levels, number of processors at each level, and number of random samples taken 
by each processor, which would minimize the unit or logarithmic time complexity, 
is much more difficult than in the two-level case and will not be solved here in all 
the generality. Let us limit ourselves to the so called a-homogeneous many level 
HPPSA's with the following properties: 

(a) if the number of levels of the HPPSA is K9 then the conditional probability 
that the output value of at least one processor of the ith level is one under the condi
tion that the output value of at least one processor of the i — 1st level is one is at 
least 1 - (e/_K). 

(b) The ratio Ni_1jNi of the number of processors of the i — 1st and of the ith 
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level is the same for all i = 1, 2, ..., K and is called the parameter of homogeneity 
of the e-homogeneous MLHPPSA in question. 

Hence, the algorithm informally described above is an e-homogeneous K-level 
HPPSA the parameter of homogeneity of which is two. The following assertion can 
be proved (cf. again, [1] or [2]). 

Theorem 4.3. Let <zl, V>, card A = IV, card V = I, be a searching problem, let 
e > 0 be given. Then the parameter of homogeneity X of that e-homogeneous many 
level HPPSA, which solves the problem <y4, V> and the unit time complexity of 
which is minimal among all e-homogeneous many level HPPSA for the same problem, 
satisfies the equation 

(In In N + In e™1) (In X - 1) = (In X) In In X - 1 . (4.28) 

One of the solutions Xt of (4.28) is approximately equal to e = 2*718 ... in the sense 
that the difference among the left-hand side and right-hand side in (4.28), having 
been divided by In In IV -f In e" *, tends to 0 as IV -> oo and X -> e. 

The unit time complexity of this optimal algorithm is in the (P(log IV log logIV)-class, 
as above when X = 2. Hence, the algorithm is optimal in the sense that the multi
plicative constant is smaller than in the case of e-homogeneous MLHPPSA's with 
non-optimal parameters of homogeneity. 

As in the case of the foregoing chapter, some conclusive comments may be useful. 

(1) The role of random samples in the algorithms described above might perhaps 
have brought to the reader's mind the well-known idea of Monte-Carlo methods 
or algorithms. In fact, the parallel probabilistic searching algorithms as described 
here may be easily taken as very simple cases of Monte-Carlo methods. Or, roughly 
said, Monte-Carlo methods are all procedures, when an unknown expected value 
of a random variable, necessary for the sakes of further computations or decision 
makings, is approximated by the average value computed from a appropriate (or 
accessible) number of corresponding random samples, and all the risks following 
from such an approximation are accepted. Namely, in our case, evidently the value 
v = card F/card A is the expected value of each Xtj, and we use random samples 
in order to decide, under some risk, whether v is positive or not. In Chapter 6 we shall 
investigate the problem when not only the sign, but also the numerical value of v 
is to be estimated by appropriate hierarchical parallel probabilistic searching struc
tures. 

(2) The reader has probably already observed that the randomization minimizes 
the demands imposed on co-operation and synchronization, nevertheless, we consider 
this general phenomenon as worth an explicit repeated introducing. Even in the most 
simple case of the sequential probabilistic searching algorithm mentioned at the 
beginning of this chapter, an important advantage has been obtained at the cost 
of (P(A7)-time complexity and a positive probability of error. Namely, no registration 
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of the already tested elements is necessary, each sample, if still executed, is quite 
independent of all former ones, which, of course, is not and cannot be the case for 
a deterministic exhaustive search. In the parallel case, all processors at the same level 
work independently, no co-operation or synchronization is necessary, and their 
communication with higher-level processors is of a very limited and stochastic 
nature. Even if we do not investigate here the hardware problems connected with 
architectures appropriate for the investigated algorithms, an immediate idea is that 
such architectures could be built from a number of identical copies of devices execut
ing the corresponding sequential algorithms, what may be taken as a non-negligible 
practical advantage. 

(3) Finally, just as a quite open and worth a more detailed investigating problem 
let us remember the connections between the randomized searching structures 
investigated above and some more sophisticated deterministic searching structures 
as, e.g., the associative and orthogonal memories. 
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5. SEARCHING ALGORITHMS WITH LIMITED TESTING 
RELIABILITY AD WITH GENERALIZED LOSS FUNCTION 

In this chapter we shall go on with our investigations of the hierarchical searching 
algorithms as investigated in Chapter 4 and with respect to the same unit and loga
rithmic time computational complexities as above. Let us assume, however, that 
each testing oracle may fail, i.e. may output the wrong answer to the question whether 
the tested element from A belongs to V or not. The oracle represents an extra-
mathematical device which tests the elements of the basic set A9 so that the reasons 
and forms of its failure are also of an extra-mathematical nature and cannot be 
investigated within the framework of this study. Roughly said, with an unreliable 
testing oracle the final result is qualitatively less reliable than in the case of a failure
proof oracle defined above. Or, even if some element from Fis sampled, it need not 
be recognized. On the other side, the supervizor may report an element from Feven 
if V = 0, as some processor wrongly proclaimed an element to be in V. This possibility 
of error will be supposed to be quantifiable by the value of a probability measure 
and, for the sake of simplicity, this probability will be taken as the same for different 
elements from V, and the same but perhaps different from the former value for 
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different elements from A — V. Moreover, the errors will be supposed to be statistic
ally independent for different samples of different elements from A as well as for 
different samples of the same element from A so that the possibility of error is 
associated rather with the sample than with particular elements. 

Like as in Chapter 4, consider positive integers **?, m, and k and two systems 
{Ii7}?i'=15=1, {Z j ]^ ! of mutually statistically independent random variables defined 
on the probability space <0, £f9 P>. They take their values in A (for each i :g m, 
j ^ n) or in the set {1, 2 , . . . , m} of integers (for each / <j /<), and satisfy (4.1) (for 
each aeA9iS m9j S n) or (4.2) (for each s g m and / ^ k). 

A new building stone of our model are two random variables Q(0) and 2(1), 
defined on <.Q, £f9 P> and taking their values in binary set {0, 1}. Denote 

P({co: co e Q, Q(l, co) = 0}) = p, P({co; co e Q, Q(0, co) = 1}) = q . (5.1) 

In the classical Shannon information theory these two random variables define 
a binary channel, but not necessarily a symmetric one. Hence, the value Q(xv(a)> co) 
is the result of testing whether a e V or not, charged with the possible probability 
of error; this probability is p for a e V (when Xv(a) = 1)? a n d is q for a e A — V 
(when Xv(a) = 0)-

Finally, consider a real ft, 0 ^ ji ^ 1, and define random variable 5 = <5(L(), 
taking <£>, ̂ , P> into {0, 1} in this way: set 

n(co) = (nk)"1 X t Q(Xv(XZli(a)J(co)), co) , (5.2) 

and define 

{o>: (5(/(, co) = 1} = {co: 7r(cO) > Li} , 5(/x, CO) = 0 otherwise . (5.3) 

The structure 

X = <{XtJ}tmt"j„u {Z,}*=1, {eC0},-i.2., /-> (5-5) 

is called threshold hierarchical parallel probabilistic searching algorithm with 
the threshold value Li. 

Similarly as above (cf. (4.3)) a seemingly complicated relation (5.2) offers an 
intuitive interpretation. The value Q(xv(Xij(co))9 co) can be seen as a "report", 
whether the at random sampled element Xtj(co) from A belongs to V or not; this 
report can be wrong in the sense and with the probabilities described above. The value 

m n 

Q{CO) = (nm)-1 £ £ Q{xviXtj(co)), co) (5.5) 
i = 1 j = 1 

expresses the average value of elements among the sampled ones (with possible 
repetitions) which are reported to be in V. the average being taken over all samples 
and all processors. However, having accepted and developed the randomized hierar
chical principle, we do not compute the average value of reported elements from V 
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over all processors, but only over those of them which have been sampled by random 
variables Z- , . . . , Zk. Hence, n(co) can be seen as a statistical estimation of the value 
p(cjo) = (l/IV) YJ Q(Xv(a)> <*>)> like the value Q(CO). The statistical qualities of n(co) 

aeA 

are, in general, worse than those of Q(CO) (greater dispersion), but they improve 
with k increasing. 

Take the random event <5(/i, co) = 1 as the decision that V + 0 and as the refusal 
of the alternative decision that V = 0. Then <5(ju) can be seen as a statistical 
decision function accepting the hypothesis V =t= 0 just in case the relative frequency 
of samples which are reported to be in Vexceeds an a priori given threshold value /L 
As can be easily seen, if p = q = 0 and pi = 0, our model reduces to the one in
vestigated in Chapter 4. If q > 0, then $(/*) > 0 and 7r(co) > 0 may occur with 
positive probabilities even when V = 0. 

A simple factorization yields 

P({co: co e 0, Q(Xv(Xij(oj% co) = 1}) = 

= P({co: to e .0, Q(l, o>) = 1}/{O>: ( o e ^ , ^( .Ks jH) = 1}). 

.P({a):OieO,xV(^ : i(O)))= 1}) + 

+ P({to: co e (2, Q(0, co) = 1}/{CO: co e Q, Xvftijp)) = °}) • 

.P({co:co6O ? XV (X I») = 0}) = 

= (1 - p) P({co: co e (2, Kt7(co) e V}) + q P({co: © e O , X0(co) eA~ V}) = 

= (I - p) v + q(l - v) , (5.6) 

using (4.1) and denoting v = card V/card AL Denote the last expression in (5.6) 
by pv and suppose that p, q < j . This assumption will be taken in all the rest of this 
chapter in order to simplify our considerations. Then pv is an increasing function 
of the argument v, hence, pv > p0 = q for each v > 0. So the test of the hypothesis 
V = 0 against the alternative V 4= 0, i.e. v > 0, can be converted into, or understood 
as, the test of the hypothesis that 

P = P({co: co e O, 0 ( Z F ( X ^ C O ) ) , CO) = 1}) = Po = q (5.7) 

against the alternative that Pv = pv> 0. Random variables it and Q can be taken as 
statistics and S(fi) as a statistical decision function corresponding to the latter test. 

Hence, the problem whether V = 0 or F 4= 0, ie . whether v = 0 or v ^ 1/N, is 
converted into the test whether P = q, or 

F £ pm = (1 - ^ i Y " 1 + q(l - iV"1) = g + (1 - p - q)N^ > q , 
(5.8) 

as p, q < \ implies p + q < 1. First of all, consider the random variable Q denned 
by (5.5). Set K = mn, and for each / g K, 

Yj(a) = Q{Xv(X([(l - 1 ) /B] + 1, / - ([(/ - l)/«]) n, a))), co) , (5.9) 
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writing X(i,j,oj) instead of X^(o>). This enumeration defines the ordering 

Xn(cO), X12(OJ), . . . . Xln(co), Ar
21(cO), . . . , X2n(co), X31(co), . . . , Xmn(co) of random sam-

K 

pies. Clearly, Q(CO) = QK(CO) = ( £ Y/(cL>))K""1 and Yj5 Y2, . . . , YK is a sequence oi^ 
i= i 

statistically independent and equally distributed random variables with common 
expected value fi and dispersion a1, each of them taking <<X Sf\ P> into [0, l j . 
Hence, V + 0 iff fi ^ c/0 = p1/ jVl V = 0 iff fi = q < q1/N. The strong law of large 
numbers yields that 

P({co: cO G & , lim Ox(cO) = fi}) = 1 . (5.10) 

Take f-ie(q, q), <y = p1 / / v > c/, and define a decision function 8* by t)*(cO) = 1 (i.e. 

/7 ^ q and V4= 0), iff QK(o>) ^ /i, set <5*(cO) = 0 (i.e. /I = q and V= 0) otherwise, i.e. if 

QK(OJ) < //. Considering the probability of error connected with this decision func

tion, the threshold values /i outside the interval (q, q) can be evidently omitted, as 

in such a case the total probability of error would be always greater than that for 

some fie(q,q). Let V= 0, i.e., fi = q, but an error has been made, so that <5*(cO) = 1. 

It is the error of the second kind, which cannot occur in the model examined in 

Chapter 4. Now, 8*(OJ) = 1 iff QK(OJ) ^ /j, i.e. if QK(OJ) - fi ^ //. — q, and //. — q 

can be written as cxjN for appropriate cx, 0 < cx :g 1 due to (5.8). Because the 

probability distribution of QK is asymptotically symmetric with respect to /7 for N, 

K -> oo, the probability with which QK(OJ) — fi ^ //. — q holds can be written as 

i P({cO: co e Q, \QK(W) - /Z| ^ Cl/JV}) (5.11) 

in the sense that 

l im P ( ( o j : r^ 6 0- g*M zA=J-^gD = j (5.12) 
N,K-oo i P(cO: cOG Q, \QK(OJ)- fi\ ^ cjN}) 

Similarly, let V + 0, i.e. fi ~> q > q, but the error occurs, so that 5*(co) = 0. 

It is the error of the first kind, investigated already above, in Chapter 4. This is 

possible iff ^(cO) < //, hence QK(OJ) — fi = c2jN for appropriate c2 e (0? 1>. The 

same way of reasoning as above enables to approximate the probability of this 

error by 

i P({co: cO G Q, lO^cO) - /2| ^ c2/N}) . (5.13) 

If we want to majorize both the probabilities of error by an e > 0, choosing K 

large enough, the optimal solution is to take /i "in the middle of (cy, q)", hence 

I1 — \(q + <?% then Cj = c2. As can be easily seen, if we want to obtain just a qualit

ative or "order" estimation of K = K(N) up to a multiplicative constant, such 

a specification of H is not necessary. In every case, probability of error resulting 

from the use of the decision function 8* is uniformly (with respect to all V c A) 

majorized by e > 0 iff for some c G (0, 1) and s' = e/2 

P({cO: cO G Q, \QK(OJ) - fi\ ^ c//V}) ^ e' . (5.14) 
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The well-known Chebyshev inequality (cf. [1], e.g.) yields 

P({m: coeQ, \gK(co) - fi\ g 5}) < cr^KO*2)^1 , (5.15) 

as the expected value of QK is fi and its dispersion is a2JK. Hence, for S = c/N 

P({OJ: a) e Q9 \QK(O>) - p\ ^ c/N}) g N2a2lKc2 = const. iV2/K , (5.16) 

and this value can be majorized by ef only if K 2> c3/V
2 for an appropriate c3 > 0 

(namely, for c3 ££ cr2/c2a'). As far as the constant c3 is concerned, the estimation 
for K is very rough, however, it cannot be replaced by an estimation from ^(IV2), 
as the following consideration informally proves. 

When applying the central limit theorem (cf. e.g., again []]) to random variables 
Yu Y2, ..., YK, we obtain 

irfa)-Kfi n 
PI )co: co e fl, a < l i t — — . < ^ U -* <p(p) - 0(a) , (5.17) 

— o o < a < j 8 < o o . Here the convergence is taken in the sense that the ratio of 
both the sides tends to one as K -» oo and # is the distribution function of the normal 
(or Gauss) probability distribution iV(0, 1). Modifying and simplifying (5.17) we 
obtain 

/f (__-»£ Y^))-/* n 

P(Jco: co e fi, a < - = i - — < /J l j -> _>(/?) - 4>(a), (5.18) 

P( ico: co e Q, —a < o*:(co) — fi < ex. — v ) = 

= P | jco: co e fi, joK(co) - / . | < a — 1 ] -> $(a) - * ( - a ) . (5.19) 

If 5 = a{ajs/K), then a = d(y/K/a'), hence 
P({co: co e fi, |e«(a>) - /ZJ > «5}) -> 1 - <f> (c5 — ) - <P (~o — \ . (5.20) 

If c5 = c//V and if the right-hand side in (5.20) is to be majorized by s' > 0, K must 
be choosen in such a way that 

•GfM-„f)>'-'- <"•> 
However, if K = _.(#) 6 *(/v*2), then J(K(Nj) e *(iV), so that c JKJ(Na) - oo for 
N -+ co, hence 

u_ # (£ -W-iA _ lim * /_ £ __-3ft , ^ , t . {m 
N-^OD \N a J N-^oo \ N a J 

So, we need K(N) e (P(N2) in order to assure the validity of (5.21). 
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As QK is the arithmetical average of statistically independent and equally distributed 
random variables YUY2,...,YK the dispersion of gK is uniformly (with respect 
to K) the minimum one among all unbiased estimates of fi based on Yl9 Y2,..., YK. 
Evidently, n = nk belongs to such estimates, hence, for each 3 > 0 and each k such 
that K = kn, 

P({co: (oeQ, \nk(a>) - fi\ £ 5}) £ P({to: co e Q, \gk(oj) - fi\ £ 8}) . (5.23) 

Hence, the extent K' = kn of sample necessary to majorize the left-hand side in 
(5.23) by a given s > 0 is at least so large as in the case when the right-hand side 
in (5.23) is to be majorized by the same e. So, if S = c/IV, then Kf = kn ^ cN2 

for an appropriate c > 0. The unit time complexity TCU(3T) of a threshold (two-
level) hierarchical parallel probabilistic searching algorithm with characteristics m, 
Ji and k is defined by a,w + a2k + a3 for appropriate a,, a2 > 0, a3 S; 0. As we 
cannot choose, simultaneously, k = k(N) e #(N) and /? = n(N) e #(N)9 neither 
(xxn + a2k + oc3 can be in <?(IV). Using an analogous argumentation we can prove, 
that the logarithmic time complexity cannot belong to (̂IV log IV). So we have proved 

Theorem 5.1. Consider the model and notations introduced by (5.4), let 

i > P({co: a) e Q, Q(0, a>) = 1}) > 0 , (5.24) 

i > P({o>: co G fi, Q(l, to) = 0}) £ 0 . 

