
Kybernetika

Ivan Kramosil
Parallel probabilistic searching and sorting algorithms

Kybernetika, Vol. 26 (1990), No. Suppl, 1--72,73--93

Persistent URL: http://dml.cz/dmlcz/124173

Terms of use:
© Institute of Information Theory and Automation AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124173
http://project.dml.cz

Kybernetika
PARALLEL PROBABILISTIC SEARCHING
AND SORTING ALGORITHMS

IVAN KRAMOSIL

ACADEMIA

PRAHA

Kybernetika
ROČNÍK/VOLUME 26 (1990)

Časopis Československé kybernetické
společnosti při ČSAV/The journal of the
Czechoslovak Associatíon for Cybernetics
under the auspices of the Czechoslovak
Academy of Sciences

Vydává/Published by;

Ústav teorie informace a automatizace
Československé akademie věd/Institute
of Information Theory and Automation
of the Czechoslovak Academy of Sciences

Vedoucí redaktor/Chief Editor;

Stanislav Kubík

Výkonný redaktor/Executive Editor;

Karel Sladký

Redakční rada/Editorial Board;

Jiří Anděl, Jiří Bečvář, Ivan Havel,
Jan Ježek, Zdeněk Kotek, Ivan Kramosil,
Vladimír Kučera, Petr Mandl, Jiří Nedoma,
Albert Perez, Václav Peterka, Milan Ullrich,
Igor Vajda, Jaroslav Vlček, Zdeněk Wunsch,
Ivo Zapletal

Redakce/Editorial Office;

Pod vodárenskou věží 4, 182 08 Praha 8

PARALLEL PROBABILISTIC SEARCHING AND SORTING ALGORITHMS

RNDr. Ivan Kramosil, DrSc.

Příloha časopisu Kybernetika/Supplement to the journal Kybernetika

ACADEMIA, Praha 1990

PREFACE

Many interesting and important tasks of artificial intelligence can be solved
converting or reducing them appropriately either to searching problems, when an
element of a desired property is to be found in a large set, or to sorting problems,
when the set in question is to be endowed by a structure. As a rule, time and space
complexity or other demands connected with the resulting searching or sorting
problem(s) ultimately influence the total time, space or otherwise quantified com
plexity of the program as a whole, in which searching or sorting occur as subprograms,
and very often are decisive for applicability of the main program. The main attention,
from the theoretical and practical viewpoint as well, is focused to the cases when
a blind systematic exhaustive searching or sorting "by force" is intractable either
theoretically (the universe of discourse is infinite) or practically (this universe being
finite but too large).

Under realistic restrictions concerning the abilities of the testing and sorting
devices (oracles) being at hand and without a more detailed knowledge concerning
the basic set (universe of discourse) in question, the nature of its elements or its
possible a priori structuralization, the time complexity of searching and sorting
algorithms may increase rather rapidly with the cardinality of the basic set increasing.

The time, space or other demands connected with searching and sorting algorithms
can be reduced either by a sophisticated use of specific features of particular searching
or sorting problems, or using some general principles as randomization or paralleliza-
tion. Our effort, in what follows, will be oriented just in this latter direction. Namely,
our attention will be focused to an appropriate combination of both the principles
in order to obtain parallel probabilistic algorithms for certain searching and sorting
problems, with sufficient statistical qualities, and working under realistic conditions
and within reasonable time limitations.

It is not the aim of this case study to survey exhaustively everything what has been
done, or at least what the author knows to have been done, in the domain in question
in general till now. Rather, we would like to present systematically author's own
results in this direction, and to offer an introductory study into the domain of parallel
probabilistic algorithms. For these sakes, as well as in order to make the text self-
explanatory, a rather elementary and detailed formalization of classical as well as
non-classical kinds of algorithms is presented in Chapters 2 and 3. The argumenta
tions and reasoning of probabilistic nature are mostly the very elementary combina
torial ones, some exceptions being covered by references of textbooks or monograph-
ies on probability theory. Mathematical models, statements and conditions under
which they hold are always presented at the level of formalization common in math
ematical texts, proofs are introduced only supposing they have not been published
yet (e.g., the results in Chapters 5 and 6), being replaced by references otherwise.

Keeping in mind the sequential way of publication of this study, references are
presented immediately after each chapter to made its use more convenient for the
reader. Besides the items namely quoted in the text, references introduce some text
books and monographies, most of them of undergraduate level, which can serve
as sources for preliminary knowledge from mathematical logic, theory of recursive
functions and probability theory. The list of these textbooks and monographies
is far from being exhaustive and most of its items may be successfully replaced by
other ones, perhaps more easily accessible in a particular reader's position. However,
when forming the list of references, the accessibility of particular titles served as the
main choosing criterion; it is also why Czech and Russian translations are introduced
supposing their existence is known to the author. Finally, the supplementary list
of references contains some items which stand in relatively close connections to the
investigated problems and which may serve either for an interesting and useful
confrontation or as an inspiration for further development. This supplementary list of
references will close the last chapter.

The author hopes this study to be of certain use for specialists in artificial intelli
gence, applied theory of algorithms and statistical decision making.

Prague, June 1988
Ivan Kramosil

CONTENTS

1. Introduction
2. Mathematical Models of Classical Algorithms
3. Mathematical Models of Nondeterministic, Parallel, Probabilistic and Bayesian

Algorithms
4. Parallel Probabilistic Searching Algorithms
5. Searching Algorithms with Limited Testing Reliability and with Generalized

Loss Function
6. Parallel Algorithms for Monte-Carlo Methods
7. Parallel Probabilistic Algorithms for Linear Ordering
8. Some Modifications of Parallel Probabilistic Searching Algorithms

1. INTRODUCTION

Instead of beginning this study with some vague, proclamative and rather philo
sophical statements concerning the parallel probabilistic algorithms we shall introduce
them, in this chapter, from the point of view of their possible applications in the so
called knowledge systems. Both these notions, "parallel probabilistic algorithms"
and "knowledge systems", have rather a lot in common. Or, both of them denote
very young domains of applied science under a very rapid development in our days,
both of them are very frequented in contemporary science as well as in many con
siderations of various provenience and degree of seriousness and, finally, there is a
certain shadow of fashionness and sensationalism in both these notions. All this makes
justifiable our assumption that the reader has already met both the notions in question,
on the other hand, it is not possible to avoid the case that the context of this meeting
has not supported too much the reader's serious and moderate image about both
the domains. Hence, let us use this introductory chapter in order to limit, more
correctly, the field of our interests in this study keeping in mind, of course, that
a higher-level preciseness can be given only after having introduced the most necessary
formal apparatus (in the next two chapters). At the very beginning, let us describe,
in more details, both the notions introduced above.

The term "knowledge systems" is often understood as synonymous with that
of "expert systems", but we do not consider this identification as happy or even
appropriate, at least in our context. It is caused by the fact that the notion "expert
systems" seem to be too charged with the idea that the pieces of knowledge contained
in and handled by the system are exclusively the expressions of subjective and rather
vague knowledge of human beings-experts, if not taking into account some more
anthropomorphic imaginations resulting from this idea.

In the most general form to which we shall always refer in this work, knowledge
system consists of two parts: of a collection of basic or outcoming pieces of knowledge
or data (databases), and of a deductive or, more generally, inference mechanism or
inference machine, which enables to deduce knowledge from the given database.
In a non-trivial case, of course, also other pieces of knowledge than those explicitly
put in the database can be obtained. The ways in which the pieces of knowledge are
inscribed in the database can be rather various: assertions or statements within the
framework of a natural, but also formalized language, tables of function values,
graphs (including the well-known semantic nets), or even other objects or structures.
An integral part of databases are data charged with an uncertainty or vagueness and
also the ways in which this uncertainty may be expressed are very different: verbal
expressions like "maybe", "perhaps", "probably", "we cannot avoid that...", etc.,
operators of appropriate modal logics, evaluations of degree with which an assertion
holds or of degree of belief of a subject that the assertion holds, where the degrees
can be of numerical, as it is the most common case, but also of non-numerical
nature, and so on. Vagueness of an assertion, to distinguish it from the uncertainty*

corresponds rather to certain ambivalence of the used terms which results in a plura
lity of possible semantical interpretation of knowledge contained in the database.

Also the inference machines can be very different, either from the viewpoint of
their nature, or when considering the degree of their inference abilities. The most
simple inference method consists in the verification, whether an assertion, put on
the input of the system as a question, can be found in the database. If it is the case,
the answer to the question is affirmative (positive), the answer being negative other
wise. Let us neglect, for an instant, the evident fact that when the database is very
large or its elements are hard to access, even this "inference machine" is far from
being simple. The reader familiar with the foundations of the PROLOG programming
language immediately notes, that the deduction power of this language reduces just
to this exhaustive searching mechanism supposing that the database does not
contain any formula with a free indeterminate. By the way, in its full powers it is just
the PROLOG language which can be seen as a good example of a non-trivial, but
theoretically as well as practically effective and realizable inference machine. As
another extremal example of such a machine we may take, in case the data are written
as well-formed formulas of first or higher-order predicate logic, the full deductive
apparatus of the logic in question with all consequences concerning the undecida-
bility and incompleteness of those calculi.

Let us remark, that all the inference machines mentioned till now deal exclusively
with the so called "certain information", i.e. all the pieces of knowledge put into
the database are taken as unambiguous and surely valid ones and only those new
data are derived from the given ones, which follows with logical necessity. However,
a very topical problem of contemporary theoretical and applicational research effort
in the domain of knowledge systems is that of deducing some knowledge from
uncertain premises, namely how to derive the (numerical or non-numerical) degree
of validity or degree of belief for the deduced assertion or answer on the ground
of the degrees of belief or validity ascribed to the premises used during the deduction.
The so called extensional inference machines try to deduce the degree of validity,
of the resulting answer or statement using only the degrees of validity of premises
and a universal (in the framework of the knowledge system in question) computa
tional or combinational rule working over the degrees of validity ascribed to the
premises. The resulting relatively rather low computational complexity of extensional
inference mechanisms is the most often introduced argument in favour of such
systems. On the other hand, the extensionality of an inference machine is hardly
compatible with the possibility to interprete the degrees of validity or belief as
probabilities. Such an interpretation is possible only under some very strong and
hard to defend assumptions concerning the statistical dependence of the observed
events and measured quantities taken as random events and random variables. Hence,
it is almost natural that among the intensional (i.e. non-extensional) inference
mechanisms just the systems consequently based on the probabilistic models and
approaches have already reached the stage of full theoretical foundations and

following experimental verification. The basic assumption of probabilistic inference
machines can be expressed in such a way that the simultaneous probability distribu
tion is the only and completely exhaustive description of all the relations among the
variables which the pieces of knowledge in the database describe. The degrees of
validity (weights) of the assertions posed as questions to the system, or which are
output by the system as its answers, are then reduced to the values of corresponding
conditional probabilities. From the point of view of practical calculation the problem
is, of course, very far from being trivial and its practical solvability requests some
compromises, namely when replacing the simultaneous distribution in question by
its appropriate and theoretically justified approximation or simplification.

In the connections with the sakes and intentions of this study, however, it will be
interesting to analyze the inference machines still from another point of view. The
greatest part of those machines or mechanisms consist, in fact, in the application
of a computational rule or formula to appropriate arguments. Once these arguments
having been known, given or found, the application of the rule or the computation
itself is usually relatively simple and not too much time, space or other expenses
consumpting. On the other hand, the justification that just the rule or computational
formula in question are the proper, adequate or reasonable ones may request a great
portion of theoretical effort and large and complicated theoretical constructions.
The problem consists in the fact that the arguments must be looked for in very large
sets or collections, containing a very small portion of "appropriate" ones, if any.
As a rule, moreover, the set of potential candidates is not structured in a way enabling
to simplify substantially the seeking for "appropriate" arguments, hence, nothing
better than the blind exhaustive searching can be recommended, at least within the
framework of classical deterministic and sequential algorithms (cf. Chapters 2 and
3 below). As a classical example let us consider the well-known modus ponens
deduction rule, if A and A -> B ("A implies J5", " i f - t hen B") hold, the the formula B
holds as well. Having already given or found the formulas A and A -> B, it is not difficult
to verify that the later formula has the form of implication, that the antecedent
of the latter formula (A -> B) is identical with the former one (A), if considering
formulas as finite sequences of elementary symbols (letters), finally, to "cut" (hence,
"cut rule" in English for modus ponens) the consequent B of the latter formula and
to joint it with the set of formulas already known to be valid. Another problem is
crucial: having been given a formula B a s a hypothesis, which is to be verified, or as
a question which is to be answered by the knowledge system, how to find within the
set of formulas having been already verified or proved, such a formula A that the
formula A -> B is also within this set (or how to prove that such an A does not
exist). When the investigated set is very large and when no rule exists or is known
which could help as a hint or heuristic during the searching process (and this is
typical for the modus ponens rule), the searching problem is very difficult. If the
extent of the checked set quickly (say, exponentially) increases with the size or com
plexity of the original task, the exhaustive searching is practically intractable.

A similar situation occurs when considering the well-known resolution principle
for automated theorem proving: two clauses (Aly A2y..., An9 C) and (Bl9 B2J ..., Bm,
"1C) where 1 C stands for "negation of C", are to be replaced by single clause (Al9 ...
..., An9 Bi9 ..., Bm), and it is very simple supposing the two former clauses are given
or known. What makes troubles is to find two clauses of this form in a large set of the
already proved clauses (in the case of the propositional calculus). Still more difficult
problem is that of finding two clauses together with a substitution for free indetermin-
ates of these clauses which converts them into formulas to which the resolution rule
can be already applied (in the case of predicate calculus). Last but not least, the
problem to find a substitution for indeterminates occurring in formulas of PROLOG
language enabling to match the resulting formula with one already being in the data
base, belongs also to this class of tasks. The last two examples, i.e. resolution principle
and PROLOG, are interesting and important also because of the fact that they
demonstrate the possibilities as well as the limits of possibilities of practical computer
implementation of tasks leading to searching problems in large databases.

Now, we may already close the first part of this introductory explanation, having
already created a sufficient background to turn our attention back to the notion of
parallel probabilistic algorithms. On an informal level, parallel algorithms can be
described as computational programs, during the implementation of which two or
more computations run simultaneously and independently, hence on two or more
computational devices, with the further processing of the particular results by
another computational device-processor. The most simple and notorically knowr
attempt in the direction of parallelization is the bracketing of arithmetical expressions;
the expressions within mutually disjoint pairs of brackets can be evaluated indepen
dently, hence, simultaneously, in parallel. What matters for the next computation
are just the resulting values evaluated inside particular pairs of brackets. Consider
an example the triviality of which may seem perhaps too exaggerated. When evaluat
ing the expression (5 + 4) x (3 + 6), the task to compute 5 + 4 may be delivered
to one processor; another one simultaneously computing 3 + 6, consecutively
realizing the final multiplication. Evidently, in a trivial case like this one the loss,
following from the necessity to divide the computation among the two processors
and then to cummulate their results, significantly exceeds the savings reached due
to parallelism. However, taking into consideration a computation consisting in the
multiplication of numerical values of two or more define integrals of some hardly
integrable functions, the savings of time reached by a parallel evaluation of particular
definite integrals on particular processors will become very evident and remarkable.

In the context of our explanation on knowledge systems and keeping in mind the
above mentioned separation of the work of inference machine into its "searching"
and "computational" parts, the parallelization can be immediately seen to be a very
hopeful tool in order to make the work of inference machine substantially more
rapid and effective. The testing, whether some elements of the basic space under
investigation are "appropriate" arguments of the used decision or deduction rule

8

or function, in the positive case followed by the computation, deduction or decision
making in question, all this can be performed independently, hence, simultaneously
for different candidates from the universe of discourse. The limits of this paralleliza-
tion are given by the extent of this basic universe (theoretically), by the expenses con
nected with the obtaining of the processors, and by the time or other demands
connected with the necessity to ensure the necessary synchronization of their work
together with an inspection and cummulation of their results (practical limitations).
Some of these problems will be dealt with in the next chapters. So we may already
specify the subject of this study by saying that our interest will be focused to parallel
algorithms for searching tasks resulting as subtasks during the implementation
of inference machines in knowledge systems. The most simple kinds of such algorithms
will be investigated in Chapter 4. Chapter 5 deals with their modifications in the
case of testing oracles with limited reliability and with generalized loss functions.

When considering some problems solved by knowledge systems, it may be of
great importance not only to find appropriate (in a sense) elements in a large set of
potential candidates, but also to know the (relative) frequency of these appropriate
elements in this set. Also this problem can be solved in parallel, and we shall investigate
the degree of soundness of such a parallelization in Chapter 6.