Then there does not exist a threshold two-level hierarchical parallel probabilistic 
searching algorithm for <A, V> the probability of error of which would be majorized 
by a given e > 0 uniformly for all V cz A and the unit time complexity of which 
would belong to <?(1V)-class (the logarithmic time complexity of which would belong 
to (̂IV log IV)-class, resp.). 

The negative result just proved is intuitively easy to understand. If an element 
outside Vcan be wrongly tested as being in V, the test cannot be terminated having 
obtained the single information that an element of Vhad been found. So, the relative 
frequency of such reports in a long series of samples must be taken into consideration. 
A more detailed analysis of what it means "a sufficiently long" series leads to demands 
incompatible with capabilities of two-level hiearrchical parallel probabilistic algo
rithms with 4>(N) — (̂ (IV log IV)-, resp.) time complexity. On the other hand, if 
all elements from A — Vare decided correctly and just some elements from Vcan be 
"omitted", then &{JN)9 re p . #(JN log IV)-time complexitives are reachable, just 
with multiplicative constants enlarged. 

Theorem 5.2. Consider the model and notation introduced by (5.4), let 

P({co: co e fi, Q(0, to) = 1}) = 0 , (5.25) 

1 > P({co: coeQ, Q(i, to) = 0}) = 1 - p £ 0 . 

Then there exists HPPSA in the sense of Chapter 4 (i.e. not in the thershold sense) 
for the problem {A, V} the probability of error of which is uniformly majorized 
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by a given e > 0 over all V c A and its unit (logarithmic, resp.) time computational 
complexity is in 0(VjV)-class (ln &(-J(N) log IV)-class, resp.) 

Proof. Setting v = card V, 

P({w: (o e Q, Xu(co) e V}) = vN~~l , 

P({(o: (o E G, Q(xAXM)* w ) = *)) = P ^ " 1 • (5-26) 

If v = 0, assertion holds trivially, if v > 0, then discovering of an element of V 
implies that v + 0 and situation defined by (5.25) is the same as in the case of failure
proof two-level HPPSA with v' = vp, hence, as in the case of <A0, V'> with card V : 
: card A'0 = t/IV™1 = vpN^1 (e.g., F = F, A c A0, card., Ai0 = IV x = IV/p). As 
there exists a two-level HPPSA for <>40, F> with time computational complexity 
in ©(V-V-J-class (in (D(\fNx) log IVj-class, resp., IVx = card y40), and because 
of the simple fact that V-Vj = VO/P) V ^ and J(Nt) log Na = J(ljp) v(N) log IV + 
+ log jT1) , the classes &(JN) and (P(V-VJ ($(V(N)logN) and (P(V(IVX) log IVj 
resp.) are identical and the assertion is proved. 

Idealized version of the threshold HPPSA is the algorithm obtained when the 
decision function S(S((o) = 1, if n(w) 5; /L, <5(cO) = 0 otherwise) is replaced by the 
decision function <5*, where <5*(Oj) = 1, if Q(CO) ^ p, 5*(o) = 0 otherwise. 

Theorem 5.3. Let the notations and conditions of Theorem 5.1 hold, let a functionf: 
9t -* 9t be given, f(IV) ~~> GO as IV -» oo. Then there exists two-level threshold 
HPPSA the idealized version of which has probability of error majorized by a given 
e > 0 uniformly for all searching problems <A, V> such that card V ^ f(card A), 
moreover, the unit (logarithmic, resp.) time computational complexity of this algo
rithm is in <9(Njf(N)) (in &(Nd log NJf(N))9 resp.)-class, hence, in *(N) (in o(N log IV), 
resp.)-class. 

Proof. The proof copies the pattern of the proof of Theorem 5.1, so we mention 
explicitly just the main points. We test, whether V = 0 (v = 0) against the alternative 
that v^f(N), IV = card A, on the ground of Yx((o), Y2((o), ..., YK((o), K = nm. 
Setting p and q as in (5.1), we can easily deduce, that if v = v(N) = card V, then 

P({(o:coeQ, Y^co) = 1}) = 

= q PK{(o: coeQ, Yt(co) e A - V)) + (1 - p) P({co: coeQ, Yt(co) e Vj) = 

= q(\ - v(N)lN) + (1 - p) (v(/V)//V) = 9 + (1 - p - a) (v(N)/iV) = 

= pv(N). (5.27) 

Conditions of Theorem 5.1 yield that p -F q < I, hence, we test fi ( = EYt) = p0 = ^ 
against /I = pt,(iV) > p0. 

K 

Recall that <5*(co) = 1 iff Q(CO) = K"1 £ y.(co) ;*> L/? then there exists, for each 
i= i 

threshold value LI e (p0, pv(N)), a constant cx > 0 such that S* yields an error if 

IK"1 X Yt(co) - /i| £ SN = cx </V)//V . (5.28) 
i - 1 
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We use, again, the Chebyshev inequality and the fact that estimation of K as a function 
of IV, obtained from this inequality, is the best one up to multiplicative constant. 
We obtain 

\\ ' l - M N f; ~~ (c, v(Iv)/Iv)2 K l ; 

Majorizing the right-hand side of (5.29) by e > 0, we obtain 

D2Y IV2 IV2 

K = K(N) > — ~ - — = c2 -~-^— , (5.30) 
1 ' CIB (v(N))2 (v(N))2 { ) 

and this function is in (IV2/(f(1V))2), if v = f(N) (the worst case). Hence, for m(N) e 
e (9(y/(K(N))), n(N)e#(y/(K(N))) the unit time computational complexity for 
d*(o)) is aA m(IV) 4- a2 w(IV) + a3, hence is in G(Njf(N)) cz ^(IV)-class, The assertion 
for logarithmic time complexity follows in the same way. • 

Another possibility to overcome the negative results of Theorem 5.1 consists 
in an appropriate change of the used loss function, i.e., in a relativization of the loss 
suffered when the decision about the set Vis wrong. As can be easily seen, probability 
of error is nothing else than the expected value of the most simple loss function 
taking the value 0, if the decision is correct, and taking the value 1 if the decision 
is wrong. 

If V = 0, then the wrong decision that V 4= 0, if it is possible, i.e., if P({OJ: co e Q, 
Q(0, co) = 1}) > 0, is a qualitative decision not implying some more consequences 
concerning the set Vor its elements. Such consequences would be, necessarily, either 
tautological or false. It is why the loss connected with this kind of error can be taken, 
in what follows, as unit or constant. On the other hand, the loss connected with the 
wrong decision that V = 0, if V 4= 0, will be taken as an increasing function, say F, 
of the relative frequency vJN of elements from Vin A. In this moment we suppose 
only that F is a strictly increasing and continuous mapping of the unit interval <0, 1> 
onto itself, so that F(0) = 0 and F(l) = L 

Formally, loss function R maps the Cartesian product 3) x 0>(si) into the set 
<0, oo) of reals. Here 9 = {D0, DJ is the set of possible decision (D0 is "V = 0", 
D1 is "V + 0") and 0>($4) = (V: V c A). According to the informal considerations 
above we assume that 

R(D0, V) = F(card V/card A) for each Ve 0>(A) , (5.31) 
hence, 

R(D0, 0) = 0 , R(Di9 V) = 0 for each Ve 0>(A) - {0} , 

R(DU 0) = y > 0 . 

Now, considering decision functions d or S*, defined by n(w) or by Q(OI), as random 
variables, also the loss function can be taken as a random variable (R(8(co), V) or 
R(3*(w), V)) with values in <0, oo). All random variables used to define R(S(*), V) 
and R(8*('), V) are uniquely determined by random variables Xtj and Zh hence, 
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the assumptions concerning the uniform probability distributions of the latter 
random variable define uniquely the expected values E(R(5(*), V)) and E(R(5*(*)9 V)). 
These expected values depend, of course, on the parameters m, n, k of the used 
HPPSA and we shall investigate the conditions under which, given e > 0, 

E(R(S(*y V))<e9 or E(R(5*(*)9 V)) < s (5.32) 

hold uniformly for all V c A, 

However, if V = 0, then 

£(*(«*(•). 0) = y . P({OJ: coeQ3 Q(Q>) £ ft)) = 

= (y/2) P({O>: a) e Q9 \Q(W) - fi\ £ cjN}) (5.33) 

for some c > 0, if fi = q = P({co: we i3 , Q(0, &>) = 1}) > 0. For the reasons 
explained above, the right-hand side of (5.33) cannot be majorized by an s > 0 
with K = mn e o(N2), what leads to the same unpleasant consequences as those 
in Theorem 5.1. It is why we shall limit ourselves only to nonempty V's when con
sidering (5.32). 

If v = card V 2; 1, an easy calculation yields 

E(R(&*(<o), V) = F(v//Y). P({co: coeQ, 5*(co) = D0}) = 

= F(v/N) P({eo: co e £>, g(a>) < JI}) = 

= i F^/iV). P({OJ: OJ e &, |e(c») - /*| £ c//V}) £ 

< (4) F(vlN) Y (5.34) 
~ w v / ; (c / /v) 2K l ; 

for an appropriate constant c > 0. Hence, to majorize the right-hand side of (5.34) 
by £ > 0, we must take K = K(iV) = Cj/V2 F(vJN) for an appropriate constant 
ci > 0. As F(vjN) -* 0 for /V -> 00 (v is fixed), K(iV) e ^(N2). So we have proved 

Theorem 5.4. For A[, V9 N and v as above, there exists a two-level threshold 
HPPSA, with generalized loss function defined by (5.31) and with F satisfying the 
conditions above, such that the idealized version of this HPPSA has probability 
of error majorized by a given s > 0 uniformly for all nonempty V cz A. Its unit time 
computational complexity is in &(N V(F(*VN)))-class, i.e. in ^(iV)-class (its logarithmic 
time computational complexity is in @(N log N <y/(F(vjN)))-c\a&s9 i.e. in #(NlogN)-
class). 

The assertion concerning the logarithmic complexity can be easily proved in the 
same way as above. Hence, if F(vjN) = v/N2, then the unit time complexity is 
in ^(V^-class. So, for each 0 < v ^ card A there exists a positive integer w(v) 
such that the idealized version of an appropriate two-level threshold HPPSA with 
unit time complexity w(v) has probability of error smaller than s > 0 uniformly 
for all 0 4= V cz A and independently of N. The loss function F(vjN) = v/N2 com-
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pletely eliminates the negative influence of searching problems with large A9$ and 
small nonempty V's as far as the time computational complexity of parallel as well 
as sequential searching algorithms is concerned. What is important is the fact that 
this assertion holds even in case when the probability of the wrong decision about 
elements of A — Vis positive, i.e. in the case of threshold algorithms. The problem 
is discussed, in more details, in [2] and [3], for the case of sequential algorithms and 
using a slightly different terminology. 

As an immediate and natural continuation of our former considerations we may 
consider the Bayesian model, when the tested set V is supposed to be sampled 
at random and the algorithm is classified according to the expected value of the loss 
function with respect to the apriori distribution. So, consider a random variable 
if taking the probability space <£>, £f9 P> into &>(A) and define the Bayesian risk 
£(E(i?(<5*(-), r(-)))) as follows: 

E(E(R(8*(>), r ( - ) ) ) ) = I [ W * ( * ) > V))] • K{™ co e Q9 f\co) = V}) . 

Supposing that the value of £(JR((5*(«), V)) depends only on the cardinality of V, 
Bayesian risk can be read as 

N 

Z [£(#(£*(•)> Vn)j] . P({w: coeQ, card r(co) = n}) , (5.36) 
n = 0 

where N = card A and Vn is any n-element subset of A. The demand to majorize 
the Bayesian risk by an e > 0 is, of course, much weaker than that of uniform 
majorization and the choose of if ultimately determines the quality of the algorithm 
in question. The next example shows than even in case of a quite natural apriori 
distribution the majorization of the Bayesian risk can be reached within a constant 
(i.e. independent of N) unit time computational complexity. 

Let Ul9 Ul9 ..., UN9 N = card A, be statistically independent and equally distributed 
random variables, each of them taking (Q, Sf9 P> into {0, 1}, denote 

a = P({co: coeQ9 U((co) = 1}) . (5.37) 

Given an ordering A = {au a2,..., aN}9 set 

r(co) = {at: at e A9 U((co) = 1} (5.38) 

and suppose, to avoid the trivial cases, that 0 < a < L Evidently, for each O g n ^ 
SN9 

<{«..*-n.>-.}>-$-x«--r-. («) 
and £ card ^(*) = ocN. Consider the most simple two-level HPPSA with p = q = 1, 
i.e. with reliable testing oracles) and with parameters m, n9 k. The only we have 
to prove is that, given e > 0, there exists K = mn independent of 1V such that the 
Bayesian risk that no processor finds an element of V = i^(co) is majorized by e. 
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This Bayesian risk reads, as can be easily seen 

f (1 - (n/Njf (N) a"(i - af""1, (5.40) 

as no error can occur if n = 0. 

Choose 3 < min {a, I — a}, the strong law of large numbers yields that 

P({OK co E Q, Jim AT1 card f(co) = a}) = 1 . (5.41) 
N-+m 

Hence, there exists /V0 = N0(e9 5) such that, for each IV > /V0, 

P({cO: to e Q, AT1 card r(co) e <a - 8, a + £>}) > 1 - (e/2) . (5.42) 

Set M\ = ["(a - <5) /V], M2 = [(a + 8)N\ and divide the sum in (5.40) into three 
parts; from n = 1 to M l5 from /? = Mx + 1 to M2, and from w = M2 + 1 to IV 
(the first and the third one may be empty). Replace (1 - (njM)f by 1 in the first 
and third sum and 1 — (vjN) by I — (a — S) in the second one. The Bayesian 
risk in question can be majorized, consequently, by 

+ £ M aV ~~ a)N~~n = p ({^ : ^ e ^ c a r d ^ H <Mi}) + 

+ g* P({co: co 6 Q, Mx S card TT(CO) £ M2}) + 

+ P({co: e £2, card 1T(ca) > M2}) ^ e/2 + qK , (5.43) 

here q = 1 - (a - 3). Taking K > (log2 (e/2))/Iog(l - a + <5), the right-hand side 
of (5.43) is majorized by s. Hence, if N < N0(e, <5), the uniform majorization of the 
loss function implying trivially also the majorization of the Bayesian risk can be 
easily reached by appropriate K = K(s) independent of IV, if IV ^ N0(e, <?)> ar1d the 
example is closed. 

The Bayesian model is connected with all the philosophical, methodological and 
practical problems involved by the Bayesian approach in statistical decision making 
in general and it is not the aim of this work to reproduce or to enlarge this discussion. 
In every case, the Bayesian approach is practically justified mainly in case we have 
some reasons for a choice of a particular apriori probability distribution or at least 
for giving a preference to a narrow class of such distributions. However, such reasons 
or justifications must be, of course, of extra-mathematical nature, i.e., must be 
implied by an apriori, perhaps partial, knowledge of the set V, but such an assumption 
contradicts to the "black-box principle" adopted above (introduction of Chapter 4). 
It is why we shall not develop the Bayesian model in more details and close this 
chapter by considering another example which can be taken as alternative to the 
one introduced above. Namely, let us take such an apriori distribution that generates 

48 



equiprobable distribution on the set (0, 1, 2, ..., N] of possible cardinalities of the 
tested set V, hence, 

P({a>: co G Q, card r(ta) = n}) = (/V + 1)"* , n = 0, 1, . . . , N . (5.44) 

Evidently, the Bayesian risk reads 
N 

£(JV + i ) " ^ 1 - ' W - (5.45) 
i = i 

Using the well-known fact that (1 — xJN)N /" t~~x for N --> co, an easy calculation 
yields 

£-i_ti_iy<2 £f,-i 
i-i AT + 1 V « / N 1=1 \ TV 

= i y ( /
1 -WW < y i ( e -<^ ) ) = 

TV ,-=! V A' / 1=1 N V ; 

y I lJ_Y __ i C/eK/w) - (__«__) = i e* - e^w 

i = i /V \eKIN) ~ N 1 - (l/eK/") ~ ~ N e*(e*lw - f 

1 ! 
< 1) TV eK,N - 1 

(5.46) 
IfiC > 1/e, then X//V > l/(e/v), hence, 

oo oo 

X(X/N)7i! = e*/N = 1 + K/N + Y,(KlNYln > l + l / ( £ i V ) > ( 5- 4 7) 
? = 0 / = 2 

so that 

l / (e* / i v- l ) < f i (5.48) 

and the Bayesian risk is majorized by e uniformly for all N and all n ^ JV, similarly 
as in the example above. 
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6. PARALLEL ALGORITHMS FOR MONTE-CARLO METHODS 

In a number of problems of various nature, when taking a decision or looking for 
a solution such characteristics or parameters of the investigated systems are of 
importance, which can be defined as mean values of certain random variables. 
Because of many reasons of theoretical as well as practical kinds these values need 
not be immediately accessible (measurable or observable), they need not be even 
accessible through an appropriate computation. When looking for appropriate 
approximations or estimations of such values the following straightforward idea 
arises — to take several statistically independent realizations of the random variable 
in question, to compute the average value of these realizations and to consider this 
value as an estimation of the unknown expected value. The soundness of such an 
argumentation is guaranteed by the well-known strong law of large numbers accord
ing to which the average value of an increasing number of statistically independent 
realizations of the same random variable tends, with the probability one, to its 
expected value. In symbols, if Xu X2, ... is a sequence of statistically independent 
and equally distributed random variables with expected value EX < oo and dis
persion D2X < oo, defined on an abstract probability space <(2, S?9 P>, then 

P({co: co e O, lim (1/n) £ Xt(co) = EX}) = 1 . (6.1) 
n -* oo i = 1 

n 

In which sense and in which degree the average value (Ijn) £ X^co) can serve as 

a "good enough" approximation of £X? This is described by Chebyshev inequality, 
another well-known basic result of probability theory which sounds, that for each 
fi>0 

P({a>: co 6 Q, |(l/«) £ Xt(co) - £X| £ e}) < D2X\m2 . (6.2) 
i = i 

In general, as already mentioned, the term Monte-Carlo method covers any 
computational or decision-making procedure in which the expected value of some 
random variable is replaced by the average value computed from a number of 
statistically independent realizations and the resulting risks are accepted. The sup
posed independence of random realizations (samples) immediately involves, as in 
the foregoing chapters, the idea of a possible parallel realizations of these samples. 
A more detailed investigation of such possibilities will be our aim in this chapter. 
It is why we may borrow the model defined in Chapter 4 in order to consider a finite 
set A = {au a2, ..., aN} together with its subset Vaccessible only through a testing 
oracle which works on the "black box" principle. However, instead of investigating, 
whether V = 0 or not, our aim will be to obtain the value p = card F/card A or 
at least an estimation of this ratio, which is "good" in a sound and formally definable 
sense. 

Supposing that one processor inspects systematically the set A, the correct value 
for p can be obtained in $(N)-tirne. Here we neglect the time demands to assure the 
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systematical character of the searching process (each element tested just once), 
to enregister the number of elements from V, and to compute the resulting ratio. 
By an unlimited parallelization which uses a complete, but from the point of view 
of computational complexity "free of charge" co-operation and synchronization, 
the constant, i.e. independent of IV, time complexity would be achievable. However, 
because of highly idealized assumptions connected with such a model we shall 
not go into details and concentrate our attention to algorithms of probabilistic 
kind. In such a case, first of all, we have to specify, what it means a "good enough" 
estimation of p. In what follows, we shall take (6.2) as a good quantitative measure 

n 

of the quality of the estimation (ijn) ^Xt(co) of the expected value EX. According 
i= 1 

to this relation, the quality of estimation is parametrized by two values e > 0, 
giving the maximal acceptable absolute difference between the average and expected 
value, and S > 0 giving the maximal value of probability with which the threshold 
value e is crossed. This other parameter value, i.e. S, will be always taken as a free 
parameter of our model, the value of which is determined by exclusively extra-
mathematical reasons of practical and applicational nature. In case the value e > 0 
is also independent of the extent IV of the set A, we may take 

n > D2(xv(Xi(a>)Wd = p(\ - p)ls28 (6.3) 

in order to assure that for n statistically independent random samples from the 
uniform probability distribution over A the inequality 

P({«K o> e Q, |(l/n) £ Xv(Xi(o>)) - p\ ^ s}) < 5 (6.4) 
i= 1 

will hold. Here X,-: (Q, £f, P) -» A is a sequence of statistically independent random 
variables such that 

P({co: coeQ, Xt(co) = a}) = 1/IV (6.5) 

for each i = 1, 2, ..., and each a e A. As p(\ — p) <L \ for each p e <0, 1>, we may 
take n ^ \£25 independent of p. The time complexity of a probabilistic (sequential 
or parallel) algorithm for obtaining an estimation p(co) of p satisfying (6.4) is, there
fore, constant (independent of IV). Because of the fact that this dependence will lie 
in the centre of our further considerations, this case will not be developed in more 
details. 

In what follows, let us focus our attention to the ways in which so called 8-correct 
estimates of the value p -= card V/card A can be obtained through an appropriate 
hierarchical Structure of parallel probabilistic algorithms. The estimate 

p(co) = (\jn)YJXv(Xi(co)) (6.6) 
i= 1 

of the value p is called <5-correet supposing it satisfies (6.4) for s = 1/2IV. If it is the case, 
then with probability at least I — S the true value of p is in the interval (p(co) — 
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— 1./2TV, p(o)) 4- 1/2IV) of reals; this interval contains at most one value of the form 
vfN, hence, with the probability at least 1 — S the correct value. 

Consider N% processors which work in parallel, each of them repeating statistically 
independent random samples from the set A with respect to the uniform probability 
distribution over A. The sampled elements are tested and sent to the higher-level 
processors together with the total number of sampled elements (with possible repeti
tions) and the number of samples belonging to V. Intuitively, higher-level processors 
can be taken in the same sense as in Chapter 4, First of all, consider the case when 
the higher-level processors are hierarchically structured in such a way that to each 
higher level processor a fixed, finite and nonempty, in order to avoid the degenerated 
cases in what follows, set of processors of highest lower level is ascribed (subjected, 
ordered). These sets define disjoint covering at each level, so that each processor, 
with the exception of the (supposedly unique) highest-level one, is subjected to just 
one processor of the lowest higher level. However, the higher-level processors are 
supposed not to be able to inspect the outputs of the subjected processors systematic
ally and exhaustively, but only on the ground of a random sample from the set of 
the subjected processors. For the sake of simplicity let us assume, first, the uniform 
probability distribution over the set of (immediately) subjected processors. Hence, 
the activity of each higher-level processor consists in taking a finite number of 
statistically independent random samples from the set of its subjected processors 
with respect to the uniform probability distribution and without any possibility 
to recognize and perhaps eliminate possible repetitions. Then the higher-level pro
cessor asks each of the sampled subjected ones for the total number of samples made 
by this subjected processor and for the number of samples which were in V. Finally, 
the higher-level processor sums both the series of numbers and sends the result 
to its superior supposing it is asked to do so. The unique highest-level processor 
combines in the same way the results obtained from its subjected processors sampled 
at random and outputs the ratio of the two sums as an estimation of the unknown 
value p. In the formal description presented below we shall consider a slightly 
modified version of this approach, when each processor computes the relative 
frequency of samples belonging to V or of at random sampled outputs containing 
the information about an element of V, and only those relative frequencies are, 
in case the corresponding outputs were sampled, sent to the higher-level processors. 

Let K }£. 1, iVj, TV2> * • •* NK be natural numbers (numbers of processors of particular 
levels) such that Nt > N2 > ..• > NK = 1, let kl9 k2i ..., kK be positive integers. 
Let Xij, i = 1, 2, ... ,/Vj, j = 1,2, ...,&!, be statistically independent random 
variables, defined on the fixed probability space <.Q, £P, P> and taking their values 
in A. Let, for each / = Nl9j S kuae A, 

P({co: (oeQ9 XU(CO) = a}) = 1/JV . (6.7) 

Set 

' « ( • ) - X F ( ^ U ( - ) ) . (6-8) 
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where Xv is the characteristic function of the set V cz A. Hence, Xu are statistically 
independent random variables taking <(2, 9, P> into {0, 1} in such a way that, for 
each i <; Nl9j % k-, 

P({o>: to e Q, Xfi(O>) = 1}) = p , (6.9) 

P({©: co G Q, Zf/(ct)) = 0}) - 1 - p . 

Set, for each i <J IVl5 

^ H = ( i / f e i ) E ^ H - (6.10) 
1=i 

Evidently, Y/, Y],..., Y#t are statistically independent random variables with the 
expected value EY1 and dispersion D2Yl identical for each i ^ Nt and such that 

EYi -- £#,., = p , D2Y* = (1/fc.) D2XU = (1/fc.) p(l - p). (6.11) 

For each i = 1, 2, ..., K — 1, let ̂  be a decomposition of the set {1, 2, ..., Nt} 
of integers into Ni+l disjoint nonempty subsets 9l\9 Wl9 ..., 9ll

N{+1, hence, 
N. + i 

U9lj = { l , 2 - . . . , N , } , fc*j=>9lin9lj = 0 . (6.12) 
7=1 

For each i ^ K — 1, fc g /Vi+1, Z ^ fci+1,let Z, fe z be a random variable taking 
<0, 5", P> into 91', hence, for each s e 9t<, 

P({co: weQ, ZLkJ(a>) = s}) = (card %)-* . (6.13) 

All the random variables Zikl are supposed to be statistically independent and we set, 
for each i ^ K - 1, fc ̂  / V ^ , 

^1(o>) = (l/fc i + 1)lV^ / ( c ) ) . (6.14) 
1=1 

Namely, 

* ) = ( « ! € , , » • (6-15) 
1=1 

This value will be denoted by F*(co) with an explicit introduction of other parameters, 
if necessary and will be understood as a statistical estimation of the unknown value 
p. The quality of this estimation will be compared with the quality of the best or 
optimal (in the sense of the minimal dispersion) estimation of p obtainable from the 
set {Xij(oj)}^l ^ t of observations. This estimation will be denoted by Y0 with an 
explicit introduction of other parameters, if necessary and it simply reads as 

r 0 H = (-/*,*,) I I xu(co) = (i/jv1fc1)£' ZxAXtA*))- (6-16) 
i = i j = I i -1 j = l 

This estimation is accessible under the condition of full cooperation and synchroniza
tion of processors and its characteristics are defined by 

£Y0 = p , D2Y0 = (1/tf.fc.) p(l - p) . {611) 

Clearly, EY* = £Y0 = p. Well-known assertions of probability theory then yield, 
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that the (arithmetical) average value is the unbiased estimation of the expected 
value the dispersion of which is minimal among all unbiased estimations of this 
value, hence, D2Y* j> D2Y0. in the rest of this chapter we shall investigate the way, 
in which D2Y* depends on kl9 k2,..., kK. Or, their sum kt -F fc2 -F ... + kK repre
sents, in the roughest approximation, the time complexity of the parallel probabilistic 
algorithm which estimates the value p = card V/card A and which was described 
above. For the sake of abbreviation we shall refer to this algorithm as to si\ with 
further parameters possibly introduced. 

Lemma 6.1. Let Yj,Y2, ..., YM be statistically independent random variables,, 
equally distributed and taking the probability space <f2, if, P> into the Borel line, 
let EYf = ft < oo, D2Y. = a1 < oo for all i jg M. Let Z,, Z2, ..., Zx be statistically 
independent and equally distributed random variables, taking (Q, Sf, P> into the set 
{1, 2, ..., M} of reals in such a way that 

P({co: to e Q, Zt(co) = ;}) = M~l (6.18) 

for each i 51 fc and / 51 M. Set 

>" = (1/^)1 > W (6-19) 
then 

£Y* = / i , D2Y* = 
M 

= D2((l/M) X Yt) (1 + (M - l)/fc) = (cr2/M) (1 F (M - l)/fc) . (6.20) 

Proof. It is known or can be easily checked, that if X, Yare statistically independent 
random variables and a, h are non-negative reals such that a F b > 0, then 

D2(aX) = a2 D2(X), D2(X + Y) = D2(X) + D2(Y) . (6.21) 

Hence, 

D2 / " _ ! _ (fljsf + bY)) = ** , D2X -f - r - ^ - r D2Y. (6.22) 
\a + bV 7 a2 + b2 a2 + h2 X J 

By induction, for each M-tuple <bl9 b2,..., bM> of non-negative integers such that 
M 

I*;-*. 
j = t 

/ i M \ 2 M 

Denote by ^(o*), 1 ^ i ^ M, the random variable giving the number, how many 
times the value i has been sampled by some Zpj ^ k. Hence 

^ : < O , ^ , P > ~ > { 0 , l , . . . , f c } , (6.24) 

Ai(co) = card {j: j 5̂  k, Z;(o>) = i} , (6-25) 
M 

£.4,(a>) = fc. (6.26) 
i = l 
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A simple factorization yields 

D2Y*^(a2jk2) £ [(£«»). 
< a 1 , a 2 , . . . , a M > e { 0 , l f . , . , f c } M , I a i = fc »= 1 

.P({^:^eO,<A1(a>)5...,AMH> = <a 1 , . . . , a M >}] , (6.27) 

and after an easy calculation we obtain 
M 

D2Y* = ( ^ ) £ x l>2-
1 = 1 < a l i . . . > a M > 6 { 0 , l , . . . , f c } M , I a i = fc 

.P({a>: meQ, </.,(«»),..., 4M(©)> = <a„ ..., aM>})] = 
M fc 

= (ff2/l<2)I I L 
i = l i = 0 <a, a M > 6 { 0 , l k}M, Ea, = *,a< = j 

.[j2P({co:(oeQ,<A1(<o),...,AM(co)y = ial,...,aM)})'] = 
M fc 

= (*2//<2) I I j 2 P({»: « 6 C A((a>) = j}) . (6.28) 
i = l y = 0 

However, when investigating the probability of the random event A^co) = j , the 
well-known binomial formulas may be of use. Or, it is just the probability of occurren
ces of an event with probability l/M in a series of k independent and identically 
distributed random samples. Because of the irrelevance of the order, for each 
i ^ M, 

P({co: o> e Q, A fa) = j}) = (j) ( l /M)' (1 - 1/Af)*-' , (6.29) 

and this expression can be written as the binomial coefficient b(j, k, p) with p = l/M . 
Using the identity from [1], p. 179 (Russian translation), 

I j 2 b(j, k, p) = k2p2 + kp(l - p) , (6.30) 

hence, 
i=o 

M k 

D2Y* = (<r2//c2)Y, lJ2b(j,k,llM) 
i = l ; = o 

= (a2jk2)M(k2IM2 + (kjM)(\ - 1/M)) = a2\M + (a2jk)(ì - l/M) = 

= (a2jM) (1 + (M - l)//c) . (6.31) 

м 
The relations £Y* = ft and D2((l/M) £ Y,-) = <r2/M hold trivially, so that the lemma 
is proved. , = 1 • 

Consider the algorithm $4*(k, c) defined as a special case of the algorithm si\ 
in which Nt is of the form c6, c > 1, Q ;> 1, and for each i = 2, 3, ..., Q + 1 we have 
Nt = IV ̂  j/c, hence, K = logc IVt + 1, moreover, let kt = k for each / = 2, 3, ..., K. 
Other parameters, i.e. Nl9 kl9 p, ... are the same as in s/t and will not be explicitly 
introduced. Let Y*(stf*(k, c)) be the random variable defined for sf*(k, c) by the 
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'/J£- 4&Z 
relation (6.15). Suppose, moreover, that to each ith level processor just c (i — t)st 
level processors are subjected, so that card 91} = c for each i <£ K — 1 and j S 
£Nt+v 

Theorem 6.1. Algorithm stf*(k, c) satisfies the relation 

D2(Y*(,<(k, C))) = p(l ~~ p)(k1Niy
1 iV^c(l+(c^)/lclnc) < 

< D2(yo)Mc""1)/fclnc- (6.32) 

Proof. Considering the way in which random variables Yj are defined we can 
easily see, that random variables Y[, Yl

l9 ..., YJJ. + l are statistically independent for 
each i :g K — 1. Hence, Lemma 6.1 yields 

D^(yj+1) = D*(Y>) ( l / c ) ( l + ( c - l ) / f e ) (6.33) 

for each j ^ IVi + 2. The supposed statistical independence of random variables X,7 

implies that Xtj are also statistically independent, so that 

D2(Y;) = ( l / A 1 ) P ( l - p ) (6.34) 

for eachj <* IVj. Combining (6.33) nad (6.34) we obtain 

o2(rf) - P(i - P)(i/k1)(i/c
,c-i)(i + (c - m*-1 = 

= p(l - p) (1/fc.iV.) (1 + (c - l)/fe)'^N ' , (6.35) 

as K = logc IVj -f 1. A simple modification of the right-hand side in (6.35) yields 

D2(Y*(j**(k9c))) = p(\ - p)( l / ik1N1)(c ,^ ( 1 + ( c-1 ) / k>) l o^ J = 

= p(l - p)(l/k1JV1)iVi08c(1 + ( c-1 ) / k ) = 

= p(i - p)(i/fc1N1)M t t ( l+(c"1)/* ) / IBC < 

< p(l - ^ ( l / k ^ O ^ r 1 ^ 1 " " = D(r0)M
c~1)/kInc* (6.36) 

where we have taken profit of (6.16), (6.17), and of the simple fact that In (1 + x) < 

< x for each x > 0. The assertion is proved. • 

Let us recall that, given 8 > 0, F cz A as above with card A = N9 the algorithm 
ja^ is called S-correct with respect to the problem (A, F>, if it yields <5-correct 
estimates of the relative frequency of elements of Fin A, i.e., if 

P({co: coeQ9 \Y*(J*X) (©) - (card F)/N| < (1/2IV)}) ^ 1 - <5 . (6.37) 

Intuitively said, sJx is <5-correct if with a probability at least t — 8 the value of the 
form vjN which is the closest to the estimate Y*(s^t) (OJ), is also the true value of the 
parameter p = card F/card A. 

Theorem 6.2. For each e > 0, <5 > 0, c > 1 and each problem (A, F> there exists 
a <5-correct algorithm stf*(k9 c) the unit time computational complexity of which is 
in ^(IV£)-class. 