Parallel algorithms can also serve as a tool to introduce a structure in large sets,
according to certain criteria, with the aim to make easier their further searching or
investigating. In Chapter 7 we shall deal in more details with algorithms introducing
a linear ordering in a set with respect to decreasing or increasing values of a numerical
or ordinal criterion the values of which are ascribed to the elements of the set in
question. Finally, Chapter 8 deals with parallel probabilistic searching algorithm
with a certain degree of co-operation among their processors; this co-operation is
supposed to be of stochastic nature. To make this survey of the contents complete
let us turn back to Chapters 2 and 3. They introduce an appropriate formal apparatus
to describe and to handle the notion of algorithm or effective computational procedure
in the classical deterministic sense (Chapter 2), as well as their non-deterministic
and, namely, probabilistic variants (Chapter 3).

In order to specify, once more, the subject of our interests, let us say that we shall
consider only parallel algorithms of probabilistic nature. Probabilistic algorithm
can be understood as the usual algorithm with an additional argument (Input,
parameter), which is obtained as the result of a random sample made from an ap
propriately chosen sampling space and according to an appropriate probability
distribution defined over this space (cf. Chapter 3 for more details). Using an input
or parameter sampled at random makes the computation qualitatively more rapid
and effective, and with a probability large enough, but not the unit one in general,
the result of the computation or decision making is the correct one. The positive
probability of an error or failure is, hence, a penalty we have to pay for the pleasure
of much more rapid computation. It is a matter of purely extra-mathematical nature
to judge, how large probability of error can be taken as acceptable according to the

nature of the problem or computation in question and according to the resulting
time, space or other expenses savings. What is important in our context is the fact,
that in probabilistic algorithms for searching problems the random sampling of the
side input value can be often reduced to a sequence of more simple and statistically
independent random samples which can be, therefore, taken in parallel. Also the
computation or evaluation following these independent random samples can be,
in a more or less degree, divided into a number of independent computations which
can be realized, for particular samples or their subgroups, simultaneously and in
parallel. Hence, probabilistic algorithms with independent random samples can be
considered as important potential outcome when building parallel algorithms and
we shall take profit of this possibility several times in the sequel.

So, let us summarize once more: in what follows, we shall investigate parallel
probabilistic algorithms for searching over large database collections, for computa
tion or estimation of numerical characteristics of such collections and for introduc
ing a structure into such collections, with the aim to arrive at substantial simplifica
tions of searching subprograms of inference machines in knowledge systems.
Of course, such a specification is very far from giving an exhaustive list of all possi
bilities of applications of parallelism and parallel algorithms. Let us mention, by the
way the possibilities of parallelization in order to make more effective some matrix
operations (multiplications and inversions of matrices). However, including parallel
algorithms of this and similar kinds into the scope of our considerations, we would
cause this study to be Intractably large and we would also menace its thematical
homogenity. It is why we have decided to limit ourselves to the domain described
above and during all this study we shall consider ourselves being kept by this promise.

2. MATHEMATICAL MODELS OF CLASSICAL ALGORITHMS

In this chapter we would like to show, how the notions of effective computability
and decidability can be formalized and investigated within the framework of an
appropriate mathematical apparatus. Or, developing theoretical foundations of
nondeterministic, parallel and probabilistic algorithms, we shall often use as building
stones the notions and constructions offered by the classical theory of deterministic
and sequential algorithms. To tell the truth, we shall do so because of the simple
fact that no other, principally different conception of nondeterminism is at hand,
at least not at a level of a sufficient and detailed enough mathematical formalization.
It is why this chapter is devoted to a very brief recapitulation of basic notions of the
classical theory of algorithms. Doing this, we shall take profit of the excellent
Davis' monograph [3], not aiming, of course, to duplicate it neither in the extent
nor in the degree of mathematical perfection. On the other hand, we do not feel as
the best solution to replace all this chapter by giving a simple reference to [3], as
we would like to offer to the reader at least the first insight, even if not completely

10

formalized, into the notions and ideas in question. So, this chapter should be taken
as something like a compromise between the two extremities, in spite of all the
problems involved by all compromises in general. It is also why we do not separate
and formalize, in this chapter, explicitly definitions, statements and informal com
ments.

During a very long period, in fact, since its antic origins till the end of the last
century (and still later in some applications), the intuitive and informal conception
of effectiveness and effective computability has seemed to be quite satisfactory
for mathematics. It was the intuition and erudition of mathematicians who was
believed to be able to distinguish an effective computation from a noneffective one
case by case without referring to a general theory of effective computability. The crisis
in mathematics involved by the occurrence of paradoxes in set theory resulted in
the Hilbert's program of remedy of mathematics through their re-formulation into
a finitely axiomatizable deductive theory with formally described, exclusively combi
natorial and, hence, semantically irrelevant and meaningless deduction rules. The
failure of this conception and its principial nonrealizability was proved by GodePs
results from the beginning of the fourth decade of this century. They implied also,
as far as the computation theory is concerned, that a strict and purely combinatorial
definition of the notion of effective calculation is necessary in order to assure the
soundness and consistency of proposed computational structures. But, on the other
side, it plays a role of a principial limitation defending to suggest a universal system
enabling to realize all intuitively valid derivations "under one roof". The occurrence
of first computers, in a rather short time distance, offered also another, quite practical
motivation of building a formalized theory of computations. Or, only the computa
tions formalized in such a way can be, at least potentially, realized by an appro
priate technical device. From the fourth decade of 20th century originates also the
conception of Turing machine which we introduce here as one of a number of
mathematically equivalent formalizations of the notion of "effective computation".
This choice is caused by our personal belief that this conception in the best way
joins the demand of mathematical perfection with the possibility of an informal and
intuitive interpretation.

Like other models, the notion of Turing machine is built recurrently and inductively;
some elementary operations are claimed to be effective by definition (at the formal
level) and by repealing to their evident effective realizability (at an informal level).
Similarly, some ways how to combine operations are proclaimed to be effective
in the sense that the application of such a way of combination to effective operations
results in another effective operation. In more details, Turing machine can be de
scribed as follows.

Consider an infinite, both-sides unlimited tape divided into infinite number
of boxes. Every box can be either empty (in other words said, it contains a symbol
b = blank), or it contains just one symbol or letter of a finite nonempty alphabet A,
an alphabet with a single letter suffices. The "active" part of Turing machine is called

11

head and in every moment (the work of the machine is supposed to be executed in a
series of discrete moments) the head is in one of internal states q0, ql9q23.>., moreover,
the head is situated just over one box of the tape and "reads" its contents. Depend
ing on the internal state of the head and of what is read, the machine chooses among
the following actions.

(1) it erases the contents of the read box and inscribes in it either a letter from A
or a "blank" (i.e. the box is empty). Specially, the contents may be unchanged —
"rewritten by the former contents", in formal. Then the head changes its internal
state, the new state may be, of course, in some cases identical with the former one.
A formal description of this action can be given by a quadruple (qiSjSkqi), where qr

is the original and qt the resulting state, and Sj (Sk, resp.) is the former (the newly
inscribed, resp.) contents of the read box. Hence, the quadruple (qjSjSjqiy corresponds
to an "empty action" or non-activity, the quadruple <g *£/£/#/>, I + j , deals with
the case when the machine, having read the box under inspection, changes its internal
state without changing the contents of the box. When reading the same box once more,
the machine may, of course, choose another action due to the foregoing change of
its internal state.

(2) having read the contents of the box, it is left without any change, but the head
itself moves to the right to be placed under the neighbour box, moreover, the head
changes its internal state (again, of course, with a special possibility not to do so).
As a formal counterpart of this action may serve the quadruple <qfSfcJRgj>, where
qt (qh resp.) is the original (the resulting, resp.) state of (the head of) the Turing
machine and Sk is the original and unchanged contents of the box read at the beginn
ing of the action.

(3) an operation analogous to the just described one, but with the move of the
head of the machine to the left, as a formal description may serve the quadruple
<qiSjLqiy.

From the formal point of view, Turing machine is completely determined by a finite
set of quadruples of the types introduced above supposing that the consistency of
application of the machine is assured. It is why we must demand, when defining
a Turing machine, that there is no pair of quadruples inside the corresponding set
of quadruples, which would agree in the first two items but which would differ
in the other two items, i.e. a pair of quadruples (qiSjXix2y, (qiSJy1y2y with <x!X2> +
#= <yiy2>. This condition assures that, no matter which the internal state and the
content of the read box may be, at most one quadruple is applicable.

An instantaneous description of the Turing machine is the expression aqjp, where
a and /J are finite sequences consisting of the letters of the alphabet A or of b's (blanks),,
formally, a, /? e (A u {b})*. The interpretation is as follows: when the instantaneous
description is aqjp, the machine is in the internal state qj and in the read box occurs
the first (the leftmost) symbol of the sequence /?. The other symbols from /? are
inscribed, sequentially, in the next boxes to the right from the read one. All other

12

boxes till more to the right, not occupied by the symbols from /? are supposed to be
empty. Similarly, the sequence a describes the contents of the boxes situated to the
left from the read one with the last (rightmost) symbol of a inscribed into the box
immediately preceding the read one. All boxes more left from those occupied by
symbols from a are supposed to be empty. Evidently, this definition covers only
cases when only a finite number of boxes are occupied by letters from A, but because
of the fact that we shall investigate only configurations resulting from finite words
over the alphabet A by a finite number of operations, we may accept this definition
as sufficient. Its non-constructive generalization to the case with pe (A u {b})00

and a taken as an inversely written word from the same set would not be too difficult.
Now. supposing the quadruple (q^jXq^ is applicable to the instantaneous

description ccqsft, i.e., if q{ = qs and /? = Sj * /?*, this application uniquely determines
the new (resulting) instantaneous description a'qj?', where

(a) if X = Sk, then a' = a and /?' = Sk * f}*9

(b) if X = R, then a' = a * Sj and 0' = /?*.
(c) if X = L, then a' = a* and /?' = Sn * a, where a = a* * S„.

In all cases, * denotes the concatenation operation. So we may leave, from this
moment on, any intuitive images of "head", "tape" and "internal state", taking
Turing machine as a consistent finite set of quadruples of the form (qiSJXql)9

X e {Au {b}, R, L} which defines a partial mapping of the space of instantaneous
descriptions into itself. Supposing an original instantaneous description cp0 is given,
the application of the Turing machine to this description can yield the three follow
ing results.

(a) no quadruple from the set of quadruples defining the machine if/ in question
is applicable to <p0, hence, the work of the machine over <p0 terminates before it
started with the result \j/(<p0) defined by <p0.

(b) there exists a sequence <p0, <pl9 ...,<pn such that i//((pi) = <pi+1 # <pt for i =
= 0, 1, ..., n — 1, and no quadruple is applicable to <pn, i.e., ij/(<pn) is not defined.
In such a case the machine i/t stops (terminates its work) after n steps with the result

$(<Po) = <Pn-

(c) there exists an infinite sequence <p0, <px, <p2, ... such that (̂<P;) = <pi+1 4= (p^
i = 0, 1, . . . , then \}(<p0) is not defined.

The just introduced apparatus of Turing machines can be simply used in order
to define and describe the effective computations of functional values. Let us introduce
just the case of functions defined in the set of non-negative integers 31 = {0, 1, 2, ...}
and mapping this set into itself, as the generalization to other countable argument
and value spaces is merely a matter of technical routine. For n e 31, let n be a code
of n in the alphabet A. The coding is supposed to be fixed, e.g. if A = { | }, then
n = \n+l, i.e. n + 1 strokes, if card A S; 2, then n is the card .4-adic code of n, etc.
The Turing machine \J/ begins to work over the (conventionally stated) instantaneous
description bq0n and the function /^(n) is defined as follows: if }j/(bq0n) is defined
and $(bq0n) = b^m for some qx and some me 31, then /^(n) = m, otherwise,

13

f^(n) is undefined. The definition can be immediately generalized to functions defined
over vectors of non-negative integers; if the argument is a /c-tuple (nu n2,..., nk} of
non-negative integers, the original instantaneous description is of the form
bqi)nlbn1bn?)b ... bfik and the value/^(n, n2, ..., nk) is defined by <m1, m2, ..., mky
if and only if

$(bq0nibfi2b ... fe«fe) = qimihm2b ... bm& (2.1)

for an internal state q{. Through a simple transformation and without any loss
of generality we may achieve, that in case of halting the machine is situated in a specific
"final" or "terminal" internal state. A function / : dl -* 91 (/: 91fc ~> 91*, resp.) is
called effectiuely computable or partially recursive, if there exists Turing machine
\jt such that / = /^, the adjective "partially" reflects the fact that / need not be
defined for each argument value from 91 or 9tfc.

The construction of Turing machines together with the following definition of the
class of effectively computable functions was described, above, as it is just this class
of functions which is accessible for computers or other technical devices. Hence,
the description of a computation or decision problem in the form of function effec
tively calculable by a Turing machine is a necessary condition for its computer
solvability. It may be taken as quite intuitive to take a function computable by
a Turing machine as an effectively computable one in the common sense. Or, suppos
ing that f(n) is defined, we are able to obtain this value after a finite number of
operations, even if the number of these operations cannot be known a priori, and
each of these operations seems to be elementary enough to be taken as intuitively
effective. Of course, an open question remains, whether each function taken as effec
tively computable in the intuitive sense can be also computed by a Turing machine.
Evidently, a question like this cannot be answered, neither positively nor negatively,
within the framework of a mathematical formalism, or it confronts a formal con
ception with an informal one. On the other hand, only formal conceptions can be
compared at a mathematical level, and possibly their identity or difference may be
stated. The positive answer to the question just mentioned, i.e. the assumption that
the class of functions computable by Turing machines covers all functions taken as
computable in informal sense, is generally accepted as the so called Church or
Church-Turing thesis. The generality of its acceptance refers rather to practical
applicability. As far as the acceptance of this thesis at level of theoretical argumenta
tion is concerned, e.g. when replacing a technically difficult routine construction
of a Turing machine for a given function by simply referring to the intuitive computa-
bility of this function, the positions of various authors differ. Because of the orienta
tion of this text toward practical algorithms, and due to the fact that the greatest
part of work which will be mentioned or referred to in what follows accept the Church
thesis, we shall accept it as welL

The reader who does not believe or accept the Church thesis, evidently cannot
be persuaded or forced to do so on the ground of a purely mathematical argumenta-

14

tion and she or he may refuse all proofs based on this thesis by ascribing them just
the status of an informal hint or heuristic. This position is defended, e.g. by Davis
himself in [3], who introduces Church thesis, but does not take profit of it, giving
careful and detailed constructions of all Turing machines necessary for his explana
tions. From the point of view of pure and correctly formalized mathematics it is
quite a legitimate position and the main argument against it is, and necessarily must
be, again of an informal and heuristic nature. Namely, there has not been given
or discovered, till now, an intuitively computable function not computable by an
appropriate Turing machine. Nevertheless, even when accepting the Church thesis,
we must always keep in mind its special nature and the serious consequences follow
ing from such a decision.

As an important practical argument in favour of Church thesis let us mention the
well-known fact that there are several, independently developed, formalizations
of the notion of "effectively computable function". These conceptions are equivalent
in the sense that the class of functions declared to be effectively computable is the
same and is identical with the class of functions computable by Turing machines.
Among the well-known alternative formulations are Markov (or normal) algorithms,
Post machines (or grammatics) and partially recursive functions. Let us mention
the last ones in more details.

Consider functions ascribing natural numbers to finite sequences of such numbers.
Elementary functions are, by definition, the following ones:

(a) constants, i.e. functions of the form f(xl9 x29 ...,xn) = k, for all n9 ke^l,
n = 1.

(b) projection functions, i.e. functions of the form f(xl9 x2, ..., xn) = Xj for all
j9 n e % 1 ^ j ^ n.

(c) successor function f(x) = x + 1. The class of primitive recursive functions is
then defined as the smallest class of functions containing all elementary functions and
closed with respect to the composition and primitive recursion. Hence, iff(yi,..., ym)
is a primitive recursive function of m arguments and gt(xu ..., xn), g2(xl9 ..., xn)9 . . .
..., gm(xl9 ..., xn) are primitive recursive functions, each of them with n arguments,
then also

f(gi(*u • --> *«), 9i(xu • •> xn)9..., gm(xl9..., xn)) (2.2)

is a primitive recursive function of n arguments (composition). If f(xl9..., xn) and
g(xl9 ..., xn9 y9 z) are two primitive recursive functions, then the function h of n + 1
arguments, defined by

h(xl9 xl9..., xn9 0) = f(xl9 xl9..., xn) , (2.3)

h(xl9 x29..., xn, y + 1) = g(xl9..., xn9 y, h(xl9..., xn, y)) ,

is also primitive recursive (primitive recursion).
As can be proved in a rather routine matter, each primitive recursive function

is computable by a Turing machine (the corresponding construction having been done,

15

rt 4$yJ
e.g., by Davis in [3]). However, the class of primitive recursive functions can be
easily seen not to cover the class of all functions computable by Turing machines,
e.g., because of the fact that each primitive recursive function of n arguments is
defined on the whole space 9T. So partial functions, undefined for certain n-tuples
from W\ cannot be primitive recursive, but some functions of this kind can be
defined and computed by Turing machines (within their definition domains). As
an example of total, effectively computable, but not primitive recursive function
we may take the well-known Ackermann (or Ackermann-Peter) function (cf. [2],
e.g.). So we add, to the rules already accepted, a new minimization rule. A function
hof n — 1 arguments x2, x3, ..., xm n Sg 2, is called to be obtained by minimalization
from a function / of arguments y, x 2 , . . . , xn9 if

h(x29 x3, ..., xn) = min {y: y e %f(y, x 2 , . . . , xn) = 0} (2.4)

supposing that for x2, x3, ..., xn in question such an y exists, if it is not the case,
h(x2, ...,xf |) is not defined. Now, the class of partially recursive functions is the
smallest class containing all primitive recursive functions and all functions obtained
when the minimalization rule is applied to a primitive recursive function. Just one
application of this rule can be proved to be sufficient to obtain the class in question.
As already mentioned above, the class of partially recursive functions is identical
with the class of functions computable by Turing machines. Accepting the Church
thesis, it is identical also with the class of intuitively computable functions.

The formulation presented above could involve an idea or impression that the
apparatus of Turing machines as introduced is not general enough in the sense that
each effectively computable function requests its own "particular" Turing machine,
"independent" of the machines enabling to compute other functions. The notion
of universal Turing machine proves this idea not to be quite correct. For example,
let us consider Turing machines which compute functions of one argument. From
the formal viewpoint they are nothing else than finite sets of quadruples, hence,
finite sequences of symbols. So, they can be effectively ordered (lexicographically,
say), enumerated, and their order numbers (indices) can be encoded in an appropriate
alphabet A, e.g., by the word having the same index in the fixed lexicographical

00

ordering of the free monoid .4* = U a". There exists a Turing machine over the
= 0

alphabet A, which works as follows: given x e 91, it decomposes x into a pair <xl5 x2> e
e 91 x 91 using a fixed effective decomposition rule. Then the machine takes xt

as the index of a Turing machine, namely \j/Xl with respect to the defined ordering,
it generates the set of quadruples corresponding to \j/Xl and, finally, applies \f/Xl

to the argument value x2 and computes \[/Xi(x2). Hence, this "universal" Turing
machine can "simulate" the computation of a machine xj/ over an argument value x
by working over argument value j / (^ , x) defined in such a way that its fixed de
composition yields the index (often called Godel number) of xj/ and the argument
value over which i/t is to operate. Informally, y(\jj, x) corresponds to the input se-

16

quence for a computer, which the computer itself divides into program, i.e. the code
of the algorithm which is to be executed and which is written in a special alphabet
called programming language, and into data, i.e. values which are to be substituted
for the free indeterminates of the program and to which the program is to be applied.
Let us notice the fact that from the highly theoretical and abstract notion of (universal)
Turing machine we have arrived very close to the realistic and highly practical
notion of computer. Otherwise said, universal Turing machine can be seen as an
idealization of computers, abandoned of the limitations resulting from the fact
that each computer is a physical finite system (device). Still briefly said: universal
Turing machine is a usual computer with unlimited memory and unlimited execution
time (unlimited means infinite in the potential sense).

The last phrase seems to re-capitulate everything important, what the practically
and rather toward applications oriented reader should keep in mind when reading
the next chapters. In orientation toward a reader whose interests are more mathe
matical and theoretical, the aim of this chapter was to show, in which sense the notions
like "algorithm", "algorithmical", "effectively computable" or "effectively decidable",
etc. are to be understood. In what follows, these expressions will be used very often
as basic, elementary and no more analyzed building stones of our further consider
ations and constructions. The explanation presented in this chapter has been, as
already mentioned, taken from the already classical Davis' monography, up to
a notion of oracle which is introduced in the next chapter. Several most important
monographies or textbooks dealing with the classical theory of algorithms and
attainable in our conditions are listed below, cf. [1] —[7].

R E F E R E N C E S

[11 M.A. Ajzerman: Logika, automaty, aîgoгitmy (Logic, Automata, Aîgorithms — in Czech).
Academia, Prague 1971.

[2] C Calude: Theories oí Computational Complexity. North Holland, Amsterdam 1988.
[3] M. Davis: Computability and Unsolvability. McGraw-Hill, New York 1958.
[4] Z. Manna: Mathematical Theory of Computation. McGraw-Hill, New York 1974. Czech

tгanslation: SNTL, Prague 1981.
[5] J. Mikloško and V. E. Kotov: Algorithms, Software and Hardware of Parallel Computers.

Springer-Verlag, Berlin and Veda, Bratislava 1984.
[6] H. Rogers: Theory oî Recursive Functions and Efïective Computability. McGraw-Hilí,

New York 1967. Russian translation: Mir, Moseow 1972.
[7] K. Wagner and G. Wechsung: Computational Complexity. VEB Deutscher Verlag der Wissen-

schaften, Berlin 1986.

17

3. MATHEMATICAL MODEL OF NONDETERM1NISTIC, PARALLEL,
PROBABILISTIC AND BAYESIAN ALGORITHMS

Considering once more, and from a certain distance point of view, the notion
of algorithm together with the way in which this notion has been formalized, three
basic attributes of the classical paradigma of theory of algorithms, and computational
processes in general, arise. A step by step omitting of these attributes will bring us
to non-classical conceptions of algorithms which will be the main subjects of our
investigations in this chapter.

(a) Correctness and reliability of the result. Supposing an algorithm pretends
to the role of tool for computation of a function / over its definition domain D,
then this algorithm must for every value x from D, this value being introduced
on the input of the algorithm, produce in a finite time the value/(x) as the correspond
ing output. In case the function / takes its values in a continuous set of real numbers,
the algorithm must be able to produce, in a finite time and given xe D and natural
number n 2j 1 as input values, a value y which differs from/(x) by less than \\n.
No other incorrectness or unreliability of the result is admitted. If, in spite of this
demand, the computation uses a procedure or device charged by such an incorrectness
or unreliability, such an approximation can be justified only by reason of utiliary
and extra-mathematical nature. These reasons, if applied, are in a position of onto-
logically independent side inputs and cannot be defended within the framework
of classical theory of algorithms and computational processes.

(b) Sequential nature of the algorithm work. No matter how elementary or
complicated (in an informal sense) may be the operations declared as atomic and
non-analyzed during the description and implementation of the algorithm, the
algorithm is always executed as a linear sequence of operations. Hence, when execut
ing an operation — a member of a sequence of operations, all foregoing operations
are supposed to be already executed and their results to be known and to be at the
disposal of the algorithm. The evaluation or estimation of computational complexity
of the algorithm (of the corresponding computational process, resp.) is also based
on the sequential understanding. Even in case some operations are executed in parallel
at the level of their practical hardware realization, this fact is not taken into consider
ation at the theoretical level. Besides other reasons, this sequential conception
reflects the classical paradigma of mathematical work taken as an individualistic
intellectual creative activity or effort of human subject which cannot share his work
with somebody else by an appropriate co-ordination of their efforts.

(c) Worst-case analysis — the minimax criterion of quality of algorithms. This
attribute is very close to that one introduced ad (a) above and consists in the fact
that the quality of algorithm which computes the values of a function / over its
domain D is uniquely determined by that case, i.e., by that value xe D, which is
the worst from the viewpoint of the criterion in question. E.g., the time, space or
in other way quantified demands connected with the computation of f(x) are, in

18

this case, the highest ones. It does not matter how "larger" or "important" subset
in D is represented by these extremum cases, it does not matter as well, whether
these cases are "typical" or "non-typical", or even "pathological" from the point
of view of an intended practical application of the algorithm. Supposing that these
extremum cases cannot be avoided from considerations by an appropriate re-defini
tion of the function in question (by an explicit narrowing of its definition domain,
e.g.), we have to accept, when accepting the classical paradigma of algorithm theory
and computational complexity theory, the decisive role of extremum cases when
classifying the qualities of algorithms and computational processes.

We shall not take into consideration, at the moment, a number of practical and
extra-mathematical reasons for which the three principles introduced above cannot
be defended, or at least cannot be taken as rational, in many practical situations.
Some considerations of this kind can be found in [5] and we shall discuss them in
the following chapters when introducing some particular classes of non-classical
algorithms. The aim of this chapter, however, is to present appropriate theoretical
foundations for nondeterministic algorithms general enough to cover all the classes
of algorithms mentioned in the title of this chapter. Moreover, we would like to make
clear in which sense the non-classical algorithms can be understood as special cases
of nondeterministic algorithms. The notion "nondeterministic algorithm" will be
used throughout this work in spite of the fact that some authors (cf. [10], e.g.)
refuse it in principle as "lapsus linguae" or "contradictio in adjecto", i.e., as a contra
diction, postulating, in this way, determinism as an attribute of algorithmicity.
However, it should be clear, in what follows, when this term is used in an informal
and rather alegorical sense, when it is used in a formal sense, and which is its precise
formalization in the case in question.

Let us briefly survey some possibilities how to introduce nondeterminism into our
considerations. Because of the chosen way of explanation the shortest way to
nondeterministic models of computational processes goes through the notion of
nondeterministic Turing machines. Such a machine is defined, again, as a finite set
of quadruples of the form (q^jXq^, XeAu {R,L}, but this time without the
consistency condition. Hence, the set of quadruples may contain, simultaneously,
(qiSjXq^y and (qiSjYqry with <X, qty =J= <Y, qr>. This definition is as close as
possible to the formal model introduced above, even if it is, maybe, not too intuitive;
an equivalent and better known formulation will be given later. The disadvantage
of this model consists in the evident fact, that without a decision rule solving the
problem which among two or more quadruples applicable in an instant will be
actually applied, the model admits only a "parallel" interpretation. It means that
the computational process splits into two or more simultaneously executed branches
each of them starting by the application of one of the applicable quadruples. As we
shall consider as useful, for the sake of our further explanation, to be able to indi
vidualize particular branches of computation and to parametrize them appro-

IP

priately by elements of a parameter space, we shall not take nondeterministic Turing
machines as our outcoming point in what follows.

Another model of nondeterminism is introduced in [2] under the notion of A0~
Turing machine, where A0 c 91 = {0, 1, 2,...} is a subset of the set of all natural
numbers. A^-Turing machine is a finite set of quadruples of the form ^ q ^ K g j)
satisfying the consistency condition as in the foregoing chapter, however, with
X € A u {R, L] u {q0, qA, . . . } . The quadruples {g/Sp^g/X (g^Jvq j) and (q^jlq^
have the same interpretation as above, the quadruple ^qiSJqkql} means: if the internal
state of the (head of) the Turing machine is qt and the read box on the tape contains
Sj, verify, first, whether the instantaneous description on the tape corresponds
to a natural number with respect to a chosen and fixed way of coding of natural
numbers in the alphabet A. If it is the case and if this number is in A0, the new
internal state of the machine will be qk, its new state being qt otherwise. In both
the cases, the contents of the tape is left without any change. Informally, ^40-Turing
machine contains an oracle which is able, in each step, to answer, whether the natural
number, the A-CO&Q of which the machine has obtained, belongs to A0, or not,
and the further work of the machine depends on this answer. The class of functions
computable by ^-Turing machines is the class of A0-partial recursive functions.
This class of functions is defined in the same way as the class of partial recursive
functions in the foregoing chapter with the only exception that the characteristic
function (identifier) %AQ of the set AQ is classified as an elementary function (together
with constants, projection function and successor function). Here XA0

: ̂ ~~* {0> 1}-
XA0(

n) = 1 iff n e A)- Evidently, if ^40 is a recursive subset of 91, i.e., if XA0 *S a t o i a*
(for each n e 91 defined) recursive function, then the class of ^40-partial recursive
functions agrees with the class of partial recursive functions. If /1 0 is not recursive,
the class of partial recursive functions is substantially enriched (at least by the func
tion XAQ)-

As can be easily seen, the same behaviour and result of the machine can be achieved
by considering another, side input of the Turing machine in question. The values
of this side input are 0 or 1 and the next run of the computation depends on these
values. So we have arrived at the model which will play the basic role in our further
considerations.

Consider a function / defined on a subset Df of a set s4 and taking its values
in a set M. Suppose that the elements of the sets s/ and 33 can be encoded (enumerated)
in an effective one-to-one way, by natural numbers or finite sequences of natural
numbers. So we may speak, after all, about (partial) recursiveness of the function /
or other functions defined through / Let V be a nonempty set the elements of which
can be, again, encoded by natural numbers or finite sequences of such numbers.
A function Gf taking the Cartesian product sd x if into 3$ is called a nondeterminis
tic algorithm for (computation of the function) / , if the function Gf is partial re
cursive and if there exists, for each x e Df, at least one y eir such that Gf(x, y) =

20

The demand that there exists at least one value y eir enabling to compute the
value f(x) through the computation of the value Gf(x, y)9 is rather weak. So, the
practical use of the notion of nondeterministic algorithms conceived in this way
depends on the three following factors:

(a) on the accessibility of a value y = y(x) e if such that Gr(x, y) = f(x), given
x e stf9 or on the achievability of an oracle which is able to generate such a value;

(b) on the degree in which the use of an auxiliary value y reduces the computational
complexity (suppose, for a moment, that this notion has been already appropriately
defined) for Gj(x9y)9 if compared with the computational complexity off(x), iff
is partially recursive and can be computed directly, i.e. not through Gr(x, y);

(c) on our abilities to recognize the value f(x) among values Gf(x9 y) for various
/ s supposing we are not sure that a given y e ir is such that G;(x, y) = f(y).

Hence, an application of a nondeterministic algorithm Gf as a tool for computation
of values of the function f can be seen as prospective in two cases. Either, in case the
set V(x) c if of auxiliary values giving a successful computation of f(x) through
Gr(x, •), i.e. the set

V(x) = V(Gf9 x) = {y: y e f\ Gf(x9 y) = f(x)} (3.1)

is a sufficiently large or prevailing majority of the set if constituting subset of the set
if. If this sufficient cardinality of V(x) is defined in such a way that, taking an ap
propriately defined random sample from the set if 9 with a probability sufficiently
close to one an element from V(x) is sampled, we arrive at the notion of probabilistic
algorithm (cf. below for more details). The other situation when nondeterministic
algorithms may be of practical use is, that the set if is relatively small and it is within
our powers to compute simultaneously (in parallel), using a number of identical
computational devices (processors), the values G/(x, y) for all y e ir, in the optimal
case for each particular value of y on a separate processor. Now, of course, the demand
ad (c) above is of importance, as we must be able to recognize which of the proces
sors has computed the correct and desired value of f(x). This approach leads to the
idea of parallel algorithms which are also described and investigated below in more
details. Perhaps, the reader may be surprised that it is as late as now when the notion
of parallel algorithms, even if contained in the title of this work, for the first time
comes into the scene. Briefly said, we have preferred, in what has been already told,
first of all to describe motivations and ways of reasoning leading to parallelism,
postponing the introduction of the parallel algorithm till the time when we are able
to offer not only an intuitive description with a non-negligible danger of misinterpreta
tion, but also a certain formalized background. Moreover, our intention is to pick
up the difference between more theoretically conceived non-deterministic algorithms,
when the inspection of outputs is outside the scope of the algorithm, and practically
taken parallel algorithms when this inspection cannot be negliged.

Now, we may specify probabilistic algorithms in details as a particular subclass
of the class of nondeterministic algorithms. As we have already noted, the specifica-

21

tion consists in the fact that instead of simple non-emptiness of the set V(Gf9 x)
for all x from the domain o f / t h i s set will be requested to be "sufficiently large".
If the set if is finite, the relative frequency of elements from V(x) in if 9 i.e. the ratio
card V(x)/carci if of cardinalities of both the set could be considered as a criterion.
However, for an infinite set if or for more complicated or sophisticated sampling
models (mechanisms), which will be investigated below, this simple quantitative
criterion can be seen or easily proved to be unsatisfactory. It is why we shall consider,
from the very beginning, a more a general approach based on the abstract measure
theory. The basic notions of measure theory and probability theory can be found,
e.g., in [3], [4], [8], [9], or elsewhere.

A system 3S0 of subsets of the set if is called a sigma field supposing it is closed
with respect to the set-theoretical operations of difference and countable union.
Hence, if .£, F are sets from 38 09 then also E — F = {x: xeE9x$F} is in 38 0 and if

00

Ei9 E29 ... is an infinite sequence of sets from 3$0 then also their union \J Et is in 38 0.
i- 1

A function L> mapping 380 into the unit interval <0, 1> of real numbers is called
a probabilistic measure defined on CM09 if it is a non-negative, normed and sigma-
additive function on 380. Hence, 0 ^ pi(E) fg 1 for each EG3S09 fi(if) = 1, and for
each infinite sequence El9 E29 ... of mutually disjoint sets from 380 we have

oo oo

H (\J Et) =]T fx(Ei). As the most simple and, in a sense, extremum cases of sigma-
i = l 1 = 0

fields defined over if let us introduce the two-element sigma field (0, ir} (0 being
the empty subset of if)9 and the sigma-field &(yf) (sometimes denoted by 2r) of all
subsets of the set ir.