Proof. Choose 0 < et < e. The value Y*(stf*(k9 c)) can be understood as a sin-
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gleton set of statistically independent and identically distributed random variables, 
so that the Chebyshev inequality reads 

P({co: co e Q, \Y*(j**(k9 c)) (co) - p\ £ (1/2IV)}) < 

< D2(Y*(jtf*(k, c)))/4N~2 . (6.38) 

Given e > 0 and c > 1, choose k such that (c — l)/k In c :§ ex/2, hence 

k £ 2(c - l)/e, I n c . (6.39) 

Moreover, set IV- = IV2, and 

fc, - r ^ - i ^ c - D A i n c n = r r i A F ( - i ) M i n c ] ^ ( 6 4 0 ) 

where r x 1 is the upper integer part of x. (6.32) then yields 

D2(y%<(k ,c))) / i /V"2 = 4D2(Y*(^*(k,c)))N1 < 

< 4p(l - p)(k1Nx)~
i
 N[+(c-l)!k]nc S 4Sp(\ - p) g 5, (6.41) 

as p(l — p) rg | for each pe <0, 1>. Combining (6.39) and (6.41) we obtain 

P({to: w e Q, \Y*(j*\(k9 c)) (to) - p\ > 1/2/V}) < 8 , (6.42) 

and the 5-correctness of the algorithm s#*(k, c) is proved. Its unit time complexity 
then reads as 

k! + Kk = k! + (log, Nt) k - fc- + (2 log, IV) fc . (6.43) 

Now, fc, = rd~1N2(c~ 1)Mlnc1 and e, :> 2(c - l ) /k lnc , hence, fct - kt(N) e &(NEl). 
At the same time, 2 log, IV is in o(Nn) for each r\ > 0, c > 1, hence 

fcj(IV) + (2 log, IV) k e (P(IV£i) c ^(N£) , (6.44) 

as £t < e. The assertion is proved. • 

Our aim is to go on in our effort to weaken, step by step, the supposed kind and 
degree of co-operation and synchronization among processors of the same level 
working in parallel and constituting hierarchical parallel algorithms for Monte-Carlo 
methods. Let us consider one of the possible immediate modifications of the algorithm 
$$x defined and investigated above. Informally said, the modification consists in the 
fact that each higher-level processor, when taking random samples from the set 
of its subjected lower-level ones, may with a positive probability wrongly sample 
some processor outside of this set of its "subjects". In such a case the information 
obtained from this "foreign" processor is incorporated into information set on the 
output of the higher-level processor. I.e., this higher-level processor has no possibility 
to realize its mistake and to take some correct measure. Random samples are con
sidered, as above, to be the only tools of communication between processors of 
different levels. Hence, this model violates the assumption of disjointness of the sets, 
from which the higher-level processors take their random samples and preferences 
given by each processor to its subjected ones will be only of statistical character. 
For the sake of simplicity we suppose the equiprobable probability distribution 

57 



on both the subsets of lower-level processors (i.e. the "subjected'' as well as the 
"other" ones). Suppose, that a higher-level processor has c subjected processors 
from the total number C of lower-level processors (1 __\ c < C). Then it communica
tes with the lower-level processors through random samples such that, in each sample, 
with the probability (1 - e)jc each among the subjected processors is sampled, and 
with the probability ej(C — c) each among the other processors is sampled. The 
value e > 0 can be seen as a quantitative measure of incompleteness of the co
operation, in the case of si1 we have a = 0. 

When describing this algorithm formally (we shall denote it by si l9 explicitly 
introducing the parameters important in the given context), let us take profit of the 
description of algorithm s/x in those parts where both the algorithms are analogous. 
Consider, hence, again a set A = {al9 a29..., aN} and its subset V with the aim to 
estimate the value card V/card A, consider integers K9 Nt > N2 > ... > NK9 

kl9 kl9..., kK9 and a system {Xij9 i = 1, 2, ...9Nl9 j = 1, 2, ..., kj of statistically 
independent random variables taking the probability space <fi, £f9 P> into A and 
satisfying (6.7), so tliat the random variables Xij9 defined by (6.8), satisfy (6.9). 
Also the variables Y"/("), i S Nl9 are defined as in the case of algorithm s4t9 i.e. by 
(6.10), hence, their expected values and dispersions satisfy (6.11). 

For each i = 1, 2, . . . ,K - 1, let M{ be a decomposition of the set {1, 2, ...,JVj 
of integers into Ni+l9 disjoint nonempty subsets 9t[99t2i...99liri+l9 moreover, let 
a real si9 0 < et < 1, be given. For each i _Z K — 1, k <£ Ni+1 and I __ fc1 + 1, let 
Z*itk,i,ei ^ e a random variable taking <£>, 5^, P> into {1, 2, ..., Ni+1} and realizing 
the random sample intuitively described above, i.e. "random sample from the uni
form probability distribution over SVk with possibility of error the probability of which 
is e / \ Hence, 

P({co: coeQ9 ZhkJtH(m) = s}) = (1 - a,) (card S^)™1 , (6.45) 

if s e Wk9 

P ( { ( o : o ) 6 f l , Z , ( M > ) = s}) = £ ,(card({l,2,. . . , iV£} - ^ i ) ) " 1 , (6.46) 

i f se{ l ,2 , . . . , iY ,} -31{.. 
All the random variables ZikJr. are supposed to be statistically independent. 

For each i 5̂  K — 1, k 51 Ni+1 define random variable Yk\s.(co) by the relation 
(6.14) with ZiJcJ(co) replaced by ZLkj%Ei(co). Our attention will be focused, again,, 
to the random variable Yjc

%EK_l9 defined by the relation analogous to (6.15). This 
value will be denoted by Y*(co) with possible explicit mentioning of other parameters 
and will be taken, again, as a statistical estimation of the unknown value p = 
= card F/card A. Analogously as in the case of algorithm sft we shall investigate 
the dispersion D2Y* of this estimation, the validity of the relation D2Y* _t D2Y0 

is clear. Namely, we shall seek for the values kl9 kl9..., kK9 the sum of which ap
proximates the time computational complexity of s4'2, such that the dispersion 
D2Y* was small enough to estimate the relative frequency of elements from Vin A 
in the sense specified above. 
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Because of the fact that, for each i :£ K — 1, k ̂  -Vi+1- / <J fcJ+1, the random 
variable Zi$k$l$Ei takes with a positive probability every value from {1, 2 , . . . , ATj, 
the same random variable l£ e i - 1 , J ̂  -Vf+1, may occur in lwo (or more) sums 
defining random variables Y^/.(cO). Y^J2(<o). Hence, if i = 2, then random variables 
Yje., j <; Ni+l9 are not statistically independent and this fact makes a computation 
or even estimation of the value D2Ye* very difficult. So, we have to be satisfied with 
estimations of much rougher nature than in the case of algorithm sfv Let us in
troduce two auxiliary assertions for the upper bounds of dispersions of random 
variables will be of use in what follows. 

Lemma 6.2. Let Yl9 Y2, ..., YM be random variables taking the probability space 
(Q, S?9 P> into Borel line (R9 ^ 0 > , then 

M 

D2((l/M) £ Y.) ^ max D2Yt-. (6.47) 
i=l i = l , . . . , M 

Proof. A simple computation yields 

D2(Y! + const.) = £(Yt + const.)2 - (E(Yt + const.))2 = 

= £Y2 + 2 const. EYt + (const.)2 - (£YX)2 - 2 const. EYt - (const.)2 = 

= £Y2 - (£Y2)2 - D2Y! , (6.48) 

So, we may limit ourselves to the case when EYt = EY2 = ... = £YM = 0. In such 
a case, M M • M 

D2((l/M) S Y(.) = £((1/M) £ Y;)
2 = (l/M)2 £( v. Yty = 

i - 1 i = 1 i =1 
M M M M 

= 0/M)2 £( I I 7,1}) = (1/M)2 £ I £(77,) g 
i = l 7 = 1 i = l j = l 

M M 

= 0 / M ) 2 I Zv/((£72)(£7/))^ 
/ = i y = i 

M M 

^ U W I Z V ( m a x (£yi2)2) = max (E*f) = max D 2 ^ . (6.49) 
f = i y = l i = l , . . . , M i = l „ . . , M i - = l , . . . , M 

using the Schwartz inequality 

\fgd^^((\pdn)(U2dn)) (6.50) 

hence, in terms of random variables, 

E(Yirj)sJ(m)(EY})). U (6.51) 

Lemma 6.3. Let X, Y, U be random variables taking the probability space <0, Sf, P> 
into the Borel line, such that the pairs <[X, t/> and < Y, U} of random variables are 
statistically independent. Let, moreover, 

P({co: coeQ, U(co)) = 1}) = p, P({co: coeQ, U(co) = 0}) = 1 - p . 
(6.52) 
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Then 
D2(UX + (1 - U) Y) = p D2X + (1 - p) D2Y+ p(l - p) (EX - EY)2 

(6.53) 
Proof. Using the assumption that random variables X, U and Y, U are statistically 

independent, a simple calculation yields 

D2(UX + (\ - U)Y) = E(UX + (\ - U) Y)2 - (E(UX + (1 - 17) Y))2 = 

= E(U2X2 + 2(7(1 - U)XY+ ( 1 - U)2 Y2)-(EUEX + E(\ - 17) EY)2. 
(6.54) 

Evidently, 

EU = p, E(\ - U) = 1 - p , U2 = U , 17(1 - [7) = 0 , 

(\ - U)2 = \ - U , (6.55) 
so that 

D2(UX + (\ - U) Y) = p EX2 + (1 - p) EY2 - (p EX + (1 - p) EY)2 = 

= p EX2 + (1 - p) EY2 - p2(EX)2 - (t - pf (EY)2 - 2p(l - p) EX EY= 

= p(EX2 - (EX)2) + p(\ - p)(EX)2 + (1 - p)(EY2 - (EY)2) + 

+ p(i - p)(EY)2 - 2p(l - p )EX£Y = 

= p D2X + (1 - p) D2Y + p(l - p) (EY - EY)2 (6.56) 

and the assertion is proved. • 

Similarly as above we shall consider the algorithm stf*(k, c), resulting as a special 
case of algorithm $?2, supposing that Nt = ce, c > 1, Q _r 1, N{ = A7i+1/c for each 
(" = 2, 3, ...,_>+ 1, card 91} = c for each i _2 K — 1 and j ^ iVi+1, and k2 = 
— k3 = ... = kK = k. The random variable Ye* will be denoted, in this case, by 
Y*(s#*(k, c)) and we shall study its dispersion. 

Theorem 6.3. Consider the algorithm stf*(k, c) and suppose that, for each i = 
= 1,2, ...,K, Ei = sK^1lc

K~i-\ Then 

D2(Y^*(k, e))) ^ &f-& (0k'Nl), (6.57) 
where 

in the sense that ratio of both the sides in (6.58) tends to one as Nx -» oo. 
Proof. Random variables Yl(*), ¥_?(*)>..., }#_(") a r e defined by arithmetical 

averages of values of disjoint sets of statistically independent random samples, 
hence, they are statistically independent as well. Let random variables 
^i.«i-i(")» ^2t8i-i(")» ***> 5N»,£i-t(") ^ e a*so statistically independent. For each i rg K, 
j _g Ni9 evidently 

- - j , , - = P = P({™-<» 6 G, £_,(o>) e F}) . (6.59) 
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In order to assure the statistical independence of random variables ¥?**, Y^], ... 
..., Yir+\ „., a sufficient condition is that the sets 

{Zyjto), Z^co), ..., Zl:l(co)} , (6.60) 

{Z'i-iH, Z<-,»,..., Zkl(eo)} ,..., {Z[-»r(o>), ZZr(°>\ • • - « + I H } 
must be disjoint. A sufficient condition for this property to hold is, that each pro

cessor takes random samples only among its subjected processors, hence, for each 

{ Z i ' i < _ l ( a ) ) , Z ^ i l _ I , . . . , Z ^ l . » } c 9lj . (6.61) 

Denote by Aj the random event defined by (6.61), then the assumed statistical in
dependence of random variables Zl

k*
J
Eij(*) implies 

P(Aj) = (I - et)
k , pfnAj) = (1 - <.,)*"'•« . (6.62) 

1=1 
Nf+1 

If the random event f) Aj occurred, then, for each j <£ /V/+1, YJ+*(CD) is the 
i = i 

arithmetical average of k statistically independent random samples with the same 
dispersion D2Y}Eii for each of them. Moreover, the samples are taken from a c-
element set with respect to the uniform probability distribution over this set. So, 
Lemma 6.1 yields, in such a case 

D2^1 = G ) D 2 r i - - ' ( , + f T i ) - (6-63) 
Nt+i 

Supposing that the event f) Aj did not occur, we cannot avoid that Yj+
8i(co) is defi-

1=i 

ned by an arithmetical average of statistically dependent random samples with the dis
persion D2Yj ei_l for each of them, Lemma 6.2, then yields D2YJ+* _ D2Y[\Ei^r 

Omitting the indices j and ei9 for the sake of simplicity, and using Lemma 5.3 with 
EX = £Ywe obtain the following recurrent relations 

D2Yi+1 _ 

_ (1 - £/)
ft*'+> (1/c) D 2 r ( l + (c - l)/k) + (1 - (1 - e,)*"'*1) D2Yt = 

= D2Y;.[1 - (1 - £ / r - + (1 - a f - ((ljc) + (c - l)/ck)] = 

= D2Y/[1 - (1 - e r i + 1 (1 ™ (1/c) ™ ((c - l)/cfe))] = 
= D2Y,[1 - (1 - ef)

fciV<+> ((ck - k - c + l)/ck)] = 

_ D2Y;.[1 - (1 - , , ) * * • ' ((c - l)/c) ((k - l)/k)] . (6.64) 

Combining the obtained results, we have 

D\Y:(^2(K C))) = D*Y* = (D2^fn [i - a - s{r^(^r) (^~)\ (6-65) 
where D2Yl = p(l — p)jkv Using the relation In (1 — x) < —x for 0 < x < 1 
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we obtain 

In D2r« < In(p(l - p)/fc.) +Jjn(i - (1 - •,)»«•« (--=--) ( ^ ) ) < 

< in o(i - P)/fct) - i'(i - « i r*- ( c - ~ i ) ( - •-"--) = 

-W-^-%((i-*£) (^(-f-)). (-) 
Because of the kind of approximation for x(fc, iVj) which is to be proved, the follow
ing approximation 

A__i±i_Y'+ 1«e-" ' + 1*' (6.67) 
V Ni + J 

may be used. As we have assumed e£ = sK^ljc
K'~l~l for each t = 1, 2, , . . ,K — 1, 

and Ni+i = Nt\c> we obtain Ni+1Et = NKsK„t = %_! for each f < K. So we have 

hence, 

ln D2YK < ln (p(l - p ) /^ ) - (K - 1) c""**-' ( — ) í ^ ~ ^ ) ' ^6 '68) 

D y" < (p(l - p ^ e - ^ - 1 ) - " * * - 1 ^ - 1 ) / ^ * - 1 ) / * ) 

= PV- '"" -°) (e-(Iogc/Vi-l)\c-fi---ifc((c-l)lc)((fc-l)lfc) 
1 

= P ( í ~ P) /e-ln.?V1logce+l\e-"£K-ik((c~i)/c)((/c-i)//c) 

k! 

p ( p — 1) / / 1 yogeey-£K-* fc((c-l)lc)((k~l)l/0 

fci V W 

p(l _ p) ( c \e_Bjc- lk((c-l)/cliic)((*-l)/*) 

~ ~~~~~~ v~~J . 
and the assertion is proved. • 

(6.69) 

The notion of c5-correctness for the algorithm si'2 with respect to a given 5 > 0 
and problem {A, V} with card AL = N is defined in the same way as in the case of 
algorithm s/l9 hence, by (6.37). We shall prove also an assertion describing the time 
complexity of a 5-correct algorithm . ^ ( ^ c)> hence, this assertion can be seen as 
an analogy of Theorem 5.1. 

Theorem 6.4. For each e > 0 and 8 > 0 there exist fc, c, k1 e 91 and sx > 0 such 
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that for each sK^.l g et and for each algorithm s4\ with parameters k, c, kt and 
eK-x holds: _e/* *s ^-correct with respect to the problem <_4, V> and the unit time 
computational complexity of s4\ belongs to _>(N£)-class, where N = card _4. • 

Proof. An easy calculation yields 

d fx — 1\ __ x In x — (x — 1) (In x — 1) 

dx \x In x ) (x In x)2 

= l n ( l + ( x - l ) ) + l - x x - l + l - x 

. (x lnx) 2 ( x lnx ) 2 ' l j 

as x > 1. I.e. x = 1 + t]9 rj > 0, implies that In (1 + 17) = >y — f(^|), f(^l) e />(??), 
f(r/) > 0. Hence, (c — l ) /c lnc is a decreasing function of c for c > 1, moreover, 

r c - 1 (1 + rj) - 1 

> i + c l n c »r-o+ (1 + rj) In (l 4- r\) 

= l i m 7T T7i ./ \ 7T\ = l • ( 6 J 1 ) 

n-o+1 + IJ — (f(n)jn) -fw 
Hence, (c — l)/c In c < 1 for c > 1, setting 

x(k, c, «__.) = e ^ * ( i ^ i ) ( i z i ) , (6.72) 

we obtain that x(k, c, e^-i) e (0, 1), as %_! > 0. The assertion of Theorem 6.3 
can be written as 

D2Y*(^*2(k, c)) < -MLzJP) jvj-*(-.««-«) (6.73) 
fe.iVj 

Setting fet = fe^At) = QjV1-x(,i,c'8'c"l) for an appropriate Q we assure that, like 
as in the proof of Theorem 6.2., 

D2(Y*(s^*2(k, c)) < 8/4N2 (6.74) 

for given k, eK„1 and c. Hence, there exists a <5-correct algorithm s/*(k,c) with 
respect to the problem (A, V} and with unit time computational complexity kt + 
+ k log,N, i.e., in ^AT^^-'^-class. 