So we may define probabilistic algorithm for a computation of a function f:
Bf —> 3S9 2)f a si with the probability of error uniformly majorized by a positive
value s and with respect to a set if of side inputs, a sigmafield 380 cz 3P(if) and
a probabilistic measure fi defined on 380. In what follows, the expression will be
substantially abbreviated supposing the parameters are evident from the context.
It is defined as a total recursive mapping from the Cartesian product si x if into 38
and such that, for each x e Df9 the set V(Gf9 x) (= {y: y e if. Gf(x9 y) = f(x)}) is
in 380 and fi(V(Gf9 x)) = 1 — &. Because of the simple fact that only nonempty sets
can be of positive probabilistic measure, s < 1 yields that V(Gf9 x) is not empty
for each x e Df. Hence, the definition actually species a subclass of nondeterministic
algorithms.

The probability measure \i over if enables to measure the extent of some (i.e.
measurable) subsets of the set if in an "absolute" sense. Because of the fact that
during practical applications of probabilistic algorithms elements of the set if are
accessible just through random samples, we would like to re-define the measure jx
on if in such a way that the values of ft for subsets from 38 correspond to probabilities
with which the sampled value is in the subset in question. Such a modification can be
achieved when introducing the notion of probabilistic (random, stochastic) oracle.

22

Any triple <.Q, if, P>, such that Q is a nonempty set, if is a nonempty tr-field
of subsets of the set Q and P is a probability measure on £fy is called probability
space, the pair <.(3, if) is called measurable space. As special examples of probability
space and measurable space we may consider the structure (ir, 0§, L*> and <f ~, 3$)
defined above. Probabilistic oracle is a random variable X defined on (Q, if, P)
and taking their values in (f\ ^). This is nothing else than a measurable mapping
which takes Q into if hence, such a mapping that the image of each set from iM is
in if, formally,

{{co: co e Q> X(co) e £} : E e £9} c if . (3.2)

Now, probabilistic algorithm, which computes a function / with a probability of
error uniformly majorized by a value s > 0 and with respect to a probabilistic oracle
X, is a recursive mapping Gf: si x V -» 0$ such that, for each x e Dr,

P({o>: OJ e £2, K(o>) e F(G /? x)}) =

= P({co: co e Q, Gf(x, X(co)) = /(x)}) = 1 - e . (3.3)

Evidently, this definition agrees with the one above supposing the probability me
asure /i is replaced by the measure \xx defined, for each E e rM, by

fix(E) = P({co: co e Q, X(co) e E}) . (3.4)

It is not the aim of this work to investigate, in more details, theoretical and abstract
features of probabilistic algorithms and some particular algorithms will be discussed
in the next chapters. However, let us turn back, very briefly, to the items a) — c)
presented in the beginning of this chapter and let us reconsider them from the point
of view of probabilistic algorithms. The limitations imposed by (a) are evidently
overcrossed; the computation of the value Gf(x, y) may be wrong, i.e. this value
may differ from/(x), the only we need is that the probability of such an error should
be small enough for all x e Df. Using our notation, the item (a) corresponds to the
demand V(Gf, x) = ir for all x e- Dr However, our conception of probabilistic
algorithms respects the demand (c), or, the minimal value e0, for which Gf(x, y)
is a probabilistic algorithm with uniformly majorized probability of error, is given
by the simple relation

s0 = 1 - inf {pt(V(Gf, x)): x e Df} . (3.5)

Hence, the quality of algorithm is uniquely determined by its worst-case quality,
i.e., by the x e Df for which the probability measure pt(V(Gf, x)), or the probability
of sampling an element from V(Gf, x), are the minimal ones. When calling this idea
by minimax principle we were inspired by the statistical hypothesis testing theory,
where, in case the losses arising from a decision making cannot be minimized uniform
ly over all sampling space, we must be satisfied when minimizing the potential
maximum value of these losses. Nevertheless, the already mentioned statistical
hypothesis testing theory offers at least still another solution, known as Bayes
principle. When applying this principle to our problem how to compute f(x) using

23

Gf(x9 y), and when supposing, for the sake of simplicity, that Df = j / , the situation
may be described as follows.

Not only the auxiliary argument y9 but also the main argument x, used when
Gf(x, y) is to be computed, is supposed to be sampled at random, As the quality
criterion for the probabilistic algorithm we take not the worst case, i.e. minimum,
but the "average", "typical" one, or, using mathematical terms, the expected value
of the probability jx(V(Gp x)). Formally written, we suppose to have defined a cr-field
(€ of subsets of the set si together with a probability measure v on c€. The Bayes risk
()(Gf) is then defined by

e(Gf) = jn(V(Gf,dv)). (3.6)

If the set si is finite or countable, i.e. s/ -= {al9 a2, . . . } , then v is uniquely defined
through the values vt ascribed to each at (to singletons {at}9 more correctly), and
(3.6) can be rewritten into a more lucid form

Q(Gf) = \Zvili(V(Gf,a^). (3.7)
a,-e.fi/

When requesting Q(GJ) to be majorized by e we arrive, clearly, to a substantial
weakening of the original demand fi(V(Gf, x)) ^ e for all x e Df (x e s/ in our case).
A function Gf(x, y) satisfying the demand g(Gf) ^ s is called bayesian probabilistic
algorithm which computes the function f with probability of error majorized by e
and with respect to apriori probability distribution v. As can be seen, when replacing
probabilistic algorithms with uniformly majorized probabilities of error by their
appropriate bayesian modifications, we arrive at a substantial, even exponential
speed-up of the computation. So the time needed by the bayesian algorithm is just
a logarithmic function of the time needed by probabilistic algorithm with uniformly
majorized probability of error, some examples will be presented in the next chapters.
However, we must always keep in mind, that the quality of a bayesian probabilistic
algorithm ultimately depends on the apriori probability distribution v in question.
E.g., when choosing v appropriately, we may completely avoid the influence of a given
proper subset of si as far as the quality of the algorithm is concerned. We simply
ascribe to this subset (to all its elements, if s/ is finite or countable) the zero value
of the apriori measure v. Of course, this is a much more general and philosophically
deeper problem of bayesian approach in probability theory, mathematical statistics
and in monographs, textbooks and special papers from those domains we can find
much more profound and sophisticated discussions going far beyond the intended
scope of this work. For our sakes we may be satisfied by the quotation that Bayes
algorithms are of use and importance in such cases, when the nature of the solved
problem or the domain of intended application yields sufficiently strong and sharp
theoretical or practical reasons for an actual choice of the apriori distribution v,
or at least for its limitation to a relatively narrow class of probability distributions
over the input arguments, i.e. over particular instances of a more general problem
in question. In certain situations, supposing the domain of the function / is finite,

24

the Laplace principle can be considered as acceptable. Roughly said, this principle
reads: "the lack of reasons for preferring A to B or B to A is a sufficient reason
for taking A and B as-equivalent". This leads to the equiprobable apriori distribution,
i.e., v({a}) = (card Df)~~l for each a e Df. In every case, we must keep in mind
that no choice of the apriori distribution can be justified by argumentation inside
the theoretical model of nondeterministic algorithms. Such a choice will always play
the role of an ontologically independent side input with all the philosophical and
methodological consequences.

As we have already mentioned, within the framework presented above, parallel
algorithms can be understood as actual variants of potentially conceived nondetermi
nistic algorithms. This phrase should be interpreted in such a way that considering
nondeterministic algorithm we suppose that just one of the possible variants of the
computational process will be actually realized (an oracle decides which of them),
with all other alternatives resting in the sphere of potentiality which is taken as qualita
tively different from the modus of actual realization. In the case of parallel algorithms
all paths are realized simultaneously and through different, separated, but as a rule
identical from the viewpoint of their computational abilities, devices (processors).
This approach is of practical use namely when the set ir is relatively small, at least
if compared with time saving or other advantages following from such a paralleliza-
tion. A common example is that consisting in separation of a computation into
several cases which can be solved independently, hence, simultaneously. This point
of view stands rather close to the common understanding of parallel algorithms
as implementational realizations of nondeterministic algorithms with nondetermi
nistic algorithms taken, on the other hand, as appropriate theoretical models of
parallel algorithms. It follows, from what we have said, that this approach cannot
be completely refused, however, its weak point consists in the fact that certain
idealizations, perhaps acceptable at the theoretical level, but not justifiable at the level
of implementation, are projected into the notion of parallel algorithms. Let us men
tion them very briefly.

The idea of a pure potentiality of non-realized computational paths leads to
a complete neglection of time or other demands connected with a rational and
systematic distribution of particular values y e V to particular processors which
will compute the value Gf(x, y) using the commonly given input x and a program
for the function Gf. Similarly, the idealized approach neglects the time and effort
necessary to inspect the results yielded by particular processors, to verify, which
of them offered the correct result, and to send this result to the main processor in
order to output it. In both the cases, the idealization neglects time and other demands
following from a non-effectively and existentially formulated part of the definition
of nondeterministic algorithms as presented above: "there exists y e f such that
Gf(x9 y) = / (*)" . As a rule, should this problem be explicitly stated, then only at the
hardware level, as a technical problem to be solved by proposing an appropriate
computer architecture. This approach is supported by the fact that the first variants

25

of parallel processors were projected as space compact devices of relatively small
and negligible dimensions and with a practically instant and faultless connections
between various components. However, let us consider a system of computers,
separated in a large space and with limited or noised possibilities of communication.
Evidently, the problem of inspection and cumulation of results yielded by particular
computers can be immediately seen as far from being a trivial one.

Similarly, when accepting some realistic assumptions, another non-trivial problem
is that whether two or more processors can share the same item in a database in the
same time instant. A much more sharp form of this problem occurs when a processor
not only reads the item, but subjects it to some further manipulations e.g., replaces
it, either in the computer storage or even in the real world. Suppose, e.g., that the set
of objects or items is to be re-arranged with respect to a given criterion. In such a case,
of course, the operations of two processors over the same item may be contradictory,
hence, not realizable simultaneously. In what follows, this problem will be investigated
in more details when re-arranging a given set with respect to the values of a given
numerical criterial function and the most simple conflict control strategy will be
accepted: supposing two or more processors ask for the same item from the database
simultaneously, none of them reaches it, in this step of computation. Even if we could
and should consider some finer, less drastic and more flexible conflict control strate
gies, theunlimited increase of the number of processors (of the degree of parallel ization)
is evidently seen not to improve the situation. It even makes it worse, so that the
optimalization of the number of processors becomes, again, a non-trivial theoretical
and practical problem.

So far, we have not mentioned the reasons for which an "indirect" computation
of the value f(x) through the computation of Gf(x9 y) for all or for some j e f
should be interesting or desirable in spite of risks (in the case of probabilistic algor
ithms) or of implementation difficulties (in the case of parallel algorithms) connected
with such a decision. In case the function f itself is not recursive, the situation is
clear: an appropriate side input offers the only possibility how to compute effectively
the value f(x). If there is an algorithm enabling a direct computation off(x), the
reason to choose an "indirect" computation is that it is of substantially lower com
putational complexity. What does it mean "substantially lower" may be, of course,
interpreted in different ways and during a practical application this interpretation
will depend on the nature of the problem in question. However, from a rather
theoretical viewpoint at least two conceptions, a "weaker" and a "stronger" one are
considered. Suppose that we have defined, somehow, the size of the input into the
algorithm which computes f(x). Hence, the size of the value x is expressed by natural
numbers. E.g., supposing that x is a natural number, its size may be defined by the
length of its binary or decadic code, or it may be the number of edges or vertices
in a graph, rank of a matrix, cardinality of a set, etc., Let F(n) be an integer-valued
function with the property that for each input x of the size n the time computational
complexity of the computation off(x) is majorized by F(n). Let the time compu-

26

tational complexity for the value Gf(x9 >7) be majorized by the value H(n) of a func
tion H for all x of the size n and for all y e f'\ The time computational complexity
of the function Gf is, in the weak sense, substantially lower than the time compu
tational complexity off, if H(n) belongs to the ^(F(?i))-class, hence, lim H(n)JF(n) =

n ~* co

= 0. The time computational complexity of the function Gf is, in the strong sense,
substantially lower than that off, if H(n) belongs to the ©(log (F(^))-class, hence,
if there exists K < oo such that H(n) < K log F(n) for almost all n e 91. This latter,
stronger conception is important because of the fact that the so called exponential
speed-up, achieved in this case, is usually inaccessible, for many practically as well
as theoretically important tasks, by improving the algorithm within the framework
of the classical (sequential and deterministic) paradigma, hence, without accepting
nondeterminism and (or) a risk of unreliability of the algorithm. A close connection
with the P-AT problem, and NP-completeness — two attractive and topic domains
contemporary computer science is evident. The stronger interpretation of what
"substantial reduction of computational complexity" means is sometimes presented
in a weakened form demanding that H(n) belongs to ©((log F(rc))k)-class for a fixed
k > 0. Evidently, this notion still remains substantially stronger than the weak
version presented above. However, we shall not solve the problem, how efficient
the reduction of computational complexity may be when applying the principles
of nondeterminism, at this level of generality. In every of particular cases of non-
deterministic and probabilistic algorithms investigated below it is explicitly introduced,
which reduction of computational complexity and under which conditions can be
achieved. Hence, it is the reader or the user himself, who is to compare the offered
reduction with the corresponding risks and to judge their acceptability from the
viewpoint of an intended application.

So far in this chapter we have always taken parallel and probabilistic algorithms
as close notions mainly because of their derivation from a common ancestor —
nondeterministic algorithm with a side input. The connection between both the
types of algorithms can be seen, however, from a more utilitary viewpoint. Consider
a probabilistic algorithm Gf(x, y) which computes a function f, where the set 1f
of side inputs is the set of all finite sequences of elements of a set Q). Hence, *V = 3)*9

or, what yields the same, "T is the set of all infinite sequences of elements of Q) with
the f/-field & generated by finite cylinders. A random variable X, defined on an
abstract probability space <;Q, $P9 P> and taking its values in the measurable space
<®°°,#'>, can be defined by a sequence Xl9X29... of random variables defined
on <f2, £f, P> and taking their values in @J. From the practical viewpoint the most
interesting case occurs when the random variables Xl9 Xl9... are mutually statistically
independent, let us consider this situation. Let there exist functions Gl

f(x, y), i =
= 1, 2 , . . . , a function H, and an integer-valued function k such that, for all x e Df

and all coe Q,

Gf(x,X(co)) = G(x, {X1((O),X2(CD), . . . » =

27

- H(G\(x, * . (»)) , Gj(x, X2(co)),..., Gk/*\x, XkM(co))) . (3.8)

As can be easily seen, in such a case the sample of values X^co) and the computation
of values Gl

f(x. Xj(a))) for i = 1,2,..., k(x) can be realized simultaneously, i.e., on
parallel processors. The central or main processor (supervisor) cumulates the
results and computes the corresponding value of the function H (cf. [6] for a more
detailed theoretical model). Probabilistic algorithms and probabilistic oracles
realized by sequences of statistically independent random samples offer a new
possibility for parallelization so that we have arrived at the notion of parallel
probabilistic algorithm with which we shall meet very often in the sequel, perhaps
on a less general and abstract level. The reasons for this rather late introduction
of such an important notion are the same as presented at the occasion of parallel
algorithms above. A further reason consists in our aim to present this notion of
parallel probabilistic algorithms at a rather general level, so that all types of parallel
or probabilistic algorithms described above could be easily seen to be special cases
of this notion. When considering a practical utility of such algorithms we have
to compare, again, the computational complexity of the functions Gl

f(x, y), k(x)
and H, with the computational complexity of the function f and with the probability
of error. This problem will not be solved here at this level of generality, but only in
connection with special parallel probabilistic algorithms investigated below in the
next chapters.

When closing this chapter, the three following comments seem to be worth in
troducing.

(1) The level of generalization and abstraction adopted in this chapter is perhaps
higher than necessary for the sake of further considerations. The reason is that we
would like to offer a theoretical and formalized background for further investigations,
development and modification of the parallel probabilistic algorithms introduced
below, and also to cover a class as wide as possible of future parallel probabilistic
algorithms of various sorts.

(2) As far as the author knows, there is still no practical experience with parallel
probabilistic algorithms. On the other hand side, a parallel implementation of some
already successfully implemented sequential probabilistic algorithms should not be
too difficult. Or, all these sequential algorithms are based on independent random
samples which can be easily taken in parallel by a number of identical copies of the
device executing the original sequential probabilistic algorithm, not supposing any
degree of co-operation or synchronization among different processors.

(3) Our considerations concerning the implementations of parallel probabilistic
algorithms have brought us very close to the so called chaotic and asynchronous
algorithms (cf. [1] as a very good informal introduction). These algorithms can be
taken as parallel probabilistic algorithms with appropriate physical processes in the
role of the source of uncertainty and randomness. The physical laws governing these
processes serve as the main tool for deriving the mathematical and computational

28

properties of the corresponding algorithms. A more detailed investigation of the
relation between chaotic and asynchronous algorithms and the general notion of
parallel probabilistic algorithm as introduced above would be worth a more detailed
investigation. However, because of the fact that such an investigation would exceed
the intended extent and scope of this work, let us postpone it till another occasion.

R E F E R E N C E S

[1] V. Černý: Fyzikálne aspekty v matematickej informatike (Physical aspects in mathematical
informatics - in SІovak). SOFSEM 1987, pp. 8 1 - 1 0 3 .

[2] M. Davis: Computability and Unsolvability. McGraw-Hill, New York 1958.
[3] W. Feller: An Introduction to ProbabШty Theory and its Applications, I, II. J. Wiley and

Sons, New York 1957 (vol.I, 2nd edition), 1966 (vol. II) . Russian translation: Mir, Moscow

1964, 1967.
[4] P. Halmos: Measure Theory. Van Nostrand, London, 1968.
[5] I. Kramosiî: Paralelní pravd podobnostní aîgoritmy jako prezentace nového paradigmatu

ve znalostních systémech (Parallel probabilistic algorithms as presentation of new paradigma
in knowledge systems — in Czech). In: Uplatn ní expertníeh — znaíostních systémů ve sta-
vebnictví, Prague 1987, pp. 6 — 23.

[6] I. Кramosil: Extremum-searching hierarchicaí paralłel probabiíistic algorithms. Kybernetika
(Prague) 24(1988), 2, pp. 1 1 0 - 1 2 1 .

[7] M. Loève: Probability Theory. Van Nostrand, Princeton, 1955. Russian translation: IIL,

Moscow, 1962.
[8] A. Rényi: Teorie pravděpodobnosti (Probability Theory — in Czech). Academia, Prague

1972.
[9] J. Št pán: Teorie pravděpodobnosti — matematické základy (Probabilíty Theory —

Mathematical Foundations — in Czech). Academia, Prague 1987.
[10] V. A. Uspenskij and A. L. Semenov: What are the gains of the theory of algorithms —

basic development connected with the concept of aígorithm and with its application in
mathematics. In: Algorithm in Modern Mathematics and its Appîications — Proceedings
of the Symposium, Urgench 1979, pp. 100—234.

4. PARALLEL PROBABILISTIC SEARCHING ALGORITHMS

Searching problems belong to the basic, and from the deseriptional point of view
the most simple ones to which many more complicated and sophisticated tasks
of artificial intelligence can be converted. Moreover, the time and perhaps other
demands or expreses, involved by the solution of the corresponding searching problem
decide about the computational complexity and applicability of the resulting solution
of the original tasks as a whole. A general model of searching problem, very simple,
but sufficient for our further reasonings, can be described as follows: Consider
a finite but, as a rule, very large set A = {au a2, ..., aN} of N elements and a subset
V c A. We have at our disposal an oracle working on the black-box principle, which,

29

having been put an element from A on its input, decides in a finite and, for the sake
of simplicity constant, time, whether this element belongs to Vor not. Assume again,
for this instant and for the sake of simplicity, that this decision is reliable and fault
less. Moreover, this oracle is our only tool of "communication.' with the set V.
No other knowledge concerning the set Vis at our disposal, neither being obtainable
by, say, an analysis of the way in which the oracle works and decides.

The question whether the set Vis empty or not can be answered by a sequential
exhaustive searching and testing of all elements of A. This procedure requests in the
worst case, supposing we take this worst case as the decisive one as common in the
classical theory of computational complexity, N operations. Taking, in the first
approximation, these operations as equivalent, the resulting sequential computa
tional complexity is in the #(iV)-elass. Now, consider an M-times sequentially
repeated independent random sample from A, with the same probability 1/iV of
sampling ascribed to each element of A at each step. If V contains v elements, then
with the probability (1 — vJN)M all samples lie outside of V. Supposing that, having
tested all the elements and having seen that none of them is in V, we decide that the
set Vis empty, then (l — vJN)M is the probability of error with which we can arrive
at such a wrong (if v + 0) decision. This probability of error is evidently maximum,
if v = 1, and if we want this probability to be majorized by an a priori given e > 0
even in this worst case, we must have M }£ (in s" l) N, as a simple calculation yields.
Hence, again M = M(N) is in (P(iV)-class with the multiplicative constant being
even greater than one if e < e" l = 0*36 ..., i.e. for every "reasonable" e. The choice
of the uniform probability distribution over the set A can be justified by the mentioned
above Laplace principle and by the fact that we have no reasons for another probability
distribution. Here we do not take into consideration the sampling without giving
back the sampled elements, as this sample violates the demand for statistical inde
pendence of particular samples. Moreover, when applying the uniform probability
distribution over the set of not yet sampled elements, it is equivalent to the sys
tematic exhaustive search.

Now, suppose to have at our disposal a greater number of identical copies of the
testing oracle, which may test in parallel, hence, simultaneously, a number of elements
of A. If this number of identical copies is finite, the resulting time complexity is again
in the $(!V)-class, no matter whether we consider the systematic deterministic ex
haustive search or the randomized solution described above. When the number
of processors-copies increases and equals, say, N (the cardinality of the basic set A),
the resulting time complexity is in both the cases constant, i.e. independent of N9

i.e. in the (P(l)-class. This assertion holds, of course, under the assumption that it
is sufficient to find an element of V by at least one processor and that no time or
other demands concerning the inspection of the outputs of particular processors are
taken into consideration. This assumption is, as a rule, accepted in the theory of
nondeterministic algorithms, but in our context we shall take it as too idealized and
non-realistic and we shall not accept it in what follows. From this point of view,

30

of course, the problem to inspect the outputs of N processors is far from being
trivial. In fact, it is a duplicate of the original problem, or at least its computational
complexity is equivalent to the original one. Hence, neither a non-limited parallelism
is an adequate solution to our searching problem which would reduce, either in the
weak sense or in the strong sense, the time complexity of the sequential deterministic
exhaustive search. Therefore, we shall investigate in this chapter, whether a sophisti
cated combination of parallelism and randomization into one algorithmic structure
could yield such a qualitative time reduction. As can be seen, this problem can be
positively solved.

So, consider the searching problem informally described above, formally defined
by a pair (A, V>, A = {ax,a2, ...,aN}, V cz A, and consisting in answering the
question whether V = 0 or not. Consider also an abstract probability space (Q, Zf, P>,
natural numbers m, n, k, and a system SC = <{^/}'f=ij = i> {^/}i=i> of mutually
statistically independent random variables defined on (Q, Sf, P>. Each Xu takes
its values in A, each Zt in the set {1,2, ..., m) of integers, and for all a e A, i g m,
j S n, I S kand s :_ m,

P({co: coeQ, Xu(co) = a}) = N~x , (4.1)

P({co: co e Q, Zt(co) = s}) = m"1 . (4.2)

Hence, the values Xu(co) represent independent random samples from the uniform
probability distribution over the set A, the values Z^co) represent independent
random samples from the uniform probability distribution over the set {1, 2, m)
of integers. The system X is called two-level hierarchical parallel probabilistic
searching algorithm (HPPSA) for the searching problem (A, V>. It is understood
as a random variable, the value of which, given (A, V>, is defined by

X((A, V>, co) = 1 iff £ £ Xv(XZl(m)J(co)) > 0 , (4.3)
i = i j = i

X((A, V}, co) = 0 otherwise ,

Xv is the characteristic function or identifier of the set V. The result X((A, Vs), co)
is correct, if X«A, V>, co) = 1 and V + 0, or if X((A, V>, o>) = 0 and V= 0.
The error of the first kind occurs, if X((A, Vs), co) = 0 and V #= 0, the error of
the second kind occurs, if 9£((A, V>, co) = 1 and V = 0. Evidently, :T(<AL, V>, co) = 1
iff at least one among the parallel processors, represented by n-tuples (Xil9Xi2,...
. ..,Xin), i ^ m, samples an element from V and, at the same time, at least one
processor with this property is sampled during the random inspection of the outputs
of particular processors realized through random sampling of their indices by random
variables Z l 5 Z 2 , . . . , Zk. Hence, supposing that all testing oracles are completely
reliable and fail-proof, the error of the second kind cannot occur in the presented
model. Or, the decision that V 4- 0 is always based on the fact that at least one
element of V has been found by a first-level processor.

31

The unit time computational complexity TCU{3E) of a given HPPSA 3C with
parameters m, n and k is defined by

TCL/(if) = a-n + a2fc + a3 , (4.4)

for appropriate positive (al9 a2) or non-negative (a3) constants. The logarithmic
time computational complexity TCL{SE) is defined by

TCL{3E) = ftn log2 N + fS2k log2 m + p3 , (4.5)

for appropriate positive (/?1? /?2) or non-negative (/?3) constants. Hence, the unit
time complexity takes each random sample taken by X(j or Zl as being of the same
complexity no matter how large the sample space {A or {1,2. ..., m}) may be.
The logarithmic time complexity supposes the complexity of random samples to
increase linearly with the logarithm of the size of the sample space in question.
When taking the logarithm to the base two, the logarithmic time complexity of
a random sample corresponds to the number of coin tosses, by the mean of which
the random sample in question could be realized.

An easy proof (cf. [l] or [2]) yields the following assertion.

Theorem 4.1. Let (A9 V} be a searching problem, let

£ = <{Xtj}7-j-u{zi}i-i> (4-6)

be a HPPSA for {A, V> with parameters m, n and k, let e > 0 be given, let
PEj{S'9 A9 V) be the probability of error of the first kind, let v = card V9 N = card A.
If mn = v M(ln (2/e)) N and k £ (In (2/e)) m, then P£7(^, A, V) < e.

As mentioned above, if V= 0, then an analogous assertion for the probability
of error of the second kind holds trivially for all m, n, k and e > 0. Because of the
fact that in the conditions of Theorem 4.1 just the product m . n is bound, a natural
question arises, which ratio between m and n is the optimal one in order to minimize
the corresponding unit or logarithmic time complexity. To arrive at a more correct
formalization, the following auxiliary notions will be of use.

HPPSA SJE is called e-admissible {strongly e-admissible resp.) with respect to the
searching problem (A, V} and w.r. to a given e > 0, if V =j= 0 and PEt{SE9 A9 V) <
< e (V 4= 0 and the conditions of Theorem 4.1 hold, resp.). HPPSA 9£ is called unit
^-optimal {unit strongly ^-optimal9 resp.). if 9C is e-admissible (strongly e-admissible,
resp.) and for each e-admissible (strongly e-admissible) HPPSA SE' the relation
TCU{S£) ̂ TCU(^v) holds. Logarithmically ^-optimal and logarithmically strongly

's-optimal HPPSA's SE are defined in an analogous way.

Theorem 4.2. Let SE be a HPPSA for the searching problem <_4, V} with parameters
m{N)9 n{N)9 and k{N)9 where N = card A9 let v = card V > 0. Then SE is unit
strongly e-optimal, if

32

m(iV) = f(Va1MM)ViVl? (4.7)

n(N) = f(ln (2/e)) (J*2lJ(*tv)) V1V] (4.8)

k(V) = [(In (2/e)) m(jV)] . (4.9)

In the case of TCL explicit expressions for the values of parameters are much
more difficult to obtain so that we have to introduce an implicit formulation with
unspecified ^(V^-functions. Hence, if if* is logarithmically strongly e-optimal, then

m(N) = (V & M i M log2 e)) JN + #(JN), (4.10)

n(N) = (In (2/e)) (V(/?2 log2 e) / V (M) W + ^(V-V) , (4.11)

k(N) = (In (2/e)) m(jV) + ^(VN) . (4.12)

Hence, if at = a2, then for v = 1, m(N) = [V ^] and n(jV) = [In (2/e)) V-V] accord
ing to (4.7) and (4.8). Corresponding proofs can be found, again, in [1] and [2],

Hence, there exists a HPPSA the probability of error of which, when solving
the searching problem, is majorized by a given e > 0 uniformly for each V a A.
Its unit time computational complexity is cx + c2 ^/N with cx and c2 depending
on e but independent of N, so that this complexity is in 0(vjV)-class. The logarithmic
time complexity of the same algorithm is ct (V(V))logjV + c2 s/(N) + c3, hence,
is in $((V(V)) log V)-class, In both the cases the reduction of time computational
complexity is substantial (in the weak sense) when compared with the results achieved
by simple randomization or by the maximal parallelization, when the resulting time
complexity was in the (9(N)-, or &(N logjN)-class.

The assertions of the two theorems just presented immediately involve the question,
whether a multiple use of the hieararchical principle presented above would reduce
the time complexity more substantially i.e. would bring this complexity into the classes
*(\/N) or #((y/(N)) log V). The following example shows that this is possible.

Again, consider the searching problem (A, Vs), where card A = N, card V =
= v > 0, let e > 0 be given. Suppose, for the sake of simplicity, that N is of the form
2K, so that K = log2 V. Set S = e\K, Nt = V/2*", i = 1,2, ...,K, and consider
Nt = jV/2 processors of the first level. Each of these processors takes [2 In (l/<5)]
independent random samples from A with respect to the uniform probability distribu
tion ascribing the probability of sampling N"1 to each element of A, in each step,
and by each processor. Access conflicts are not taken into consideration, so that each
element of A is accessible simultaneously to all the processors by which it has been
sampled. For each i rg jVx the output value of the /th processor equals to one suppos
ing at least one element from V was sampled by this processor, the output value
being zero otherwise. Now, set jY2 = Nt\2 = jV/4 and consider N2 second-level
processors, each of them taking, again, [2 In (l\Sf\ independent random samples
from the set {1, 2, ..., Nx} of integers and w.r. to the uniform probability distribution
ascribing the probability jV^T1 to each result in each sample. For each i ^ jV2, the

33

output of the ith second-level processor takes the value one supposing that at least
once a first-level processor with the unit output value was sampled by this second-
level processor, in the opposite case the output value of the ith second level processor
is zero. Set IV3 = IV/8 and proceed analogously. At the Kth level we have just one
Kth level processor which takes [2 In (l/<5)] random samples from the two-element
set of (indices of) the (K — l)-st level processors. If at least once a (K — l)-st level
processor with the unit output value is sampled, also the (unique) Kth level processor
takes one as its output value and we decide that V 4= 0. This decision is certainly
correct, as we have discovered at least one element of V at the basic level. In the
opposite case the output value of the Kth level processor is zero, we take the decision
V = 0, which may be charged by a positive probability of error; let us compute this
probability.

At the basic level of our hierarchy (IV/2) [2 In (l/<5)] random samples have been
taken altogether from the uniform probability distribution over the set A. As this
number is at least IV In (l/<5), the same argumentation as above or a simple calculation
yield that if V #= 0, then with a probability greater than 1 — 3 at least one element
from Vis sampled by a first-level processor. Denoting by At the set {1, 2, . ..,IV,}
of integers, and by Vt the set of indices of those first-level processors, the output
value of which is one, we obtain, that with a probability at least 1 — 3 the set Vi is
nonempty. The second-level processors can be considered as the first-level ones w.r.
to the new searching problem (Al9 Vj>, the argumentation can be repeated by induc
tion and after K steps we obtain, that the probability with which the (unique) K-th
level processor output value is one, under the condition that V #= 0, equals at least

n (l -Si)> 1 - X * = 1 - e (4.13)
i= i

(recall that 5 = 8t -= ajK for each i = K). Accepting the unit criterion for measuring
the time computational complexity of random samples we obtain that the total
number of sequentially taken random samples, which defines the time complexity,
equals 2K[In (l/<5)]> i.e. [2 In (l/<5)] samples at each of the Kth levels. After an appro
priate substitution this expression reads as

2(log2IV)ln[((log2IV)/a)]5 (4.14)

which is in the $(log IV log log IV)-class for each fixed e > 0, hence, it is trivially
in the ^(V-V^class. In the case of the logarithm criterion the corresponding time
complexity can be computed as follows (setIV0 = IV):

K log2N

£ 2[ln (1/<5)1 l°g2 Ni = I 2[ln ((log- iV)/e)] log2 (iV/2;) =
i = 0 i = 0

l0g2N

= £ 2i[ln ((log2 N)/e)l = 2[ln ((log2 N)/e)] (1/2) log2 iV(log2 N - 1) =
; = o

= [In ((log- iV)/e)l ((log2 N)2 - log2 N) , (4.15)

34

and this expression is in 0((log IV)2 log log IV)-class, hence, again in *((y/(N)) log IV)-
class. As can be easily seen, our assumption that IV is of the form 2K is not substantial
for the validity of the obtained qualitative result.