The only we have to prove is that for each e > 0 there exist k, c and et such that 
%_! ^ £! implies x(k, c, £K_i) > 1 — e. Evidently, for each L > 0, 

lim - — i = lim ^ i = lim e-£*L = 1 , (6.75) 

c - » i c l n c ji-co fe £K-»o + 

so that we may uniquely define 

c0 = inf {c: (c - l)/c In c > 1 - (a/3)} , (6.76) 

k0 = min {k: k e 91, (fe - l)/fe ^ 1 - (a/3)} , (6.77) 

et = sup {e: e-£,co ^ 1 - (e/3)} . (6.78) 
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Explicit expressions for c0, fc0, and s{ could be easily settled, but they are not import
ant in what follows. Setting k -= fc0, c = c0, and aK_3 ^ st we obtain that 

- 1\ A - 1\ > .- . .*. A o - l \ A o ~ - \ > 
\ c ln c / \ fc ) \c0 ln c0y V fc0 

£ (1 - (H/3))3 > 1 - 3(e/3) - I - 6 . (6.79) 

So, I — x{k,} c, fi/c-i) < £9 hence, 

^ i -x (* , c .«x - i ) ) c ^(]vfi) (6.80) 

and the theorem is proved. D 

Let us close this chapter by emphasizing the fact that an investigation of parallel 
probabilistic algorithms the outcomes of which are statistically independent random 
samples, but which manipulate with these samples in a way leading to not necessarily 
independent random variables, is very difficult and the results having been obtained 
till now are not too numerous. So, the results achieved in this chapter are just very 
rough approximations of the characteristics in question. Their precisation, weaken
ing of assumptions, as well as some alternative hierarchical structures, perhaps more 
adequate under certain types of statistical dependences, should and could be a matter 
of further investigations in the future. 

Let us also emphasize the fact, that the results presented above are not para
metrized by a fixed number of processors of various levels. They are deduced for the 
optimum numbers of processors, respecting the explicitly introduced dependences 
among numbers of processors of different levels, say, the exponential decrease of 
this numbers with the increasing level. The optimality is taken in a purely theoretical 
sense and from the viewpoint of minimal time computational complexity of the 
resulting hierarchical computational procedure. A practical applicability of such 
hierarchies is a matter of further considerations. 
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7. PARALLEL PROBABILISTIC ALGORITHMS FOR LINEAR 
ORDERING 

The problem, how to order the elements of a finite, but as a rule very large set, 
with respect to a numerical (or, in general, ordinal) criterion, represents very often 
an important subproblem of more sophisticated tasks of artificial intelligence. 
The time complexity with which this subgoal can be solved may be decisive for the 
applicability of a procedure solving the main problem. The time complexity ne
cessary to order a finite set with respect to a given criterion depends, besides some 
other factors, on the cardinality of the arranged set and on the tools we have at our 
disposal. The first of these two factors will be, in this chapter, always taken as a free 
parameter. It measures the complexity of an instance of the solved general problem 
with respect to which the time computational complexities or other characteristics 
of the proposed solutions and algorithms are related. As far as the tools are connected, 
just a very simple case will be taken into consideration, It is an oracle, which samples 
at random two elements of the investigated set and computes and compares the 
value of the criterion for these two elements. If their actual ordering does not corre
spond to these criterion values, the positions of the two elements are mutually 
changed. Then the procedure goes on with another pair of elements sampled at ran
dom until the quality of the resulting sequence is sufficiently good in some statistically 
motivated and defined sense, the more exact formulations will be given below. 
In the center of our considerations will be the situation where we have a number 
of identical mechanisms of this kind working simultaneously over the same set 
or rather sequence of elements. We have to avoid possible data access conflicts 
among different processors, but no other kind of co-operation or synchronization 
will be supposed. 

A formal description of the problem, tools and outcome situation in question 
can be presented as follows. 

Let s/, 3% be nonempty sets, let = be a linear ordering on J*. Hence, for each 
x, y, z e $, x = x, (x = y) A (y ^ x) => (x = y), (x ^ y) A (y ^ z) => (x ^ z), 
and (x ^ y) v (y ^ x). The usual conventions for x = y, y > x and x < y are 
adopted. L e t / be a function (criterion) defined on s$ and taking its values in 3S. 

Let A0 = <a°, a\, ..., a£> e stfN be an N-tuple of elements of s4. A0 is ordered 
with respect to f supposing that i ^ j implies f(a°i) :g f(^) for all i,j = N. The 
degree of ordering of At0 with respect to / is denoted by Qf(A0) and defined by 

Q (A0) = c a r d ({OJy Uj =-N,i< j9f(at) > f(aj)}) ^ ^ 
card ({<*, j>, i,j S N,i < j}) 

where the denominator is evidently equal to %N(N — 1). So, A0 is ordered iff Qf(A0) = 
= 0, so that the term "degree of disordering" would be perhaps more adequate. 
The index/ will be omitted in what follows, as the criterion is taken as fixed. 

For each i,j,N e 91 = {0, 1, 2, . . . } , 0 < i,j = N, the operator S(i,j) on sfN is 

65 



defined as follows: 

[(i *J) v ((i <j) A (f(a{) £f(aj)))}^ 

S(ij)(iaua2,...,aNy) = <a1? a2,..., aNy . (7.2) 

[0 < J) A (f(at) > f(aj))] => S(i,j) « a l f a2, ..., a*» = 

= <al5 ..., fl|_i, a,, a f+1, ..., a^t, ah a i + 1 , ..., a ^ . (7.3) 

So, at and ay are interchanged, if i < j and /(a,) > f(aj), in all other cases the 
TV-tuple is unchanged. 

Suppose, moreover, that for each i == 1,2, ... we have at our disposal a pair 
<a,., /?,-> of random variables, mapping the probability space <£2, Sf P> into the set 
<1, 2 , . . . , TV> of integers. We write aN and j3f to express this fact explicitly, if necessary. 
All the random variables txu a2 , . . . , fil9 $2,... are supposed to be statistically in
dependent and equally distributed, for the sake of simplicity (and due to the Laplace 
principle) they are supposed to generate equiprobable distribution on {1, 2, ..., IV}. 
I. e., 

P({w; coeQ, at(w) = j}) = P({co: coeQ, pt(co) = j}) - 1/iV (7.4) 

for each i = 1, 2, ...,jf <| TV. So we may define by induction, taking A0 as above, 

A,. = A^co), = S ( a , ( » , ft(a>)) .4,.., , (7.5) 

We may ask, given e, 5, 0 ^ s,5 ^ 1, A0e stfN, which is the minimum K(s, 8, A0), 
supposing it exists, such that 

P({w: weQ, Q(AK(w)) g e}) £ 1 - S . (7.6) 

The formulation just presented evidently corresponds to the case of sequential 
algorithm with the single oracle described informally above and formally by the 
operator S((xt(a)), Pi(co)). Before investigating this case in more details, a formalization 
of the case with more operators working in parallel will be useful. However, it is 
possible, under such conditions, that two or more processors at the same time 
instant sample, test and intend to replace the same element of the sequence At in 
question. Instead of a more detailed investigation, if, when and under which conditions 
this can be consistently executed, such a case will be consequently excluded throughout 
all this chapter. So, if an element is sampled by two or more processors in the same 
time instant, it is put on its original position without comparing or even changing 
it with the (or some of the) other sampled element(s). The work continues with the 
next random samples. A formal description of this situation can read as follows. 

Two pairs <i,jf> and <k, /> of positive integers are called contraverse if they are 
not set disjoint, i.e. if {i,j} n {k, 1} 4= 0. Define an operator <p on the set (9t x $!)* 
of finite sequences of pairs of non-negative integers as follows: if <<al5 fet>, 
<a2, b2>, ..., <aL, bL» e (91 x 9t)L, then the index i g L is called contraverse, 
if <af, &f> is contraverse with some <#,., &,->, j 4= i,j S L, evidently, j is also contra
verse. <r

1(«a1, bi>, <a2, b2>, ..., <aL, bL») is defined as the sequence of pairs 
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of integers resulting from « a 1 ? b1>, ..., <aL, bL>> when erasing all members with 
contraverse indices. As immediately follows, no two pairs in <l>(«a1? bt>, ... 
..., <aL, bL») are contraverse, but <p(((at, bt>, ..., <aL, bL») may be the empty 
sequence A. 

Let us consider, now, that for each i = 1, 2, ... we have at our disposal L(i) > 0 
pairs <aM , /?M> <aL2> Pi»> ••> <a

{\L(.> 0*,L(*)) °f random variables, each of them 
mapping <£>, ̂ , P> into {1, 2, ..., N}. Again, we shall suppose that these random 
variables are mutually statistically independent and generate the equiprobable 
distribution on {1, 2, ..., N}. Hence, (7.4) is supposed to hold for each atj and 
/3f7, i = 1, 2, ..., j = 1, 2, ..., L(i). Again, we may define by recursion 

A i = A^m) = 

= ^ ( t o ) , £-.(©)) S(b2(o>), 52(a>))... S(fcs<H. W ) U i - 0 > (7-7) 
where 

«6,(a>), b^HX <b2(co), fi2(o>)>, ..., <&s.(a>), £ S i H » = 

= P«<«MH»Pt.i(<»)>> o>,2H>Ptt2(<x>y>,.... <«ifL(o» PtMtMyy)' (7-8) 

so that 0 ^ S, ^ L,.. If S, = 0, hence if «b1(o>), bi(o>)>» ..., <&Sf(
tt))» ^ s , H » = / 1 ' 

we set 4̂£ = ^ j - i . Also in this parallelized case our main effort will be to assure the 
validity of (7.6). As can be easily seen, the optimal choice of the number L(i) of 
processors working in parallel and the way in which L(i) depends on N is far from 
being trivial. An unlimited increasing of the number of processors does not make 
the situation better but rather worse. It is because of the increasing number of data 
access conflicts, in the sense specified above, which prove the retarding influence as 
far as the speed of the work of the algorithm is concerned. 

In order to compare and classify the advantages of a sophisticated parallelization 
let us return, for a while, to the sequential case as described above with the aim to 
obtain an explicit expression or estimation for the value K(E, 8, A0) assuring the 
validity of (7.6). Or, under some simplifying, but in our context acceptable assump
tions, K(s, 8, A0) can be interpreted as the unit time computational complexity of 
the algorithm in question. Our considerations concerning the value K(s, <5, A0) can 
be expressed, as shown below, as an appropriately formulated problem of the pure 
combinatoric probability theory with the results presented in the form of a particular 
lemma. Because of the fact that the proof of this lemma uses an appropriate approxi
mation through the normal (Gauss) probability distribution, let us recall very briefly 
this notion (cf. [3] or other textbook or monography for more details). 

Consider, again our fixed probability space <f2, Sf, P> together with the Borel 
line (E,@ty. I.e., E = ( — oo, oo) and 33 is the minimum cr-field of subsets of E 
containing all semi-open intervals. A mapping X taking Q into E is called a random 
variable with normal (Gauss) probability distribution with zero expected value 
and unit dispersion, in short: N(Q, l)-distribution, if X is measurable, i.e. 

{{co: WGQ, X(O>) eB}:Be^}} a $f> (7.9) 
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(a sufficient condition reads 

{{co: co e Q,X(co) £ \}:xeE}} c Sf)), (7.10) 

and if, for each x e E, 

<*>(*) = P({«>: co G Q, X(a>) £ x}) = - £ - f_M e ^ / 2 dy . (7.11) 

In such a case, in fact, 

EX = ff „, X d* = 0 , D2X = Jf „ (X - £X)2 d<2> = j™x X
2 d<2> = 1 . 

(7.12) 
Given 0 < <5 < L, 5-quantile of IV(0, 1) denoted by aa>N(0>1) or simply â  in the sequel 
is defined by 

P({w: co e Q, X(co) £ ^,N(o.i)}) = <5 (7.13) 

where X is a random variable with IV(0, l)-distribution. Evidently, if 0 < 5 < -}, 
thena3 j N ( 0 t l ) < 0. 

Lemma 7.1. Consider the Bernoulli schema with the parameter p, 0 < p < 1. 
It is a sequence X|,X2, ... of statistically independent and identically distributed 
random variables taking the probability space <£>, S?, Py into {0, 1} and such that, 
for each i = 1, 2, .... 

P({eo: OJ e O, Xf(co) = 1}) = p . (7.14) 
/» 

Set S„(co) = ^Xf(co). Given a positive integer N and positive reals a, 5, 5 < \, 
define *=l 

n*(a, IV, p) = min {n: P({w: co e Q, Sn(co) > a/V}) > 1 - 8} . (7.15) 

Then 
n*(a, IV, p) = (a/p) IV + f(a, IV, p, 8), (7.16) 

where f(a, N, p, (5) e *(iV) (i.e. lim AT"-1 f(a, IV, p, <5) = 0) for each a > 0, p e (0, 1) 
N-+00 

and 7T e (0, ^-). A non-asymptotic version of this assertion reads: for each y > 0 
there exists N0(y) such that IV ^ No();) a n d ft = (<xfp)N1 + y imply n ^ /i*(a5 AT, p), 
so that P({OJ: co e Q, Sn(co) > aIV}) > 1 - S. Explicitly, 

My) - ( - - « • V(i - pMJf**"*'*1™-1 (7.17) 
will do. 

Proof . Evidently, if 

S „ » = (S„(a>) - np) (np(\ - p)Yi/2 , (7.18) 
then 

P({co: COEQ, Sn(co) > a/V}) = 
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ForNfixed, 

Iira(a/V - np)(np(l - p))~1'2 = - c o . (7.20) 
rt~» oo 

As the V(0, 1) distribution is symmetric with respect to zero value, the approximation 
(5.1) (Chapter VII in [3]) may be used, so that 

P({co: co e _, _„(_) > uN}) ~ 1 - „ ( f ~ "P ) . (7.21) 
VVM1 - _))/ 

Hence, the demand 

P({co: co e _, S„(_) > aN}) > 1 - (5 (7.22) 

reduces to 

*(iK))H 
or to 

aV — np 
< a д ł W ( 0 f i ) . (7.24) 

VM- - P)) 

A simple modification yields 

aV - ud sj(np(l - p)) < np . (7.25) 

If n = (a/p) IV, then 
l im

 aN Z ̂  ^/M1 - P)) -_ i i m a^-a_ V((a/P)^p(l " P)) __ ^ ^ 2 g > 
N->oo np N-+Q0 aIV 

hence, the minimal n* satisfying (7.25) satisfies (7.16) as well. 

For y > 0 and n = (a/p) V 1 + },(7-25) reduces to 

aNi+y + ad V((a/p) p(l - p)) V < ™ 2 > aN , (7.27) 

or to an equivalent relation 

iV̂  + a , V ( ( l - p ) / a ) i V < 1 + ^ 2 > l . (7.28) 

If 0 < y < 1, then y/2 - \ < 0 and N n + y ) / 2 <\,\i b <\, then aa < 0. Hence, 
(7.28) holds supposing that 

A" > 1 - ad V((l - p)/a), (7.29) 
so that, 

7 V > ( l - a , V ( ( l - J p ) / « ) ) 1 / y - (7-30) 

If y > 1, then y/2 — \ > 0 and N(y~l>/2 > 1, an analogous reasoning then implies 
that (7.28) holds supposing that 

Ny > #7/2-1/2 _ (^^((i _ p)la))Ny/2-1/2 = 

_ J V ^ - ^ ( l - a . V ( ( l " _ ) / « ) ) , (7-31) 
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so that 
N/-(v/2-i/2) = Klii + U2 > (! _ a<s ^ ( ( ! _ p)/a)) f (7.32) 

hence 
tf > ( l - a , V ( ( l - p ) / a ) ) 1 / W 2 + 1/2>, (7.33) 

Clearly, if 

IV > (1 - as V((l - p)/a))"»*{i/y.i/(y/2+i/2M ? / 7 J 4 ) 

then (7.28) holds in both the cases. As 

max {1/y, l/(y/2 + 1)} = l/min {y, y/2 + 4} , (7.35) 

(7.34) agrees with (7.17) and the assertion is proved. • 

When analyzing in more details the lemma above and its proof, the reader can 
easily discover the discrepancy consisting in fact, that (7.16) and (7.17) have been 
stated in a categoric form, but when proving them, the approximation (7.20) was 
used. A more detailed analysis of this approximation and its proof (cf. e.g. [3]) 
shows, however, that (7.16) holds in the stated form and the lower estimate introduced 
in (7.17) could differ from its correct value just by an additive constant, i.e. by 
a value depending only on y. In the sequel we shall focus our attention to the asymp
totical behaviour of the estimate n* as the linear function of IV with the multiplicative 
constant ctjp. It is why we have admitted the use of (7.20) not to charge our explana
tion by technical difficulties irrelevant for what follows. 