The hierarchical structure informally described above can be formally defined
as follows.

Many-level (particularly, K-level, K ̂ 1) hierarchical parallel probabilistic
searching algorithm (MLHPPSA, or K-HPPSA) for the searching problem
<v4, V} is the system

^r = <{Z^f = 1) f i 1 ^ = 1 > (4.1.6)

of mutually statistically independent random variables defined on an abstract prob
ability space <£>, S?9 P> in such a way that N1 > N2 > . . . > NK = 1 and each
Xkij takes its values in the set Ak_l = {1, 2, ...,IVfc_,} of integers (where A0 = A)
w.r. to the uniform probability distribution. I.e., for each k g K, j :g Nk, j ^ nk,
r ^ -V/k-i (here iV0 = IV) we have

P({co: COEO, X^-H = r}) = I d . (4.17)

The vector <<IV1? rii>, <IV2>
 n2>> •••> <Nfc, %>) of pairs of positive integers is called

characteristics of the MLHPPSA %\

As in the case of two-level HPPSA's described above 9C can be understood as
a statistical decision function which solves the searching problem (A, F>, i.e. as
a random variable 3C((A, V),.) taking its values in the binary set {0, 1}. This value
will be defined by induction. Set V0 = Fand define, for each r S K,

Vr(co) = {i: i £ Nr. (3/ ̂ nr) (X
r
u(co) e Vr^(co))} =

[i:išJV„IzKr_ l (<D)(^X«>))>0}- (4-18)
7 = 1

Namely,

7.(0)) = {f: i S N» I Zv(̂ !Xo>)) > 0} ,
7 = 1

which agrees with the definition of HPPSA as presented above. Moreover, for
r = K,

VK(co) = {i: i ̂ 1, (3; ̂ «,) (X?j(co) e VK^(co))} , (4.20)

so that
nK

VK(co) = {1} = AK o I *FK_ K ^ O ' M) > 0 , (4.21)
7 = 1

r » = 0 o"f ZF,.l(.)(-f») - o • (4-22)
1=1

As can be easily seen, if Vk(co) = 0, then also Vt(co) = 0 for each k ̂ I ^ K. Now,

35

set K

{co: a) e O, #•«__, V>, co) = 1} = fi {̂ >: G> e «, Vfc(a>) # 0} , (4.23)
fc = 0

S*(<_4, V>, a>) = 0 otherwise. Both the kinds of error as well as their probabilities
are defined in the same way as in the case of HPPSA's above. Again, the error
of the second kind is impossible on the ground of the same argumentation as above.
The corresponding unit and logarithmic time complexities read

K

TCU(a;) - X a_n_ + %o , (4.24)

TCL{<£) = £ ptnt log2 Nt + fi0 (4.25)
i - 1

for appropriate positive cci9..., aK, fll9..., pK and non-negative a0, /?0. In what
follows, we shall investigate only the simple case with af = a, /?f = /? for all t =
= 1,2,...,K.

Denote by pk9 h = 1,2, ...,K, the conditional probability

Pfc = P*(#) = P({o: w e _ , V,(o)) * 0}/{CD: OJ G __, Vfc.^Q)) 4= 0}) , (4.26)

supposing it is defined. As can be easily seen, if V #= 0, then

1 - ?£,(#, _4, V) = P({o>: co e Q9 2£({A9 V>, co) = 1}) =

= P({n{o>:O>e^, Vfc(o>)*0})==
fc= !

/_ K

= f i P({^- to e fi, Vfc(cw) * 0}/{co: co e fi, Fk_ .(o) 4= 0}) = [J P*(#) •
t - i »__ (4 _ 2 7 ^

If 1 — p t __ ek for each /c = 1, 2, ...,K, i.e. pk __ 1 — ek, then

n A _ s n (l - - _) _ 5 l - i « _ , (4.28)
fc = 1 fc = 1 fc = 1

K

hence, the probability of error of the first kind, PEt{X9 _4, V), is majorized by]T efc.
fc=i

An optimalization of many levels HPPSA's, i.e. the problem to find a number
of levels, number of processors at each level, and number of random samples taken
by each processor, which would minimize the unit or logarithmic time complexity,
is much more difficult than in the two-level case and will not be solved here in all
the generality. Let us limit ourselves to the so called a-homogeneous many level
HPPSA's with the following properties:

(a) if the number of levels of the HPPSA is K9 then the conditional probability
that the output value of at least one processor of the ith level is one under the condi
tion that the output value of at least one processor of the i — 1st level is one is at
least 1 - (e/_K).

(b) The ratio Ni_1jNi of the number of processors of the i — 1st and of the ith

36

level is the same for all i = 1, 2, ..., K and is called the parameter of homogeneity
of the e-homogeneous MLHPPSA in question.

Hence, the algorithm informally described above is an e-homogeneous K-level
HPPSA the parameter of homogeneity of which is two. The following assertion can
be proved (cf. again, [1] or [2]).

Theorem 4.3. Let <zl, V>, card A = IV, card V = I, be a searching problem, let
e > 0 be given. Then the parameter of homogeneity X of that e-homogeneous many
level HPPSA, which solves the problem <y4, V> and the unit time complexity of
which is minimal among all e-homogeneous many level HPPSA for the same problem,
satisfies the equation

(In In N + In e™1) (In X - 1) = (In X) In In X - 1 . (4.28)

One of the solutions Xt of (4.28) is approximately equal to e = 2*718 ... in the sense
that the difference among the left-hand side and right-hand side in (4.28), having
been divided by In In IV -f In e" *, tends to 0 as IV -> oo and X -> e.

The unit time complexity of this optimal algorithm is in the (P(log IV log logIV)-class,
as above when X = 2. Hence, the algorithm is optimal in the sense that the multi
plicative constant is smaller than in the case of e-homogeneous MLHPPSA's with
non-optimal parameters of homogeneity.

As in the case of the foregoing chapter, some conclusive comments may be useful.

(1) The role of random samples in the algorithms described above might perhaps
have brought to the reader's mind the well-known idea of Monte-Carlo methods
or algorithms. In fact, the parallel probabilistic searching algorithms as described
here may be easily taken as very simple cases of Monte-Carlo methods. Or, roughly
said, Monte-Carlo methods are all procedures, when an unknown expected value
of a random variable, necessary for the sakes of further computations or decision
makings, is approximated by the average value computed from a appropriate (or
accessible) number of corresponding random samples, and all the risks following
from such an approximation are accepted. Namely, in our case, evidently the value
v = card F/card A is the expected value of each Xtj, and we use random samples
in order to decide, under some risk, whether v is positive or not. In Chapter 6 we shall
investigate the problem when not only the sign, but also the numerical value of v
is to be estimated by appropriate hierarchical parallel probabilistic searching struc
tures.

(2) The reader has probably already observed that the randomization minimizes
the demands imposed on co-operation and synchronization, nevertheless, we consider
this general phenomenon as worth an explicit repeated introducing. Even in the most
simple case of the sequential probabilistic searching algorithm mentioned at the
beginning of this chapter, an important advantage has been obtained at the cost
of (P(A7)-time complexity and a positive probability of error. Namely, no registration

37

of the already tested elements is necessary, each sample, if still executed, is quite
independent of all former ones, which, of course, is not and cannot be the case for
a deterministic exhaustive search. In the parallel case, all processors at the same level
work independently, no co-operation or synchronization is necessary, and their
communication with higher-level processors is of a very limited and stochastic
nature. Even if we do not investigate here the hardware problems connected with
architectures appropriate for the investigated algorithms, an immediate idea is that
such architectures could be built from a number of identical copies of devices execut
ing the corresponding sequential algorithms, what may be taken as a non-negligible
practical advantage.

(3) Finally, just as a quite open and worth a more detailed investigating problem
let us remember the connections between the randomized searching structures
investigated above and some more sophisticated deterministic searching structures
as, e.g., the associative and orthogonal memories.

REFERENCES

[1] I. Kramosil: Hierarchicke paralelni pravdepodobnostni algorithmy (Hierarchical Paralle
Probabilistic Algorithms — in Czech). Res. Rep. No. 1409, Institute of Information Theory
and Automation 1986.

[2] I. Kramosil: Extremum-searching hierarchical parallel probabilistic algorithms. Kybernetika
24(1988), 2, 110-121.

5. SEARCHING ALGORITHMS WITH LIMITED TESTING
RELIABILITY AD WITH GENERALIZED LOSS FUNCTION

In this chapter we shall go on with our investigations of the hierarchical searching
algorithms as investigated in Chapter 4 and with respect to the same unit and loga
rithmic time computational complexities as above. Let us assume, however, that
each testing oracle may fail, i.e. may output the wrong answer to the question whether
the tested element from A belongs to V or not. The oracle represents an extra-
mathematical device which tests the elements of the basic set A9 so that the reasons
and forms of its failure are also of an extra-mathematical nature and cannot be
investigated within the framework of this study. Roughly said, with an unreliable
testing oracle the final result is qualitatively less reliable than in the case of a failure
proof oracle defined above. Or, even if some element from Fis sampled, it need not
be recognized. On the other side, the supervizor may report an element from Feven
if V = 0, as some processor wrongly proclaimed an element to be in V. This possibility
of error will be supposed to be quantifiable by the value of a probability measure
and, for the sake of simplicity, this probability will be taken as the same for different
elements from V, and the same but perhaps different from the former value for

38

different elements from A — V. Moreover, the errors will be supposed to be statistic
ally independent for different samples of different elements from A as well as for
different samples of the same element from A so that the possibility of error is
associated rather with the sample than with particular elements.

Like as in Chapter 4, consider positive integers **?, m, and k and two systems
{Ii7}?i'=15=1, {Z j]^ ! of mutually statistically independent random variables defined
on the probability space <0, £f9 P>. They take their values in A (for each i :g m,
j ^ n) or in the set {1, 2 , . . . , m} of integers (for each / <j /<), and satisfy (4.1) (for
each aeA9iS m9j S n) or (4.2) (for each s g m and / ^ k).

A new building stone of our model are two random variables Q(0) and 2(1),
defined on <.Q, £f9 P> and taking their values in binary set {0, 1}. Denote

P({co: co e Q, Q(l, co) = 0}) = p, P({co; co e Q, Q(0, co) = 1}) = q . (5.1)

In the classical Shannon information theory these two random variables define
a binary channel, but not necessarily a symmetric one. Hence, the value Q(xv(a)> co)
is the result of testing whether a e V or not, charged with the possible probability
of error; this probability is p for a e V (when Xv(a) = 1)? a n d is q for a e A — V
(when Xv(a) = 0)-

Finally, consider a real ft, 0 ^ ji ^ 1, and define random variable 5 = <5(L(),
taking <£>, ̂ , P> into {0, 1} in this way: set

n(co) = (nk)"1 X t Q(Xv(XZli(a)J(co)), co) , (5.2)

and define

{o>: (5(/(, co) = 1} = {co: 7r(cO) > Li} , 5(/x, CO) = 0 otherwise . (5.3)

The structure

X = <{XtJ}tmt"j„u {Z,}*=1, {eC0},-i.2., /-> (5-5)

is called threshold hierarchical parallel probabilistic searching algorithm with
the threshold value Li.

Similarly as above (cf. (4.3)) a seemingly complicated relation (5.2) offers an
intuitive interpretation. The value Q(xv(Xij(co))9 co) can be seen as a "report",
whether the at random sampled element Xtj(co) from A belongs to V or not; this
report can be wrong in the sense and with the probabilities described above. The value

m n

Q{CO) = (nm)-1 £ £ Q{xviXtj(co)), co) (5.5)
i = 1 j = 1

expresses the average value of elements among the sampled ones (with possible
repetitions) which are reported to be in V. the average being taken over all samples
and all processors. However, having accepted and developed the randomized hierar
chical principle, we do not compute the average value of reported elements from V

39

over all processors, but only over those of them which have been sampled by random
variables Z- , . . . , Zk. Hence, n(co) can be seen as a statistical estimation of the value
p(cjo) = (l/IV) YJ Q(Xv(a)> <*>)> like the value Q(CO). The statistical qualities of n(co)

aeA

are, in general, worse than those of Q(CO) (greater dispersion), but they improve
with k increasing.

Take the random event <5(/i, co) = 1 as the decision that V + 0 and as the refusal
of the alternative decision that V = 0. Then <5(ju) can be seen as a statistical
decision function accepting the hypothesis V =t= 0 just in case the relative frequency
of samples which are reported to be in Vexceeds an a priori given threshold value /L
As can be easily seen, if p = q = 0 and pi = 0, our model reduces to the one in
vestigated in Chapter 4. If q > 0, then $(/*) > 0 and 7r(co) > 0 may occur with
positive probabilities even when V = 0.

A simple factorization yields

P({co: co e 0, Q(Xv(Xij(oj% co) = 1}) =

= P({co: to e .0, Q(l, o>) = 1}/{O>: (o e ^ , ^(.Ks jH) = 1}).

.P({a):OieO,xV(^ : i(O)))= 1}) +

+ P({to: co e (2, Q(0, co) = 1}/{CO: co e Q, Xvftijp)) = °}) •

.P({co:co6O ? XV (X I») = 0}) =

= (1 - p) P({co: co e (2, Kt7(co) e V}) + q P({co: © e O , X0(co) eA~ V}) =

= (I - p) v + q(l - v) , (5.6)

using (4.1) and denoting v = card V/card AL Denote the last expression in (5.6)
by pv and suppose that p, q < j . This assumption will be taken in all the rest of this
chapter in order to simplify our considerations. Then pv is an increasing function
of the argument v, hence, pv > p0 = q for each v > 0. So the test of the hypothesis
V = 0 against the alternative V 4= 0, i.e. v > 0, can be converted into, or understood
as, the test of the hypothesis that

P = P({co: co e O, 0 (Z F (X ^ C O)) , CO) = 1}) = Po = q (5.7)

against the alternative that Pv = pv> 0. Random variables it and Q can be taken as
statistics and S(fi) as a statistical decision function corresponding to the latter test.

Hence, the problem whether V = 0 or F 4= 0, ie . whether v = 0 or v ^ 1/N, is
converted into the test whether P = q, or

F £ pm = (1 - ^ i Y " 1 + q(l - iV"1) = g + (1 - p - q)N^ > q ,
(5.8)

as p, q < \ implies p + q < 1. First of all, consider the random variable Q denned
by (5.5). Set K = mn, and for each / g K,

Yj(a) = Q{Xv(X([(l - 1) /B] + 1, / - ([(/ - l)/«]) n, a))), co) , (5.9)

40

writing X(i,j,oj) instead of X^(o>). This enumeration defines the ordering

Xn(cO), X12(OJ), Xln(co), Ar
21(cO), . . . , X2n(co), X31(co), . . . , Xmn(co) of random sam-

K

pies. Clearly, Q(CO) = QK(CO) = (£ Y/(cL>))K""1 and Yj5 Y2, . . . , YK is a sequence oi^
i= i

statistically independent and equally distributed random variables with common
expected value fi and dispersion a1, each of them taking <<X Sf\ P> into [0, l j .
Hence, V + 0 iff fi ^ c/0 = p1/ jVl V = 0 iff fi = q < q1/N. The strong law of large
numbers yields that

P({co: cO G & , lim Ox(cO) = fi}) = 1 . (5.10)

Take f-ie(q, q), <y = p1 / / v > c/, and define a decision function 8* by t)*(cO) = 1 (i.e.

/7 ^ q and V4= 0), iff QK(o>) ^ /i, set <5*(cO) = 0 (i.e. /I = q and V= 0) otherwise, i.e. if

QK(OJ) < //. Considering the probability of error connected with this decision func

tion, the threshold values /i outside the interval (q, q) can be evidently omitted, as

in such a case the total probability of error would be always greater than that for

some fie(q,q). Let V= 0, i.e., fi = q, but an error has been made, so that <5*(cO) = 1.

It is the error of the second kind, which cannot occur in the model examined in

Chapter 4. Now, 8*(OJ) = 1 iff QK(OJ) ^ /j, i.e. if QK(OJ) - fi ^ //. — q, and //. — q

can be written as cxjN for appropriate cx, 0 < cx :g 1 due to (5.8). Because the

probability distribution of QK is asymptotically symmetric with respect to /7 for N,

K -> oo, the probability with which QK(OJ) — fi ^ //. — q holds can be written as

i P({cO: co e Q, \QK(W) - /Z| ^ Cl/JV}) (5.11)

in the sense that

l im P ((o j : r^ 6 0- g*M zA=J-^gD = j (5.12)
N,K-oo i P(cO: cOG Q, \QK(OJ)- fi\ ^ cjN})

Similarly, let V + 0, i.e. fi ~> q > q, but the error occurs, so that 5*(co) = 0.

It is the error of the first kind, investigated already above, in Chapter 4. This is

possible iff ^(cO) < //, hence QK(OJ) — fi = c2jN for appropriate c2 e (0? 1>. The

same way of reasoning as above enables to approximate the probability of this

error by

i P({co: cO G Q, lO^cO) - /2| ^ c2/N}) . (5.13)

If we want to majorize both the probabilities of error by an e > 0, choosing K

large enough, the optimal solution is to take /i "in the middle of (cy, q)", hence

I1 — \(q + <?% then Cj = c2. As can be easily seen, if we want to obtain just a qualit

ative or "order" estimation of K = K(N) up to a multiplicative constant, such

a specification of H is not necessary. In every case, probability of error resulting

from the use of the decision function 8* is uniformly (with respect to all V c A)

majorized by e > 0 iff for some c G (0, 1) and s' = e/2

P({cO: cO G Q, \QK(OJ) - fi\ ^ c//V}) ^ e' . (5.14)

41

The well-known Chebyshev inequality (cf. [1], e.g.) yields

P({m: coeQ, \gK(co) - fi\ g 5}) < cr^KO*2)^1 , (5.15)

as the expected value of QK is fi and its dispersion is a2JK. Hence, for S = c/N

P({OJ: a) e Q9 \QK(O>) - p\ ^ c/N}) g N2a2lKc2 = const. iV2/K , (5.16)

and this value can be majorized by ef only if K 2> c3/V
2 for an appropriate c3 > 0

(namely, for c3 ££ cr2/c2a'). As far as the constant c3 is concerned, the estimation
for K is very rough, however, it cannot be replaced by an estimation from ^(IV2),
as the following consideration informally proves.

When applying the central limit theorem (cf. e.g., again []]) to random variables
Yu Y2, ..., YK, we obtain

irfa)-Kfi n
PI)co: co e fl, a < l i t — — . < ^ U -* <p(p) - 0(a) , (5.17)

— o o < a < j 8 < o o . Here the convergence is taken in the sense that the ratio of
both the sides tends to one as K -» oo and # is the distribution function of the normal
(or Gauss) probability distribution iV(0, 1). Modifying and simplifying (5.17) we
obtain

/f (__-»£ Y^))-/* n

P(Jco: co e fi, a < - = i - — < /J l j -> _>(/?) - 4>(a), (5.18)

P(ico: co e Q, —a < o*:(co) — fi < ex. — v) =

= P | jco: co e fi, joK(co) - / . | < a — 1] -> $(a) - * (- a) . (5.19)

If 5 = a{ajs/K), then a = d(y/K/a'), hence
P({co: co e fi, |e«(a>) - /ZJ > «5}) -> 1 - <f> (c5 —) - <P (~o — \ . (5.20)

If c5 = c//V and if the right-hand side in (5.20) is to be majorized by s' > 0, K must
be choosen in such a way that

•GfM-„f)>'-'- <"•>
However, if K = _.(#) 6 *(/v*2), then J(K(Nj) e *(iV), so that c JKJ(Na) - oo for
N -+ co, hence

u_ # (£ -W-iA _ lim * /_ £ __-3ft , ^ , t . {m
N-^OD \N a J N-^oo \ N a J

So, we need K(N) e (P(N2) in order to assure the validity of (5.21).

42

As QK is the arithmetical average of statistically independent and equally distributed
random variables YUY2,...,YK the dispersion of gK is uniformly (with respect
to K) the minimum one among all unbiased estimates of fi based on Yl9 Y2,..., YK.
Evidently, n = nk belongs to such estimates, hence, for each 3 > 0 and each k such
that K = kn,

P({co: (oeQ, \nk(a>) - fi\ £ 5}) £ P({to: co e Q, \gk(oj) - fi\ £ 8}) . (5.23)

Hence, the extent K' = kn of sample necessary to majorize the left-hand side in
(5.23) by a given s > 0 is at least so large as in the case when the right-hand side
in (5.23) is to be majorized by the same e. So, if S = c/IV, then Kf = kn ^ cN2

for an appropriate c > 0. The unit time complexity TCU(3T) of a threshold (two-
level) hierarchical parallel probabilistic searching algorithm with characteristics m,
Ji and k is defined by a,w + a2k + a3 for appropriate a,, a2 > 0, a3 S; 0. As we
cannot choose, simultaneously, k = k(N) e #(N) and /? = n(N) e #(N)9 neither
(xxn + a2k + oc3 can be in <?(IV). Using an analogous argumentation we can prove,
that the logarithmic time complexity cannot belong to (̂IV log IV). So we have proved

Theorem 5.1. Consider the model and notations introduced by (5.4), let

i > P({co: a) e Q, Q(0, a>) = 1}) > 0 , (5.24)

i > P({o>: co G fi, Q(l, to) = 0}) £ 0 .

Then there does not exist a threshold two-level hierarchical parallel probabilistic
searching algorithm for <A, V> the probability of error of which would be majorized
by a given e > 0 uniformly for all V cz A and the unit time complexity of which
would belong to <?(1V)-class (the logarithmic time complexity of which would belong
to (̂IV log IV)-class, resp.).

The negative result just proved is intuitively easy to understand. If an element
outside Vcan be wrongly tested as being in V, the test cannot be terminated having
obtained the single information that an element of Vhad been found. So, the relative
frequency of such reports in a long series of samples must be taken into consideration.
A more detailed analysis of what it means "a sufficiently long" series leads to demands
incompatible with capabilities of two-level hiearrchical parallel probabilistic algo
rithms with 4>(N) — (̂ (IV log IV)-, resp.) time complexity. On the other hand, if
all elements from A — Vare decided correctly and just some elements from Vcan be
"omitted", then &{JN)9 re p . #(JN log IV)-time complexitives are reachable, just
with multiplicative constants enlarged.

Theorem 5.2. Consider the model and notation introduced by (5.4), let

P({co: co e fi, Q(0, to) = 1}) = 0 , (5.25)

1 > P({co: coeQ, Q(i, to) = 0}) = 1 - p £ 0 .

Then there exists HPPSA in the sense of Chapter 4 (i.e. not in the thershold sense)
for the problem {A, V} the probability of error of which is uniformly majorized

43

by a given e > 0 over all V c A and its unit (logarithmic, resp.) time computational
complexity is in 0(VjV)-class (ln &(-J(N) log IV)-class, resp.)

Proof. Setting v = card V,

P({w: (o e Q, Xu(co) e V}) = vN~~l ,

P({(o: (o E G, Q(xAXM)* w) = *)) = P ^ " 1 • (5-26)

If v = 0, assertion holds trivially, if v > 0, then discovering of an element of V
implies that v + 0 and situation defined by (5.25) is the same as in the case of failure
proof two-level HPPSA with v' = vp, hence, as in the case of <A0, V'> with card V :
: card A'0 = t/IV™1 = vpN^1 (e.g., F = F, A c A0, card., Ai0 = IV x = IV/p). As
there exists a two-level HPPSA for <>40, F> with time computational complexity
in ©(V-V-J-class (in (D(\fNx) log IVj-class, resp., IVx = card y40), and because
of the simple fact that V-Vj = VO/P) V ^ and J(Nt) log Na = J(ljp) v(N) log IV +
+ log jT1) , the classes &(JN) and (P(V-VJ ($(V(N)logN) and (P(V(IVX) log IVj
resp.) are identical and the assertion is proved.

Idealized version of the threshold HPPSA is the algorithm obtained when the
decision function S(S((o) = 1, if n(w) 5; /L, <5(cO) = 0 otherwise) is replaced by the
decision function <5*, where <5*(Oj) = 1, if Q(CO) ^ p, 5*(o) = 0 otherwise.

Theorem 5.3. Let the notations and conditions of Theorem 5.1 hold, let a functionf:
9t -* 9t be given, f(IV) ~~> GO as IV -» oo. Then there exists two-level threshold
HPPSA the idealized version of which has probability of error majorized by a given
e > 0 uniformly for all searching problems <A, V> such that card V ^ f(card A),
moreover, the unit (logarithmic, resp.) time computational complexity of this algo
rithm is in <9(Njf(N)) (in &(Nd log NJf(N))9 resp.)-class, hence, in *(N) (in o(N log IV),
resp.)-class.

Proof. The proof copies the pattern of the proof of Theorem 5.1, so we mention
explicitly just the main points. We test, whether V = 0 (v = 0) against the alternative
that v^f(N), IV = card A, on the ground of Yx((o), Y2((o), ..., YK((o), K = nm.
Setting p and q as in (5.1), we can easily deduce, that if v = v(N) = card V, then

P({(o:coeQ, Y^co) = 1}) =

= q PK{(o: coeQ, Yt(co) e A - V)) + (1 - p) P({co: coeQ, Yt(co) e Vj) =

= q(\ - v(N)lN) + (1 - p) (v(/V)//V) = 9 + (1 - p - a) (v(N)/iV) =

= pv(N). (5.27)

Conditions of Theorem 5.1 yield that p -F q < I, hence, we test fi (= EYt) = p0 = ^
against /I = pt,(iV) > p0.

K

Recall that <5*(co) = 1 iff Q(CO) = K"1 £ y.(co) ;*> L/? then there exists, for each
i= i

threshold value LI e (p0, pv(N)), a constant cx > 0 such that S* yields an error if

IK"1 X Yt(co) - /i| £ SN = cx </V)//V . (5.28)
i - 1

44

We use, again, the Chebyshev inequality and the fact that estimation of K as a function
of IV, obtained from this inequality, is the best one up to multiplicative constant.
We obtain

\\ ' l - M N f; ~~ (c, v(Iv)/Iv)2 K l ;

Majorizing the right-hand side of (5.29) by e > 0, we obtain

D2Y IV2 IV2

K = K(N) > — ~ - — = c2 -~-^— , (5.30)
1 ' CIB (v(N))2 (v(N))2 {)

and this function is in (IV2/(f(1V))2), if v = f(N) (the worst case). Hence, for m(N) e
e (9(y/(K(N))), n(N)e#(y/(K(N))) the unit time computational complexity for
d*(o)) is aA m(IV) 4- a2 w(IV) + a3, hence is in G(Njf(N)) cz ^(IV)-class, The assertion
for logarithmic time complexity follows in the same way. •

Another possibility to overcome the negative results of Theorem 5.1 consists
in an appropriate change of the used loss function, i.e., in a relativization of the loss
suffered when the decision about the set Vis wrong. As can be easily seen, probability
of error is nothing else than the expected value of the most simple loss function
taking the value 0, if the decision is correct, and taking the value 1 if the decision
is wrong.

If V = 0, then the wrong decision that V 4= 0, if it is possible, i.e., if P({OJ: co e Q,
Q(0, co) = 1}) > 0, is a qualitative decision not implying some more consequences
concerning the set Vor its elements. Such consequences would be, necessarily, either
tautological or false. It is why the loss connected with this kind of error can be taken,
in what follows, as unit or constant. On the other hand, the loss connected with the
wrong decision that V = 0, if V 4= 0, will be taken as an increasing function, say F,
of the relative frequency vJN of elements from Vin A. In this moment we suppose
only that F is a strictly increasing and continuous mapping of the unit interval <0, 1>
onto itself, so that F(0) = 0 and F(l) = L

Formally, loss function R maps the Cartesian product 3) x 0>(si) into the set
<0, oo) of reals. Here 9 = {D0, DJ is the set of possible decision (D0 is "V = 0",
D1 is "V + 0") and 0>($4) = (V: V c A). According to the informal considerations
above we assume that

R(D0, V) = F(card V/card A) for each Ve 0>(A) , (5.31)
hence,

R(D0, 0) = 0 , R(Di9 V) = 0 for each Ve 0>(A) - {0} ,

R(DU 0) = y > 0 .

Now, considering decision functions d or S*, defined by n(w) or by Q(OI), as random
variables, also the loss function can be taken as a random variable (R(8(co), V) or
R(3*(w), V)) with values in <0, oo). All random variables used to define R(S(*), V)
and R(8*('), V) are uniquely determined by random variables Xtj and Zh hence,

45

the assumptions concerning the uniform probability distributions of the latter
random variable define uniquely the expected values E(R(5(*), V)) and E(R(5*(*)9 V)).
These expected values depend, of course, on the parameters m, n, k of the used
HPPSA and we shall investigate the conditions under which, given e > 0,

E(R(S(*y V))<e9 or E(R(5*(*)9 V)) < s (5.32)

hold uniformly for all V c A,

However, if V = 0, then

£(*(«*(•). 0) = y . P({OJ: coeQ3 Q(Q>) £ ft)) =

= (y/2) P({O>: a) e Q9 \Q(W) - fi\ £ cjN}) (5.33)

for some c > 0, if fi = q = P({co: we i3 , Q(0, &>) = 1}) > 0. For the reasons
explained above, the right-hand side of (5.33) cannot be majorized by an s > 0
with K = mn e o(N2), what leads to the same unpleasant consequences as those
in Theorem 5.1. It is why we shall limit ourselves only to nonempty V's when con
sidering (5.32).

If v = card V 2; 1, an easy calculation yields

E(R(&*(<o), V) = F(v//Y). P({co: coeQ, 5*(co) = D0}) =

= F(v/N) P({eo: co e £>, g(a>) < JI}) =

= i F^/iV). P({OJ: OJ e &, |e(c») - /*| £ c//V}) £

< (4) F(vlN) Y (5.34)
~ w v / ; (c / /v) 2K l ;

for an appropriate constant c > 0. Hence, to majorize the right-hand side of (5.34)
by £ > 0, we must take K = K(iV) = Cj/V2 F(vJN) for an appropriate constant
ci > 0. As F(vjN) -* 0 for /V -> 00 (v is fixed), K(iV) e ^(N2). So we have proved

Theorem 5.4. For A[, V9 N and v as above, there exists a two-level threshold
HPPSA, with generalized loss function defined by (5.31) and with F satisfying the
conditions above, such that the idealized version of this HPPSA has probability
of error majorized by a given s > 0 uniformly for all nonempty V cz A. Its unit time
computational complexity is in &(N V(F(*VN)))-class, i.e. in ^(iV)-class (its logarithmic
time computational complexity is in @(N log N <y/(F(vjN)))-c\a&s9 i.e. in #(NlogN)-
class).

The assertion concerning the logarithmic complexity can be easily proved in the
same way as above. Hence, if F(vjN) = v/N2, then the unit time complexity is
in ^(V^-class. So, for each 0 < v ^ card A there exists a positive integer w(v)
such that the idealized version of an appropriate two-level threshold HPPSA with
unit time complexity w(v) has probability of error smaller than s > 0 uniformly
for all 0 4= V cz A and independently of N. The loss function F(vjN) = v/N2 com-

46

pletely eliminates the negative influence of searching problems with large A9$ and
small nonempty V's as far as the time computational complexity of parallel as well
as sequential searching algorithms is concerned. What is important is the fact that
this assertion holds even in case when the probability of the wrong decision about
elements of A — Vis positive, i.e. in the case of threshold algorithms. The problem
is discussed, in more details, in [2] and [3], for the case of sequential algorithms and
using a slightly different terminology.

As an immediate and natural continuation of our former considerations we may
consider the Bayesian model, when the tested set V is supposed to be sampled
at random and the algorithm is classified according to the expected value of the loss
function with respect to the apriori distribution. So, consider a random variable
if taking the probability space <£>, £f9 P> into &>(A) and define the Bayesian risk
£(E(i?(<5*(-), r(-)))) as follows:

E(E(R(8*(>), r (-)))) = I [W * (*) > V))] • K{™ co e Q9 f\co) = V}) .

Supposing that the value of £(JR((5*(«), V)) depends only on the cardinality of V,
Bayesian risk can be read as

N

Z [£(#(£*(•)> Vn)j] . P({w: coeQ, card r(co) = n}) , (5.36)
n = 0

where N = card A and Vn is any n-element subset of A. The demand to majorize
the Bayesian risk by an e > 0 is, of course, much weaker than that of uniform
majorization and the choose of if ultimately determines the quality of the algorithm
in question. The next example shows than even in case of a quite natural apriori
distribution the majorization of the Bayesian risk can be reached within a constant
(i.e. independent of N) unit time computational complexity.

Let Ul9 Ul9 ..., UN9 N = card A, be statistically independent and equally distributed
random variables, each of them taking (Q, Sf9 P> into {0, 1}, denote

a = P({co: coeQ9 U((co) = 1}) . (5.37)

Given an ordering A = {au a2,..., aN}9 set

r(co) = {at: at e A9 U((co) = 1} (5.38)

and suppose, to avoid the trivial cases, that 0 < a < L Evidently, for each O g n ^
SN9

<{«..*-n.>-.}>-$-x«--r-. («)
and £ card ^(*) = ocN. Consider the most simple two-level HPPSA with p = q = 1,
i.e. with reliable testing oracles) and with parameters m, n9 k. The only we have
to prove is that, given e > 0, there exists K = mn independent of 1V such that the
Bayesian risk that no processor finds an element of V = i^(co) is majorized by e.