The next theorem solves the problem stated above (cf. (7.6)). 

Theorem 7.1. Consider a sequence A0 e sin and a sequence {<ais /?f>}̂ L i of pairs 
of statistically independent random variables defined on <JQ, y , P> and satisfying 
(7.4). Let AL0, A^(o)), A2(co)9... be generated by (7.9) from A0 through {<a/5 /?;>}r=i-
Set 

n*(6, e, IV) = min {n: P({Q(An(co)) S e}) £ 1 - 3} , (7.36) 

for e, 5 > 0 given, let e < Q(A0) to avoid trivial cases. Then 

((Q(A0) - e)lQ(A0)) N2 + fx(5, e, N) :g n*(S, e, N) Z 

S ((Q(A0) - e)/a) N2 + f2(5, s, N) , (7.37) 

where ft(8, a, IV), i = 1,2, are appropriate ^(IV2)~functions for each 0 < 5 < \y 

0 < e < Q(A0). Moreover, for each y > 0, for n = ((Q(A0) — e)/e) IV2 and for each 

N > (1 - adM0A) V((l - e)l(Q(A0) - B)))iW**i,M2K,+ m-t, ( 7 . 3 8 ) 

the inequality 

P({co: cO G Q, Q(An(m)) £ e}) > 1 - 6 (7.39) 
holds. 

Proof. Denote a pair <a;, a^y as undesirable in A0 -= <al9 a2, ..., #„>, if i < j 
and f(at) > f(aj), clearly, there are just Q(A0) (1/2) IV(IV — 1) undesirable pairs 
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in A0 and our aim is to reduce this number to (ej2)N(N — 1) at most. So, we have 
to remove at least (Q(A0) — e) ($N(N — 1)) undesirable pairs from A0. Moreover, 
there exists A0 such that each undesirable pair must be sampled before its deleting. 
The probability of sampling of an undesirable pair is at most pt = Q(A0)^N(N — 1): 
: N2 as the number of undesirable pairs in At does not increase with i increasing. 
At the same time, this probability is at least (e/2) N(N — 1)//Y2 supposing the goal 
was not achieved yet. Evidently, each pair <a,-, &> of random variables samples 
each pair from {l, 2, ...,jV} x {1, 2, ...,jV} with the same probability JV~~2. Hence, 
denoting by S* (Sn9 resp.) the number of successes in n sample of the Bernoulli 
sequence with the probability pt (p29 resp.) of success, we obtain 

P({co: co e O, S„(co) = ocN2}) > P({co: coeQ9 Q(An(co)) < e}) > 

> P({w: co e Q9 S
2(co) £ ajV2}), (7.40) 

where 

Hence, 

a = (Q(A0) - e) jrN(N - l)/jV2 . (7.41) 

«/Pi = (Q(A0) - e)/S(-40) , */F2 = (Q(A0) - # , (7.42) 

and Lemma 6.1 immediately implies (7.37). The relation (7.38) follows either im
mediately from (7.17) when replacing JV by jV2, p by e and Q(A0) - a by a, or by 
a deduction analogous to that of (7.17). • 

The value Q(An(co)) is a random variable. So, instead of the quality of ordering 
criterion defined by (7.6) we may ask, whether EQ(An(*)) < e; here £ is the expected 
value operator. In general, both the criteria are not comparable, i.e., neither of them 
follows from the other one. Or, let Q(An(co)) = et > 0 on a set the probability of 
which is 1 - 5t95t < <5, let Q(An(co)) = 0 otherwise, then £Q(^(-)) = (1 - <5,) e,. = 
= et — 5tet < e for et and 8t appropriately chosen, but (7.6) does not hold. On 
the other side, let Q(An(co)) = et < e with the probability 1 — <5, Q(An(co)) = 1 
otherwise. Then (7.6) holds, but EQ(An(-)) = (1 — 8) et + 8 = et - et8 + 8 > e 
for appropriate et and 8. 

Theorem 7.2. Let A09 {<[ah /3̂ >}?°=i? fi > 0 and Ax(co)9 A2(co), ... be as in Theorem 
7.1. If 

K = K(e9 A0) ^ (In (Q(A0)/e)) N2 , (7.43) 

then EQ(AK(')) < e. Moreover, if Kt satisfies EQ(AKl(-)) < e, then \Kt(N) -
-K( e ,^0)( jV)|G^( jY2) . 

Proof. Consider a sequence Ai9 i ^ 0. If EQ(At(*)) = 0, the assertion holds 
trivially, so let Q(At) > 0. Hence, there are Q(A^ BN9 BN = %N(N — 1), undesirable 
pairs in At in the sense of the proof of Theorem 7.1. Using the same argumentation 
as above we can see that the probability of sampling and removing of an undesirable 
pair is at least pN = Q(At) BNJN2 in each step. Hence, in At„t the number of un
desirable pairs will be smaller than in At with the probability pN at least, so that, 

71 



?ŕ " źâď? 
this number will be Q(At) BN - 1 at most. With the complementary probability the 
number of undesirable pairs rests unchanged. Applying the operator of expected 
value we obtain 

EQ(Ai+1(>)) = (EQ(A) BN - 1) B^lpN + EQ(A-l) (1 - pN) = 

= £fi(A«) - PNBN' = EQ(At)(l - N~2) , (7.44) 
hence, 

EQ(AK{'))SQ(A0)(l-N-2)K. (7.45) 

A well-known inequality yields, for K = <5/V2, 

(1 _ N^y < e - \ (7.46) 

hence, relation (7.43) holds, if e~* <; sJQ(A0)9 i.e. if 5 ^ In (Q(A0)/e) and the assertion 
is proved. The necessity of Kt(N) £ K(e, AL0) (N) - f(N),f(N) e ̂ (N2), immediately 
follows from the fact that there is A0 e $#N such that equality holds in (7.44) and from 
a more detailed analysis of the approximation (7.46). • 

So, as can be easily seen, also in case the quality criterion is changed the unit 
time complexity of the investigated sequential probabilistic algorithm rests in the 
^(iV2)-class. A substantial improvement could be reached by application of the 
Bayesian approach, taking also the initial sequence A0 as sampled at random and 
replacing both the criteria introduced above by their expected values with respect 
to the a priori distribution in question. Or, till now, we have tacitly accepted the worst-
case analysis or, what is the same, the minimax principle, supposing that having 
sampled and mutually replaced an undesirable pair, only this one undesirable pair 
was removed from the sequence. Such cases, of course, exist, but their number is 
very small when compared with the number of cases, when removing of one un
desirable pair from the sequence implies that also some other undesirable pairs 
disappear. Then the quality of the ordering increases more rapidly than we supposed 
above. An appropriate a priori distribution, e.g. the uniform one, would convert this 
fact into a significant reduction of the time complexity. However, because of the 
reasons mentioned in Chapters 3, 4 and 6, we shall not investigate the Beyesian 
approach in more details. We shall rather concern our attention to the parallel 
probabilistic algorithms, as we have mentioned above when introducing the corre
sponding formalized model. The data access conflicts will be solved as described 
in this formalization; if two or more processors want to operate on the same data 
item in the same step, the item is blocked and is not accessible in this step (time 
instant). The next combinatorial lemma will be of use in the sequel. 

Lemma 7.2. Let $£ = [au a2,..., aN} be a nonempty set, let XUX2, ... be a se
quence of statistically independent and identically distributed random variables. 
Each of them maps the probability space (Q, if, P> into stf and generates the uniform 
probability distribution on si. Set, for each i = 1,2,'..., 

q(U to) = [ay.j g N, (3! k £ i) (Xk(co) = aj)} , (7.47) 
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where 3! k stands for "there is just one k such tha t . . . " . Hence, q(i, co) denotes the 
set of elements from stf, sampled just once by the random variables Xu X2, ..., X(. 
Then there exists an <p(jV)-function f(N) such that 

sup {£ card q(i, •): i = 1, 2, ...} = zV/e + f(N) , (7.48) 

where e = 2-718... Informally, the expected value of the relative frequency of 
elements sampled just once does not exceed l/e = 0-36 no matter how large the set 
s# and the random sample in question may be. 

Proof. Cf. [4]. D 

Theorem 7.3. Let A0estfN, let A, (co), A2(co), ... result from A0 by (7.7), using 
a sequence {<al7, j8,7>}, i = 1, 2, ..., j = 1,2, ...,L(i) of pairs of statistically in
dependent random variables satisfying (7.4) for each i,j within the given scopes. 
For given e > 0 and for <£ = {L(ty?=1

 d e f i n e 

K(e, A0, N, <£) = min {k: EQ(Ak(-)) ^ s} . (7.49) 

Then there exists a non-negative ^(N)-function f(N) such that, for each JS?, 

X(e, A0, N, jgf) = e2 (In (Q(A0)/e)) N + /(N) . (7.50) 

Proof. Cf., again, [4]. D 

The obtained result seems to be interesting and non-trivial. It shows, that 
in the absence of a sophisticated synchronization and co-operation among processors 
working in parallel an increase of their number makes their work not better, but 
worse. The reason is simple: an increasing number of processors block other pro
cessor including themselves by demanding the same data and this disadvantage 
quickly overcomes the speed-up resulting from the increasing number of processors. 
Supposing to have at disposal a full and "free of charge" cooperation among the 
processors, the sequence A0 could be re-arranged in a constant time independent 
of N, by N2 processors. Each of them tests and, if necessary and after a negotiation 
with other processors, interchanges one pair of elements from A0. However, even 
this informal and verbal description of this co-operation reflects how complicated it 
must be. Let us remark, that the non-trivially optimal unit time complexity is reached 
with N + #(N) processors working in parallel. In order (qualitative) sense this value 
is the square root of the cardinality of the investigated set {1, 2. ...,N] x {1, 2, ..., N} 
as well as the square root of the number of undesirable pairs. This number is at least 
(e/2) N2 throughout the work of the algorithm, as after having reached this value, 
in average, the algorithm stops its work. Let us recall similar results about quadratic 
speed-up reached as the optimal one by two-level hierarchies of parallel probabilistic 
searching algorithms, as proved above. It holds under the condition that the inspection 
of outputs of processors and cumulation of their results is not a negligible or 
hardware matter. Namely, we have supposed that time demands increase linearly 
with the number of processors working in parallel, and perhaps logarithmically 
with the cardinalities of the sample spaces in question. Hence, the results of this 
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chapter, namely, Theorem 7.3, support and specify the general result from [6], 
proving the quadratic speed up to be the best one accessible by two-level hierarchical 
parallel re-arranging of probabilistic algorithms with statistically independent 
samples. It is worth mentioning that the increase of the number of processors with 
the square root of the size of the instance in question of the solved problem is taken 
as the upper bound from the practical point of view, cf. [1], e.g. So, that our result 
can be seen as interesting also from this position. 

Let us close this chapter by a result, showing that under a modification of the 
notion of contraverse pair the lower bound for the unit time computational com
plexity of our parallel probabilistic algorithm could be reduced to &(i), i.e. to a value 
independent of N. Two pairs </,j>, <[k, /> of integers will be called strongly contra
verse, if i = k and j = / (not i = k or j = I as above). Evidently, the possibility 
of blocking is reduced, so that a greater number of processors can be used in parallel 
when re-arranging the sequence A0. 

Theorem 7.4. Consider the model investigated in Theorem 7.3 just with contra-
version replaced by strong contraversion, set 

C l - = l / l n ( l / ( l - l / e ) ) . - e (7.51) 

Then for each <£, 

K(e, A0, N, <£) = c, In (Q(A0)\e) . (1.52) 

Proof. Let ^ £ = « % ( © ) , j8u(o))»Ji0
1, let (€i = (p£t according to (7.7). Taking 

£%i as a random sample from the uniform probability distribution over M = N2-
element set we obtain, that <a0((o), Pij(co)} e ^,- iff 

<[<Xij(co), Pij(to)> e q0(L(i), <») = 

= {<a s , a r >:< S , r>e{l ,2 , . . . , iV} x {I, 2, ..., N], (3! k ^ L(i)) x 

x «a,£H,/5£fe(W)> = ( a s , a r » } ' . (7.53) 

Applying Lemma 7.2 to M = N2 we obtain 

£ card q0(L(i), •) ^ N2je (7.54) 

and this optimum is reached with L(i) = N2 + q(N), q(N) e #(N2), processors 
working in parallel. Using the same argumentation as in the proof of Theorem 7.3 
(cf. [4]) we obtain, that the expected number of undesirable pairs eliminated in one 
step is at least 

(N2 /e)Q(A ( . ) i /Y(N-l) / iV2 . (7.55) 

Hence, the relative frequency of undesirable pairs eliminated in one step is at most 
1/e, so that 

EQ(Ai+l(-)) = EQ(Ai('))(l-e~l), (7.56) 

EQ(Ai(-))^Q(A0)(i-c-J, (7.57) 
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Hence, if 

i^ln(Q(A0)/ f i)/(ln((l - e - 1 ) ) - 1 ) ^ 

= In (Q(A0)/fi)/ln (1 + e" v) = e In (G(i40)/e), (7.58) 
then 

Q(A0)(1 -e-J^EQiAt))**. D (7.59) 

Let us emphasize the purely theoretical speed-up obtained by this modification 
of the notion of contraversion which should not be over-estimated. When applying 
this algorithm we had to solve the problems arising when two or more processors 
want to replace an element in different way. To synchronize such a task in a con
sistent way is far from being trivial and free of charge. It is why we consider our 
original model as the much more adequate one from the point of view of practical 
application. 

In [7] and [8] a very interesting parallel probabilistic algorithm is presented 
which looks for the elements of a large finite sequence or set which are important 
from the viewpoint of an ordinal or numerical criterion. E.g., the smallest or the 
greatest element, the kth element from the bottom or from the top, given a positive 
integer k, etc. However, the supposed abilities of the basic processing units in [7] 
and [8] are different from our ones so that the results are not immediately comparable 
with those achieved here. They are not presented here in more details because of 
the shortage of space necessary to introduce an alternative mathematical formalism. 
In every case, [7] and [8] may serve for a useful confrontation. Finally, other sorting 
algorithms which could serve as an outcome or a motivation for other parallel 
probabilistic searching and sorting algorithms can be found in the practically oriented 
monographies [1], [2], [5] or elsewhere. 
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8. SOME MODIFICATIONS OF PARALLEL PROBABILISTIC 
SEARCHING ALGORITHMS 

In Chapter 4 we investigated hierarchical parallel probabilistic searching algorithms 
under some simplifying conditions which have been motivated mainly by our aim 
to make the model as transparent as possible and easy to describe and handle from 
the mathematical point of view. A modified model, resulting when abandoning the 
condition of safe and failure-proof work of each testing device, was investigated 
in Chapter 5. In this chapter we would like to review, very briefly and referring to 
more detailed papers, two other modifications of the elementary model explained 
in Chapter 4. The first of them takes into consideration possible data access conflicts, 
at least at the basic level, the other modification supposes that there is a possibility 
of co-operation among the first-level processors, even if this co-operation may be 
rather limited and of stochastic kind. In both the cases we limit ourselves to two-level 
hierarchies, postponing the investigation of corresponding many-level structures 
till another occasion. 

Let us turn back to the model explained in Chapter 4. There, random samples 
were taken as non-conflict in the sense that if two or more processors sample the 
same element from A in the same time instant or step, all of them may and will test it. 
Let us accept, now, a more realistic assumption which is, in a sense, something like 
a dual extremum: if two or more processors sample the same element from A in one 
step, this element is blocked and it is not accessible to any processor at this step. 
Moreover, the processors are not supposed to be able to distinguish this case from 
that one where xeA—V has been sampled, so that they output zero value in both the 
situations. Each first-level processor is able to repeat its activity in the next time 
instant or step according to the model explained in Chapter 4, to test the elements 
which were sampled and not blocked, and to cumulate, on its output, the information 
whether at least one element from A has been found in a finite sequence of samples. 
If it is the case, the processor outputs a unit value, it outputs zero value otherwise. 
The higher-level processor works in the same way as in Chapter 4, i.e., without 
considering the possibility of data access conflicts. The testing oracles of all levels are 
supposed to be reliable, i.e. they work, like as in the model introduced in Chapter 4, 
without any danger of failure. The interpretation of the outcome value of the (unique) 
highest-level processor is the same as in Chapter 4. Again, the unit output value of this 
processor proves the set V to be nonempty without any doubts, the zero output 
value is taken as the decision that V is empty, but this decision is, in non-trivial 
cases, charged with a positive probability of error, which at the first sight, must be 
at least as large as in the conflict-free case-

Let {{Xij)1'=1" = 1, {Z,}J=1} be the system of random variables defined in Chapter 4 
and satisfying (4.1) and (4.2). Set, for i ^ m, j ^ n, and coeQ, 

y(i,j,co) = /AXiJ(co)) fl [1 - - ( i ^ f t M ] , (8-1) 
k = l,k*i 
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and define, on the fixed abstract probability space <£>, Cf, P>, a random variable 
3C0 taking its values from (0, 1} in this way: 

3C0(co) m 3 f 0 « A , V>, co) = 1 iff £ £ y(Zl(co),j, co) > 0 , (8.2) 
Z = l j = l 

3C0(co) = 0 otherwise . 

As can be easily seen, y(i, j , co) = 1 iffx,7(a>) is in K a n d differs from all XkJ(co) 
with k #= i. Supposing that Xn(co),Xi2(co), ...,Xin(co) are samples from A taken 
by the ith processor, then y(i,j,co) = 1 iff the ith processor samples an element 
from F i n the j t h step and no other processor samples the same element at the same 
step. Hence, the ith processor tests this element and outputs the unit value. Moreover, 

n 

^ y(i,j, co) > 0 holds iff the event just described occurs at least once in the sequence 
J = I 

of n steps. But only the processors the indices of which are sampled at random by 
variables Z . , Z 2 , . . . ,Z f e are asked for their output values, so that 2£0(co) = 1 iff 
there is at least one among the sampled first-level processors which outputs unit 
value, hence, £0(co) is nothing else than the output value of the unique second-level 
processor, as defined informally above. The more simple case of conflict-free samples 
from Chapter 4 can be obtained by simply setting y(i,j, co) = y^X^co)). Evidently, 

£ £y(Z,H,j,a>) = £ txv(XZl{(a)J(co)). (8.3) 
i = i j = i ; = i j = i 

Considering a searching problem <A , V> and a two-level HPPSA defined in this 
chapter, if V 4= 0, then the random event 3C0(co) = 0 can be interpreted as an error. 
The following assertion offers certain estimations for the probability of this error. 

Theorem 8 .1 . Let <A , V> be a searching problem with card A = N, card V = 
= v > 0, let SC = °I(A, V, m, n, k) be a two-level HPPSA for <[A, V), then 

(l - I ) \ *{„«,.«.,.«>) = 0}) < (l - J( l - i)™"1)" + (l - I ) \ (8.4) 

P r o o f . Cf. Theorem t i n [1 ] . • 

Theorem 8.2. Let the notations and conditions of Theorem 8.1 hold. For each 
e > 0 there exists reals C,(E) , c2(e) and c3(e) independent of N such that if N = 4c?, 
m =

 rC! yjN1, n =
 r c 2 ^/N1 and k =

 r c 3 JN1, then 

P({co: coeQ, £0(co) = 0}) < £ . (8.5) 

P r o o f . Cf. Theorem 2 in [1] . • 

The following assertion proves that the results for m, n and k stated in Theorem 
8.2 are the best possible ones in the qualitative sense. 

Theorem 8 .3 . Let if be a HPPSA for a searching problem <[A, V> with A = N, 
card V = 1. If n = n(N) and k = k(N) are such that nke#(N), then there exists, 
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for each £ < t, N0 = N0(e) such that, for all N = N0 

P({co: coeQ, &0(co) = 0}) > £ . (8.6) 

Proof. Cf. Theorem 3 in [1], the same holds also for the conflict-free algorithm 
defined by the random variable #"(<A, Vs), •) in (4.3). • 

The interpretation of Theorems 2 and 3 is similar to that of the assertions proved 
in Chapters 4 and 5. Hence, accepting the simplifying assumptions that each random 
sample from A needs a time units and each random sample from {1, 2, ..., m} needs 
ji units independently of N and m, the expression an + /3k + const may serve as 
a very rough estimation of the total time complexity of the HPPSA 6C(m, n, k). 
Now, Theorem 2 claims that the corresponding probability of error can be kept 
below a given £ > 0 with an(N) + (3k(N) in the 0(v/iV)-class, moreover, according 
to Theorem 3 it cannot be reduced to the ̂ (x/N)-class. In both cases, what is actually 
needed is that the product of n and k must be in 0(N), but when taking m(N) = 
dxN

q, k(N) = d2N
l~q, 0 < q < 1, q * i , then an + [3k is in ®(Nmax{l~q'q)) and 

this result would be qualitatively worse than that with q — \. To summarize, the 
time complexity is in the same class as in the conflict-free case investigated in Chapter 
4. A more detailed optimization of the expression an + fik within the tf^A^-class, 
i.e., the computation of the multiplicative constants minimizing this expression, 
would be a purely technical matter. 

Let us also mention briefly also the case of many-level hierarchies. Many-level 
hierarchical parallel probabilistic searching algorithm (for the searching problem 
<A, V}) will be defined as in Chapter 4, cf. (4.16) and (4.17), but the corresponding 
random variable 3C, enabling to understand this algorithm as a statistical test for the 
emptiness of V, will be modified in a way reflecting the possibility of data access 
conflicts. The intuitive definition of the modified random variable 3C0 reads as 
follows: Set 

V0= V, (8.7) 

V, = Vr(co) = {/: / < Nr, X y(i,j, co)>0], 

where 
; = i 

y(i,j, r, co) = TLv^UX'tM) XI C1 ~ X^«<<-»(*-X«>))) • (8-8) 

This agrees, for y(i,j, co) = y(i,j, 1, co), with the definition of HPPSA above, when 

Vt(a>) = {/: / ^ Nu X y(i,j, co)>0], (8.9) 
; = i 

for r = K we obtain 
"K 

VK(co) = {1} = AK iff Zy(l,j,K,co)>0, 
; = i 

"K 

VK(co) = 0 iff £ y ( l J , # , £ » ) = 0 . (8.10) 

y = i 
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Evidently, Vk(w) = 0 implies V,(w) = 0 for each k <; I ^ K. Finally, set 

{w: WEQ, ?r0(w) = 1} = f){w:weQ, Vk(w) =f= 0} , (8.11) 

3C0(w) = %0«A, V>, w) = 0 otherwise . 

As before, the random event 2C0(co) = 1 is taken as the decision that V =t= 0 and 
this decision is always correct, being based on the positive testing of at least one 
element from V by a first-level processor. The random event &0(w) = 0 is taken as 
the decision that V = 0 and it may be charged by an error, or, elements from Vcan 
be either disregarded by first-level processor or the report about their finding can be 
disregarded by higher-level processors. Hence, the value P({w: w e Q, %0(w) = 0}) 
may be taken, if V =1= 0, as the probability of error connected with the algorithm 
in question. Trying to keep this probability below a given s > 0 uniformly for all 
nonempty V czA, we shall use this assertion. 

Lemma 8.1. For each e > 0, 3 > 0 there exists a natural number n0 = n0(e, <5) 
independent of N such that for all n _ n0 and for m = L<5Nj — 1 

-SKD)-
Proof. Cf. Lemma 1 in [1], Q 

The just referred proof of Lemma 1 in [1] or an immediate computation yield 
that the threshold value n0 reads esS~l In (l/e). As can be easily seen, an analogous 
threshold value for conflict free random samples is n0 = b~l In (l/e). Hence, the 
corresponding time computational complexity increases (as e3 > for 5 > 0) when 
admitting data access conflicts, but the increase is only a multiplicative one, as e6 does 
not depend on N. 

So, let us take a <5, 0 < S < 1, and suppose, just for the sake of simplicity of the 
following considerations, that N = card A is of the form (1/<5)K. Set N0 = N, N{ = 
= ci/V,-., i = I, 2, ...K, hence, Nk = SkN0, and consider Nt processors of the ith 
level. Given e > 0, set 

«, = e/K , n0(8, e) = (ea/5) (In (l/£ l)) . (8.13) 

Each of the first-level processors, there are Nt in total, takes n0 independent and 
sequential random samples from the uniform probability distribution over the basic 
set A, and those among the sampled elements which were not sampled, simultaneously, 
by another processor are tested as far as their membership in the set Vis concerned. 
If we denote 

««.-.*)-•(--=(- -£)"")". M 
then with probability at least 1 — ct(Nu n0,N) at least one first-level processor 
takes the unit output value, i.e. reports an element from V. Moreover, n0 and NL 
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are chosen in such a way that 

1 - a(Nl5 n0,N) >. 1 - et - 1 - (e/K). (8.15) 

There are AT2 second-level processors and each of them takes n0 independent and 
sequential random samples from the uniform probability distribution over the set Ax 

of (indices of) outputs of the first-level processors, hence, card Ax = Nx = SN. 
For those (indices of the) first-level processors among the sampled ones which were 
not sampled, simultaneously, by another processor, the sampling second-level 
processor tests whether their output values were 1 or not, i.e. tests the membership 
of the sampled first-order processor in question in the subset Vx of Ax defined by 
(8.9). If the result of this test is positive, then the report about the sampled element 
of V occurs on the output of the corresponding second-level processor and this 
output takes the unit value (otherwise, the zero value). If at least one first-level 
processor discovered an element from V, so that Vx #= 0, then with probability at 
least 1 — <x(N2,n0,Nx), an element from V is reported also at the second level. 
But, as can be easily seen, 

a2(N2,/i0,/V1) = a(/V1,«0,iV), (8.16) 
so that 

1 -<x(iVa.»o.-Vi)fc 1 - ( e / K ) . (8-17) 

Now, the induction step is evident: there are N3 third-level processors and each 
of them looks for a report about an element from V among n0 non-collising random 
samples from the (outputs of the) second-level processors. Supposing such a report 
is found, the corresponding third-level processor outputs unit value and so on. 
Combining the corresponding conditional probabilities and using the supposed 
statistical independence of all random variables in question we obtain that if V #= 0, 
then with probability at least 

(1 - BX)K > 1 - Ksx = 1 - e (8.18) 

the report about an element from V reaches the output of the unit Kth, i.e., the 
highest level processor. Hence, the probability of error is majorized by e. 

At each level we have taken n0 sequential samples and the operations on different 
levels are also sequential, so that, in total, 

Kn0(\ogx/dN) (e'/<5) In (e/log1/5iV)^ = 

= (\ogx/dN) (edld) In (e/logl /,N - In e) (8.19) 

sequential samples have been taken. Taking the unit time complexity for each sample, 
independent of the cardinality of the corresponding sample space, and neglecting 
the other operations, expression (8.19) approximates the time complexity of the 
suggested special algorithm answering, within the probability of error uniformly 
majorized by the given s > 0, the question whether V = 0 or not. As in the conflict-
free case, this complexity is, again, in the $(log N log log /V)-class, the only difference 
being represented by the multiplicative constant e"5 > 1. 
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A more detailed optimization of the suggested many-level hierarchical parallel 
probabilistic searching algorithm including the optimization of the corresponding 
multiplicative constant, as well as a more detailed investigation of many-level hierar
chical parallel probabilistic searching algorithms in general, i.e. with different n,'s 
for different levels and with JV-'s not necessarily in the form of a geometric sequence, 
all these questions would be of great interest and would deserve further research, 
but the limited extend of this work forces us to postpone such an investigation till 
another occasion. 

Let us turn back, now, to the two-level conflict-free hierarchical parallel prob
abilistic searching algorithms as introduced in Chapter 4, but now we shall consider 
the possibility when each processor may, at least partially, take profit of the successes 
reached by other processors, or it may take profit of an oracle which simulates the 
"expected" or "average" behaviour of other processors. A more detailed informal 
description seems to be worth introducing after an appropriate formalization. 

Let 
V* = <{Xip YtJ, l /^jr-! J - i , {z . }U> (8.20) 

be a structure consisting of mutually statistically independent random variables 
defined on the abstract probability space <[Q, £f', P>, taking their values in A (for .Xy), 
in the set {1, 2, ,.., m} of integers (for YtJ and Zt), and in the binary set {0, 1} (for L!"0-), 
and such that, for a fixed value Q, 0 <; Q = 1, for each i = m,j ^ n, r = m, I = k, 
and a E A, 

P({co: coeQ, Xu(co) = a}) » l/JV , (8.21) 

P({co: toeQ, Y^co) = r}) = P({co: coeQ, Zt(co) = r}) = l/m , (8.22) 

P({co: COEQ, U^to) = 1}) = Q , (8.23) 

we shall omit the symbols ...to: to e Q, ..., if no misunderstanding menaces. Define 
binary random variables Wtj, 1 <J i <j m, 0 f£ j f£ n, as follows: Wit0(to) = 0 for 
each i ^ m, toe Q, 

Wi}(co) = sign [xviX^co)) + Wu^(co) + WYij((0)J^(to) L l , » ] (8.24) 

for j > 0, recall that iv is the characteristic function or identifier of the subset V 
of A, and sign (x) = — 1 for x < 0, sign (x) = 1 for x > 0, sign (0) = 0. Now, set 

^ H = s ign [ IW Z i ( t 0 ) »] . (8.25) 
i = i 

Informally, the ith processor or (/ = m) takes in the jth (j ^ n) sequential step 
three statistically independent random samples: an element X^co) from A, the value 
WY.jUohj-i(co) of the Y0(co)-th processor in the (j — l)st step, and an auxiliary result 
(0 or 1). The ith processor takes the unit output value (W(J(cu) = 1) iff either it took 
already this value in the (j — l)st step, or if it sampled an element from V, or, finally, 
if it is sampled a processor which reached already the unit value and is willing (with 
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the probability Q) to share this knowledge. The processors having terminated their 
activites, the supervizor samples some of them, asks for their final output values 
WZt(oi)t„((o) and computes ^*((o) which can be understood as a statistical decision 
function solving the problem whether V = 0 or not. As can be easily seen, if V = 0, 
then $l*(co) = 0 (or if &_((o) = 1, then after all, XtJ((o) e V for at least one i = m, 
j = n must hold), if &*.(<o) = 1, then F=t= 0 for the same reason. If F + 0, then 
the value ty*(co) = 0 represents an error the probability of which is to be, uniformly 
for all V a A, majorized by a given threshold value, choosing appropriately n, m 
and k. 

Let 
W*(co) = sign [xv(Xij(co)) + W*}_ _(<»)] , (8.26) 

evidently, W*j(co) = Wtj((o) for each co e Q, i ^ m, ;' 52 n. In fact, Wi* agrees with 
WtJ iff Q = 0 in (8.23), so that no information sharing among processors is possible. 
Moreover, random variables W*- are statistically independent (which is obviously 
not the case for JYj/s) so that, setting v = (card V)JN and applying the expected 
value operator £, we obtain by an easy calculation that 

-»!„<.>,/•) = I [-»../(•) niY.jH = >m s 
.s= 1 

a i VKJX-) m^-H = *»] = -*£(•) = 
s = l 

= P ( { ^ » = 1}) = 1 - ( ! - " ) ' • (8-27) 

Given V cz A, let {T0}7= 1,3 = 1 be a system of mutually and with respect to each 
Xij, Uu and Z, statistically independent random variables taking (Q, 3f, P> into 
{0,1} in such a way that, for all i = m, ; _\ n 

P({TiJ(co) = 1}) = EWWJ = 1 - (1 - t,y , (8.28) 

Hence, random variables TtJ "simulate", in the sense of their expected values, random 
variables WYiji.yj and, because of their supposed statistical independence, simplify 
the computations. Consider the structure <& defined in the same way as in <&*, but 
with Y,/s replaced by Tt/s and set 

Wifi(m) = 0 for each oozQ, (8.29) 

Wftj(co) = sign [Xv(Xij(co)) + Wfj.fa) + Tu(a>) Uu(co)] , (8.30) 

for j > 0. ^ 0 ( w ) ls defined by (8.25), just with Wu replaced by Wtj. So, random 
variables Tu play the role of an oracle which, "from the God-like position", knows 
the actual state of things concerning the set Fand "helps" to each processor in the 
degree or measure which is "in average" the same as if the processor asked for help 
its colleague sampled at random by Y0-. If V — 0, then v = 0, hence T^co) — 0 for 
til i S m,j __ n, © 6 Q, so that Wfj reduces to W*j and <&Q(CO) = 0 for each co e Q. 
On the other hand, ^ 0 ( w ) = 1 does not imply that Xl7(w) e V for some i = m, 
j g n, as the knowledge about the existence of an element in V might follow from 
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the oracle's consultation. Nevertheless, if V 4= 0, the result ^0((o) = 0 can be taken 
as an error and we would like to minimize its probability uniformly for all V c A. 

Theorem 8.4. For each e > 0 there exist a natural number JV0 and real numbers 
c i ( s) . c2(s) and c3(e) such that, for m = ^ 3

V
//Y1, n = r c 2

 3
y/N~[, k = r c 3

 3
V/IV1, 

for all 0 * V c A, and for all N = card (A) ^ N0, 

P({(o: coeQ, %/0(co) = 0}) < £ . (8.31) 

Proof. Cf. the Main Assertion in [2]. n 

When choosing m, n and k in 0(3y/N), it is an "almost optimal" choice in the 
following sense. 

Let H F c i , let v = (card V)\N, set $„. = P({Wfn(co) = 0}). As W^(co) = 

^ W?j(co), qin < P({W*(co) = 0}) = (1 - v)\ Moreover, 

qn = r t l^ i iH = 0}) - P({yAXnH) = <>}) -
= P ( { Z l » e ^ - F } ) = l -v; (8.32) 

due to the supposed statistical independence of the corresponding random variables 
we obtain that 

«u = ^ M * y M ) - 0} n W j - i H = 0} n {r,Xa>) t / l ; H = 0}) -

' = P ( { / ^ ( 7 H ) - 0}) P({W^(co) = 0}) [1 - P({Ttj(co) Utj(co) = 1})] = 

= (1 - v)q,j.1[l - M l ^ / o ) ) = l})P({T£(a/) = l})]] = 

= (\-v)qiJ-1[l-Q(l-(l-vy)-]. (8.33) 

An easy induction immediately yields that 

4* = (1 - »)"ff( l - 6(1 - (1 - *W) • (8-34) 
J = O 

This upper bound for qin does not depend on i and is, considering V 4= 0, evidently 
maximal iff F is a singleton, hence, iff i; = 1//V. So, for each i = m, 

«„ s « : = (i - ( w f f ( > - e(! - (- - (WW) • (8-35) 
y=o 

Theorem 8.5. Let the notations and conditions of Theorem 8.4 hold, let Q < 1, 
let n(N) = cEiN", fc(IV) = ci2N

a for some oc < £, dif d2 > 0, let g* be defined by (8.35), 
then 

l i m f c * ) f c = l . (8.36) 
N-00 

Proof. We have to prove that 

' ^[(^iJSO-K1-!1-^))]^1- (837) 
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If n(N), k(N) e G(N% a < i then nk e &(N2*) c *(N), so that 

lim (1 - - V = 1 
iv-oo \ NJ 

and we have to prove that 

l/i-fiti-t,--^i lim Г"П (ì 
iV-ao [_j' = 0 \ N 

= 1 . 

This assertion can be easily reduced to 

izыШ-Q(l-(l~Шr 
-£k%Қl-йЫl-ìï1))m0-

But, for 0 < x < 1, 

hence, 

0 > ln (1 - x) > -

|ln (1 - x)| < 

1 - X 

1 - X 

so that, instead of (8.40), we have to prove that 

» - » j = o i - e ( i - (i - I / N ) J ) 

As Q(\ - (1 - 1/N)J) < 6 < 1, (8.43) reduces to 

limfcj'ell-fl-iYUo. 
JV-oo y = o \ \ NJ J 

Omitting Q as a multiplicative constant, an easy calculation yields 

•%(•-(•-9)-'(•-% (•-*)> 
-(-L-Va)--"(-(-3') 
--»[-:?:(;)<-"'©> 

--- »[(;)©-0©'-l,G)<-"'©> 
-»©©•+»,?,(;)<-"'©' 

(8.38) 

(8.39) 

(8.40) 

(8.41) 

(8.42) 

(8.43) 

(8.44) 

(8.45) 
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Denoting the last expression in (8.45) by S, we can easily obtain that 

as I ' \) < nj. Setting n = vLj/V*, k = d2n
a, we obtain that 

Taking N0 such that, for N > N0, dtN
ajN < | , we have 

1 - d{(N*lN) 2 | JV 1 -d , (N"/A 

< 
ra^aYj N^a

 + 2d\d2N**-2
 f (8 48) 

and this expression tends to 0 for JV ->• co and a.< I. But, at the same time, 

• > * £ * - - A CD®-
and both the items in (8.49) tend to 0 for N —> oo and a < ^ for the same reasons as 
above. Hence, S -> 0 as well and the assertion is proved. • 

Let us turn back, for a moment, to the original model with real, i.e. non-simulated, 
co-operation among processors and with decision function W* defined by (8.25). 
If Q > 0, the computation of parameters under which P({%/*(co) = 0}) < e, for 
V 4= 0, is much more difficult than in the simulated case above. Or, using the oracle 
Tjj, the probability with which a processor is given the information that F + 0 
does not depend on whether an element from V has been already found or not. 
On the other hand, to obtain ^*(co) = 1, we ultimately need Xi^co) e V for some 
i = m, ; = n . In fact, setting 

m n 

-4-,>) = U U { * » } , (8.50) 
. - = 1 j = \ 

we obtain that 

p ( { ^ o » = o}) = P ( { % » = o } / { A M » = 0}) p ( { A m » = 0}) + 

+ P({V*Q(co) = 0} /{ ,4 m » 4= 0}) P ( { A m » * 0}) ^ 

^ p ( { A m » = 0}) = (i - y y , (8.5i) 

as Am,„(w) = 0 implies ^*(co) = 0, which was not the case for <&0. Hence, we urgently 
need mn e 0(N) to be sure that P({^l(co) = 0}) < e for all 0 -# V c A = [a l t a 2 , . . . 
..., aN], so that an analogy of the results from above with m, n e&(3y/N) is impossible. 
But, even if the condition mn e @(N) is the same as in the case with Q = 0, the fact 
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that the knowledge about an element from V can propagate, more or less quickly, 
among the processors, suggests an idea to optimize the product mn with n e -o(<jN) 
and with ke#(^/N) as well. Because of the fact that the possible statistical dependences 
among the corresponding random variables make the direct computation very 
difficult, let us introduce a modified model which will be used to estimate the time 
computational complexity of the original model for Q > 0. 

The modification consists in separating the samplings from A from the samplings 
of auxiliary processors and in postponing the consultation phase. So, having m 
processors formalized by random vectors (Xitl,Xi2, ...,Xi<n), i = m, first of all 
each processor takes n sequential samples from A, independent of each other as 
well as of the samples taken by other processors, and tests the sampled elements 
as far as their membership to Vis concerned. Set, for i S m, 

WL0(co) = sign [ t Xv(Xij(co))] , (8.52) 
j = o 

so that Wii0(co) = 1 iff x,7(o>) e V for at least one j = n, Wi0(co) = 0 otherwise. 
Evidently, for each i ^ m 

P[{WL0(co) = (I}] = (1 - v)», (8.53) 

let us denote this value by q0 = q0(n). Take a system {Yip Utj}^mlj„l of random 
variables satisfying the conditions described after (8.20) and including (8.21) to 
(8.23) and set 

Wtj(co) = sign [Wtj. 1(co) + WYlAw)J^(co) U^coJ] , (8.54) 

j = 1, 2, ..., r. The intuition behind this definition is like that in the case of (8.24). 
Hence, Wi}(co) = 1 iff either Wt tJ- x(co) = 1 or if Yu sampled (the index of) a processor 
which took the unit value in the (j — l)st postponed auxiliary step and is willing to 
share this knowledge, i.e. Uij(co) = 1. 

Lemma 8.2. Let r = n, let Wi} be defined by (8.24), then for all i ^ m, j = n, 
Wij(co) = 0 implies W,/co) = 0, hence, 

P({Wij(co) = 0}) = P({Wi}(co) = 0}) . (8.55) 

Proof. Let us prove that Wi}(co) = 1 implies Wtj((o) = 1. For j = 0 it holds 
trivially, suppose the validity for; — 1. (8.54) yields that, if X^co) e A — V, 

{co: Wij(co) = 1} = {co: Wu^(m) - 1} u 

m 

u U ({co: ^^(co) = 1, Yij(co) = I, U^co) = 1}) 3 
7 = 1 

M 

=> {co: WLj^(co) = 1} u U ({©: WlJ?i(a>) = l,Y0-(a;) = l,Uu(co) = 1}) = 

= {co: Wjp>) = 1} . (8.56) 
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If Xjj(co) E V, we obtain 

{a>: XtJ(co) e V, W ; » = 1} . U ({a>: x » = a, W,» = 1}) => 
aeV 

3 U ({co: Xu(co) - a, W » = 1}) = {a>: Xu(co) e V, W » = 1} (8.57) 
aeV 

and the lemma is proved. • 

New, let Zj , Z2,...»Zk be the same random variables as above and set 

^ » = s i g n [ ^ i r Z / ( w ) » ] . (8.58) 
z = o 

An easy calculation yields 

p({»T(«,) - o } ) - i ^ n { « z * o » - o } ) -
z = i 

= p(n u { ^ » = ojZl(o>) = s}) = 
Z = l s = 1 

^ P( 0 U { # - » - 0, Z,(o>) = 5}) = P({®*o(co) = 0}) , (8.59) 
Z = l s = 1 

so that the values for m, n and k, necessary to keep P({<&*(co) = 0}) below a given 
threshold value, are also necessary to keep P({^J(a>) = 0}) below the same threshold 
value. 

Because of computational difficulties connected with an explicit expression for 
P({<8f*((o) = 0}), let us appropriately approximate <&* by another random variable 
<y*2. Set W*0(co) = WitQ(co) for all COEQ, for ; > 0 set 

W*(co) = sign [ W ^ M + W*j{(a)(co) l j » ] , (8.60) 

so that, in the jth auxiliary step, only one processor with the index Yi,••(&>) is sampled 
at random and if its value is the unit, it is shared with all other processors with the 
probability Q; the random events of sharing are statistically independent for different 
processors. Random variable $/2 is defined by (8.58), but with ^zii<a),r(°)) r eP l a c ed 
by Wzl((0)tr(co). As can be easily computed, the corresponding conditional probabilities 
read as 

?({»?,» = -} /{*£.» = ,» = HWk>) = *}/{*u-i(«) - y)) 
(8.61) 

for all x, y E {0, 1}, and in this sense <3l* approximates ^ * . 

Theorem 8.6. For each e > 0 there exist real numbers cx, c2, c3, c4 independent of 
TV such that, for m = rclN

2/3\ n = rc2 \/N^, k = r c 3 y N 1 and r = r c 4 %/AP, 

P({<3 l» = 0}) < s (8.62) 

for all 0 =j= K c A - {au a2, ..., aN}. 

Remark. As n, r, and k are the numbers of samples which are to be taken sub
sequently, their sum n + r + k may serve as a first and very rough approximation 
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of the computational complexity of the parallel probabilistic searching algorithm 
with co-operation of stochastic type defined by the random variable <_/*. Theorem 
8.6 claims this complexity to be in the 0(3y/N)-c\ass, as in the case of simulated co
operation investigated above, but the necessary number of processors increases 
quadratically (in the 0(iV2/3)~class) when compared with the simulated case with m 
in (9(3yfN). The reason for this increase is simple: in the case of <_/f, i __ 0, 1, 2, 
processor cannot take profit of the oracle's knowledge that V + 0 without having 
actually sampled at least one element from V. 

Proof of Theorem 8.6. First of all, suppose that there is i S m,j S n such that 
XIJ(CO) e V and denote, for j = 0, 1, . . . , r, 

m 

Uj = Uj(co) = card {i: i = m, W*j(co) = 0} = m - £ W,*(c.), (8.63) 
( = 0 

Vj = Vj(o)) = card {.: i = m, W*j(co) = 1, W*j_l(co) = 0} = 
m m 

= uj. ,(co) - Uj(co) = £ W*(co) - I W*j_ .(a>) . (8.64) 
i = 0 i = 0 

If Wr* .(w)v/-_i(co) = 1, then the number of unit values occurring for the first time 
in the jth auxiliary step depends just on the results of "consultation random events" 
Uij(co), so that Vj has the binomial probability distribution with the probability Q 
of success. Abbreviating W? ^j-ifo) by Lj(co), we obtain 

P({<p,(_) = *}/{".-.<_) = muLfyt) = 1}) = ( " * ) _ ' ( ! - e ) " ' " ' . (8-65) 

so that the well-known relation concerning the expected value of the binomial 
probability distribution yields 

£(_/• ) /{«_--H = ml9 Lj(co) = 1}) = Qmx . (8.66) 

(8.64) implies that, for ally = r, co e __, 

Uj(co) = Uj.x(co) - _ .(©) , (8.67) 

so that 

Now, 

E(uj(')í{uj-X(oo) = mt, Lj(co) = 1}) = ml - Om, = (l - Q) m, . (8.68) 

£(«/•)/{-,(») = 1}) = 
m 

= I [£( , ( - ) /{ i» = • . • , -_» = _,})-({•,-,(-) = »,})] = 
mi = 0 

m 

= (1 - fi) I m. t{«.-i(o>) = m j ) = (1 - Q) &_,--(•) . • (8.69) 
m i = 0 

If Ly(co) = 0, then no new processor takes the unit value in the jth step, so that 

E(UJ(-)I{LJ(CO) = 0}) = Euj^(.). (8.70) 



The probabilities of the corresponding conditioning events read as follows: 

P({Lj(co) = 1}/{w,-_H - m.}) = (m - mx)lm = 1 - (mxjm) , (8.71) 
so that 

P({Lj(co) = 0}/{Mj ._ tH = m-}) = m./m . (8.72) 

Computing the expected values and setting M*(O>) = m"1 u y H w e obtain that 

P({L,(») - 1}) - £ (1 - (m./m)) P({uj(<o) - « , } ) - 1 - £«'(•) , (8.73) 
mi = 0 

m 

? ( { ! » = 0}) = X (Wl/m) rt{«y(o,) = m j ) = £«*(•). (8.74) 
m i = 0 

Combining (8.69), (8.70), (8.73), and (8.74), we have 

£M*(.) = E(„;(.)/{L,H = -})-X{i» = 1}) + 
+ E(u*(.)/{LXo>) = 0})P({LXco) = 0}) = 

- (i - e )£«*-X-) ( i - E - ; - I ( - ) ) + ( E « * - . ( - ) ) 2 -

= (l-Q)Eu*^(-)+Q(Eu*_ ,('))>. ' (8-75) 

Evidently, u*(co) = M*_ ,(eo) for each; = r,coeQ,so that £M*(-) = EM*„t = £«*(•). 
Hence, 

(£«*(•))/(£«*_,(•)) = ( l - Q) + Q &;.,(•) s (i - e) + e &«:(•), 
(8.76) 

and 
£ M * ( . ) ^ ( ( l - Q ) + Q £ M 0 * ( . ) y . (8.77) 

Recalling the definition of u* we obtain 

£M*(«) = m"1 £ card {/: / = m, W*0(co) = 0} . (8.78) 

Random events W*0(co) = 0 are identical with Wi0(co) = 0 and are, for different 
i's, statistically independent with the same probability (1 — v)n, so we obtain 

£M0*(-) = P({W*0H = 0}) = (1 - v)" £ (1 - 1/N)», (8.79) 

as V * 0. So 

£«;(.) = [(l - Q) + Q(i - ijNyy. (8.so) 
Consider the random variables Z t , Z2, ...,Zk which sample the (indices of the) 

processors after the rth auxiliary step, i.e., each T, samples among the values W*r(co), 
i = m. Due to the supposed statistical independence of random variables Zh Xij, Yy, 
Utj and due to their equiprobable distribution, for each / = k 

*{*&.>» - l)/{card {* *SM - °) = mS -
= * < { « & . > » = ! } / { « , » = » ! > } ) = 1 - (mAjm), (8.81) 

so that, using the same simple computation as above, 

W H . » - » ) ) = 1 - E « ? ( ' ) - (8-82) 
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Recalling our initial assumption and taking, once more, profit of the supposed 
statistical independence of the corresponding random variables we obtain that 

m n 

K{**M = o}/{ u U { * , » } n V + 0}) = 
i = l ; = l 

m 

= ?(n {**,(„,» = °}) = [£«*(•)]' s E(i - e) + Q(I - w = 
i = i 

- [(1 - 6(1 - (1 - 1 W ) ) ] f e r < (1 - (e«/N))fcr, (8.83) 
as (l — x)" > 1 — nx for each 0 < x < 1. Hence, in order to have, for some et > 0, 
the conditional probability in (8.83) majorized by e1? a sufficient condition reads 

1 - 2 5 ) % «, , (8.84) 

hence 
fcrln(l - (QnJN)) < In e. . (8.85) 

But, In (1 — x) < —x for each 0 < x < 1, so that a sufficient condition for (8.83) 
to be majorized by ex reads 

krQnN-1 > lne^ 1 (8.86) 

This condition can be easily satisfied with n = c2 \ /N , k = c3
 3yj'N, r = c4

 3-jN, 
where ch i = 2, 3, 4, depend on Q and e1? but not on N, say c,- > 3

yJ(Q~1 In e^1) 
will do. This choice is optimal in the sense that n + r + k is in 0(3yjN), which is 
not the case for other possibilities when n + r + k is in 0(iVa) for some a > ^. 

Obviously, 
m n 

P({V*2(co) = 0}/{ U U {*•>)} n V + 0}) = 1 , (8.87) 
« = i j = i 

so that, after a simple factorization, 
m n 

P({^J(o>) = 0}) < P({ U U {Xu(co)} nV=®}) + 
i = i ; = i 

m n 

+ P({W*2(co) = 0}/{ U U { * , » } n F + 0}) < (1 - 1/NT + s, , (8.88) 
; = i j = i 

for n, k, r defined as above. So, taking ex = e/2 we need mn > (In (lje))N to keep 
(1 — 1/N)mn below e/2, so that the optimal solution is m = cvN

213 for an appropriate 
cx = cx(e, Q). The theorem is proved. Q 

Let us reconsider the proof of Theorem 8.6 from another point of view. If there 
are i <. m, j =^ n such that x,j(oj) e V then the worst case is that with just one such 
a pair <i , j) . In this case u*(co) = (m — l)/m = 1 — m _ 1 , setting into (8.77) we 
obtain 

HI n 

P(u;(-)/{card (u U {Xjm)} P F) - 0) ^ 
/ = ] J = l 

^ ((i - Q) + e ( i - i/m)y = (i - e / « y • (8.89) 
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Using the same computation as above, 

P({9*(<o) = 0}/{card ( U U {*./<»)} n V) - 1}) <_ (1 - Q/m)", (8.90) 
i = i y = i 

hence, to majorize this conditional probability by els we need 

fcrln(l - Qjm) < In e< , (8.91) 

which evidently holds if krQJm > lne^"1. This can be satisfied with k = c3 \ / /V, 

r = cA
 3yjN, m = c^N213, supposing that c^cjc^ > Q ' M n e ^ 1 . To keep also 

(1 — ljN)mn below e — ex > 0, we need n = c2
 3sfN for an appropriate c2. Such 

a choice solves the case when X^co) e A — V for all i = m, j = n, by reducing its 

probability below a fixed threshold value, say, e/2. 
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