47

This Bayesian risk reads, as can be easily seen

f (1 - (n/Njf (N) a"(i - af""1, (5.40)

as no error can occur if n = 0.

Choose 3 < min {a, I — a}, the strong law of large numbers yields that

P({OK co E Q, Jim AT1 card f(co) = a}) = 1 . (5.41)
N-+m

Hence, there exists /V0 = N0(e9 5) such that, for each IV > /V0,

P({cO: to e Q, AT1 card r(co) e <a - 8, a + £>}) > 1 - (e/2) . (5.42)

Set M\ = ["(a - <5) /V], M2 = [(a + 8)N\ and divide the sum in (5.40) into three
parts; from n = 1 to M l5 from /? = Mx + 1 to M2, and from w = M2 + 1 to IV
(the first and the third one may be empty). Replace (1 - (njM)f by 1 in the first
and third sum and 1 — (vjN) by I — (a — S) in the second one. The Bayesian
risk in question can be majorized, consequently, by

+ £ M aV ~~ a)N~~n = p ({^ : ^ e ^ c a r d ^ H <Mi}) +

+ g* P({co: co 6 Q, Mx S card TT(CO) £ M2}) +

+ P({co: e £2, card 1T(ca) > M2}) ^ e/2 + qK , (5.43)

here q = 1 - (a - 3). Taking K > (log2 (e/2))/Iog(l - a + <5), the right-hand side
of (5.43) is majorized by s. Hence, if N < N0(e, <5), the uniform majorization of the
loss function implying trivially also the majorization of the Bayesian risk can be
easily reached by appropriate K = K(s) independent of IV, if IV ^ N0(e, <?)> ar1d the
example is closed.

The Bayesian model is connected with all the philosophical, methodological and
practical problems involved by the Bayesian approach in statistical decision making
in general and it is not the aim of this work to reproduce or to enlarge this discussion.
In every case, the Bayesian approach is practically justified mainly in case we have
some reasons for a choice of a particular apriori probability distribution or at least
for giving a preference to a narrow class of such distributions. However, such reasons
or justifications must be, of course, of extra-mathematical nature, i.e., must be
implied by an apriori, perhaps partial, knowledge of the set V, but such an assumption
contradicts to the "black-box principle" adopted above (introduction of Chapter 4).
It is why we shall not develop the Bayesian model in more details and close this
chapter by considering another example which can be taken as alternative to the
one introduced above. Namely, let us take such an apriori distribution that generates

48

equiprobable distribution on the set (0, 1, 2, ..., N] of possible cardinalities of the
tested set V, hence,

P({a>: co G Q, card r(ta) = n}) = (/V + 1)"* , n = 0, 1, . . . , N . (5.44)

Evidently, the Bayesian risk reads
N

£(JV + i) " ^ 1 - ' W - (5.45)
i = i

Using the well-known fact that (1 — xJN)N /" t~~x for N --> co, an easy calculation
yields

£-i_ti_iy<2 £f,-i
i-i AT + 1 V « / N 1=1 \ TV

= i y (/
1 -WW < y i (e -<^)) =

TV ,-=! V A' / 1=1 N V ;

y I lJ_Y __ i C/eK/w) - (__«__) = i e* - e^w

i = i /V \eKIN) ~ N 1 - (l/eK/") ~ ~ N e*(e*lw - f

1 !
< 1) TV eK,N - 1

(5.46)
IfiC > 1/e, then X//V > l/(e/v), hence,

oo oo

X(X/N)7i! = e*/N = 1 + K/N + Y,(KlNYln > l + l / (£ i V) > (5- 4 7)
? = 0 / = 2

so that

l / (e* / i v- l) < f i (5.48)

and the Bayesian risk is majorized by e uniformly for all N and all n ^ JV, similarly
as in the example above.

R E F E R E N C E S

[1] W. Feller: An íntroduction to Probability Theory and its Applications I, II. J. Wiley and
Sons, New York, 1957 (voi. I, 2nd edition), 1966 (vol. П). Russian transíation: Mir, Moscovv,
1964, 1967.

[2] I. Kramosil: Statistical verШcation procedures for propositional caicuíus. Computers and
Artificial Intelligence 2, П983), 3, 235—258.

[3] I. Kramosií and J. Šindeláп Computational complexity of probabilistic searching algorithms

over Herbrand universes. Computers and Artifìcial Intelligence 4 (1985), 2, 97—110.

49

6. PARALLEL ALGORITHMS FOR MONTE-CARLO METHODS

In a number of problems of various nature, when taking a decision or looking for
a solution such characteristics or parameters of the investigated systems are of
importance, which can be defined as mean values of certain random variables.
Because of many reasons of theoretical as well as practical kinds these values need
not be immediately accessible (measurable or observable), they need not be even
accessible through an appropriate computation. When looking for appropriate
approximations or estimations of such values the following straightforward idea
arises — to take several statistically independent realizations of the random variable
in question, to compute the average value of these realizations and to consider this
value as an estimation of the unknown expected value. The soundness of such an
argumentation is guaranteed by the well-known strong law of large numbers accord
ing to which the average value of an increasing number of statistically independent
realizations of the same random variable tends, with the probability one, to its
expected value. In symbols, if Xu X2, ... is a sequence of statistically independent
and equally distributed random variables with expected value EX < oo and dis
persion D2X < oo, defined on an abstract probability space <(2, S?9 P>, then

P({co: co e O, lim (1/n) £ Xt(co) = EX}) = 1 . (6.1)
n -* oo i = 1

n

In which sense and in which degree the average value (Ijn) £ X^co) can serve as

a "good enough" approximation of £X? This is described by Chebyshev inequality,
another well-known basic result of probability theory which sounds, that for each
fi>0

P({a>: co 6 Q, |(l/«) £ Xt(co) - £X| £ e}) < D2X\m2 . (6.2)
i = i

In general, as already mentioned, the term Monte-Carlo method covers any
computational or decision-making procedure in which the expected value of some
random variable is replaced by the average value computed from a number of
statistically independent realizations and the resulting risks are accepted. The sup
posed independence of random realizations (samples) immediately involves, as in
the foregoing chapters, the idea of a possible parallel realizations of these samples.
A more detailed investigation of such possibilities will be our aim in this chapter.
It is why we may borrow the model defined in Chapter 4 in order to consider a finite
set A = {au a2, ..., aN} together with its subset Vaccessible only through a testing
oracle which works on the "black box" principle. However, instead of investigating,
whether V = 0 or not, our aim will be to obtain the value p = card F/card A or
at least an estimation of this ratio, which is "good" in a sound and formally definable
sense.

Supposing that one processor inspects systematically the set A, the correct value
for p can be obtained in $(N)-tirne. Here we neglect the time demands to assure the

50

systematical character of the searching process (each element tested just once),
to enregister the number of elements from V, and to compute the resulting ratio.
By an unlimited parallelization which uses a complete, but from the point of view
of computational complexity "free of charge" co-operation and synchronization,
the constant, i.e. independent of IV, time complexity would be achievable. However,
because of highly idealized assumptions connected with such a model we shall
not go into details and concentrate our attention to algorithms of probabilistic
kind. In such a case, first of all, we have to specify, what it means a "good enough"
estimation of p. In what follows, we shall take (6.2) as a good quantitative measure

n

of the quality of the estimation (ijn) ^Xt(co) of the expected value EX. According
i= 1

to this relation, the quality of estimation is parametrized by two values e > 0,
giving the maximal acceptable absolute difference between the average and expected
value, and S > 0 giving the maximal value of probability with which the threshold
value e is crossed. This other parameter value, i.e. S, will be always taken as a free
parameter of our model, the value of which is determined by exclusively extra-
mathematical reasons of practical and applicational nature. In case the value e > 0
is also independent of the extent IV of the set A, we may take

n > D2(xv(Xi(a>)Wd = p(\ - p)ls28 (6.3)

in order to assure that for n statistically independent random samples from the
uniform probability distribution over A the inequality

P({«K o> e Q, |(l/n) £ Xv(Xi(o>)) - p\ ^ s}) < 5 (6.4)
i= 1

will hold. Here X,-: (Q, £f, P) -» A is a sequence of statistically independent random
variables such that

P({co: coeQ, Xt(co) = a}) = 1/IV (6.5)

for each i = 1, 2, ..., and each a e A. As p(\ — p) <L \ for each p e <0, 1>, we may
take n ^ \£25 independent of p. The time complexity of a probabilistic (sequential
or parallel) algorithm for obtaining an estimation p(co) of p satisfying (6.4) is, there
fore, constant (independent of IV). Because of the fact that this dependence will lie
in the centre of our further considerations, this case will not be developed in more
details.

In what follows, let us focus our attention to the ways in which so called 8-correct
estimates of the value p -= card V/card A can be obtained through an appropriate
hierarchical Structure of parallel probabilistic algorithms. The estimate

p(co) = (\jn)YJXv(Xi(co)) (6.6)
i= 1

of the value p is called <5-correet supposing it satisfies (6.4) for s = 1/2IV. If it is the case,
then with probability at least I — S the true value of p is in the interval (p(co) —

51

— 1./2TV, p(o)) 4- 1/2IV) of reals; this interval contains at most one value of the form
vfN, hence, with the probability at least 1 — S the correct value.

Consider N% processors which work in parallel, each of them repeating statistically
independent random samples from the set A with respect to the uniform probability
distribution over A. The sampled elements are tested and sent to the higher-level
processors together with the total number of sampled elements (with possible repeti
tions) and the number of samples belonging to V. Intuitively, higher-level processors
can be taken in the same sense as in Chapter 4, First of all, consider the case when
the higher-level processors are hierarchically structured in such a way that to each
higher level processor a fixed, finite and nonempty, in order to avoid the degenerated
cases in what follows, set of processors of highest lower level is ascribed (subjected,
ordered). These sets define disjoint covering at each level, so that each processor,
with the exception of the (supposedly unique) highest-level one, is subjected to just
one processor of the lowest higher level. However, the higher-level processors are
supposed not to be able to inspect the outputs of the subjected processors systematic
ally and exhaustively, but only on the ground of a random sample from the set of
the subjected processors. For the sake of simplicity let us assume, first, the uniform
probability distribution over the set of (immediately) subjected processors. Hence,
the activity of each higher-level processor consists in taking a finite number of
statistically independent random samples from the set of its subjected processors
with respect to the uniform probability distribution and without any possibility
to recognize and perhaps eliminate possible repetitions. Then the higher-level pro
cessor asks each of the sampled subjected ones for the total number of samples made
by this subjected processor and for the number of samples which were in V. Finally,
the higher-level processor sums both the series of numbers and sends the result
to its superior supposing it is asked to do so. The unique highest-level processor
combines in the same way the results obtained from its subjected processors sampled
at random and outputs the ratio of the two sums as an estimation of the unknown
value p. In the formal description presented below we shall consider a slightly
modified version of this approach, when each processor computes the relative
frequency of samples belonging to V or of at random sampled outputs containing
the information about an element of V, and only those relative frequencies are,
in case the corresponding outputs were sampled, sent to the higher-level processors.

Let K }£. 1, iVj, TV2> * • •* NK be natural numbers (numbers of processors of particular
levels) such that Nt > N2 > ..• > NK = 1, let kl9 k2i ..., kK be positive integers.
Let Xij, i = 1, 2, ... ,/Vj, j = 1,2, ...,&!, be statistically independent random
variables, defined on the fixed probability space <.Q, £P, P> and taking their values
in A. Let, for each / = Nl9j S kuae A,

P({co: (oeQ9 XU(CO) = a}) = 1/JV . (6.7)

Set

' « (•) - X F (^ U (-)) . (6-8)

52

where Xv is the characteristic function of the set V cz A. Hence, Xu are statistically
independent random variables taking <(2, 9, P> into {0, 1} in such a way that, for
each i <; Nl9j % k-,

P({o>: to e Q, Xfi(O>) = 1}) = p , (6.9)

P({©: co G Q, Zf/(ct)) = 0}) - 1 - p .

Set, for each i <J IVl5

^ H = (i / f e i) E ^ H - (6.10)
1=i

Evidently, Y/, Y],..., Y#t are statistically independent random variables with the
expected value EY1 and dispersion D2Yl identical for each i ^ Nt and such that

EYi -- £#,., = p , D2Y* = (1/fc.) D2XU = (1/fc.) p(l - p). (6.11)

For each i = 1, 2, ..., K — 1, let ̂ be a decomposition of the set {1, 2, ..., Nt}
of integers into Ni+l disjoint nonempty subsets 9l\9 Wl9 ..., 9ll

N{+1, hence,
N. + i

U9lj = { l , 2 - . . . , N , } , fc*j=>9lin9lj = 0 . (6.12)
7=1

For each i ^ K — 1, fc g /Vi+1, Z ^ fci+1,let Z, fe z be a random variable taking
<0, 5", P> into 91', hence, for each s e 9t<,

P({co: weQ, ZLkJ(a>) = s}) = (card %)-* . (6.13)

All the random variables Zikl are supposed to be statistically independent and we set,
for each i ^ K - 1, fc ̂ / V ^ ,

^1(o>) = (l/fc i + 1)lV^ / (c)) . (6.14)
1=1

Namely,

*) = (« ! € , , » • (6-15)
1=1

This value will be denoted by F*(co) with an explicit introduction of other parameters,
if necessary and will be understood as a statistical estimation of the unknown value
p. The quality of this estimation will be compared with the quality of the best or
optimal (in the sense of the minimal dispersion) estimation of p obtainable from the
set {Xij(oj)}^l ^ t of observations. This estimation will be denoted by Y0 with an
explicit introduction of other parameters, if necessary and it simply reads as

r 0 H = (-/*,*,) I I xu(co) = (i/jv1fc1)£' ZxAXtA*))- (6-16)
i = i j = I i -1 j = l

This estimation is accessible under the condition of full cooperation and synchroniza
tion of processors and its characteristics are defined by

£Y0 = p , D2Y0 = (1/tf.fc.) p(l - p) . {611)

Clearly, EY* = £Y0 = p. Well-known assertions of probability theory then yield,

53

that the (arithmetical) average value is the unbiased estimation of the expected
value the dispersion of which is minimal among all unbiased estimations of this
value, hence, D2Y* j> D2Y0. in the rest of this chapter we shall investigate the way,
in which D2Y* depends on kl9 k2,..., kK. Or, their sum kt -F fc2 -F ... + kK repre
sents, in the roughest approximation, the time complexity of the parallel probabilistic
algorithm which estimates the value p = card V/card A and which was described
above. For the sake of abbreviation we shall refer to this algorithm as to si\ with
further parameters possibly introduced.

Lemma 6.1. Let Yj,Y2, ..., YM be statistically independent random variables,,
equally distributed and taking the probability space <f2, if, P> into the Borel line,
let EYf = ft < oo, D2Y. = a1 < oo for all i jg M. Let Z,, Z2, ..., Zx be statistically
independent and equally distributed random variables, taking (Q, Sf, P> into the set
{1, 2, ..., M} of reals in such a way that

P({co: to e Q, Zt(co) = ;}) = M~l (6.18)

for each i 51 fc and / 51 M. Set

>" = (1/^)1 > W (6-19)
then

£Y* = / i , D2Y* =
M

= D2((l/M) X Yt) (1 + (M - l)/fc) = (cr2/M) (1 F (M - l)/fc) . (6.20)

Proof. It is known or can be easily checked, that if X, Yare statistically independent
random variables and a, h are non-negative reals such that a F b > 0, then

D2(aX) = a2 D2(X), D2(X + Y) = D2(X) + D2(Y) . (6.21)

Hence,

D2 / " _ ! _ (fljsf + bY)) = ** , D2X -f - r - ^ - r D2Y. (6.22)
\a + bV 7 a2 + b2 a2 + h2 X J

By induction, for each M-tuple <bl9 b2,..., bM> of non-negative integers such that
M

I*;-*.
j = t

/ i M \ 2 M

Denote by ^(o*), 1 ^ i ^ M, the random variable giving the number, how many
times the value i has been sampled by some Zpj ^ k. Hence

^ : < O , ^ , P > ~ > { 0 , l , . . . , f c } , (6.24)

Ai(co) = card {j: j 5̂ k, Z;(o>) = i} , (6-25)
M

£.4,(a>) = fc. (6.26)
i = l

54

A simple factorization yields

D2Y*^(a2jk2) £ [(£«»).
< a 1 , a 2 , . . . , a M > e { 0 , l f . , . , f c } M , I a i = fc »= 1

.P({^:^eO,<A1(a>)5...,AMH> = <a 1 , . . . , a M >}] , (6.27)

and after an easy calculation we obtain
M

D2Y* = (^) £ x l>2-
1 = 1 < a l i . . . > a M > 6 { 0 , l , . . . , f c } M , I a i = fc

.P({a>: meQ, </.,(«»),..., 4M(©)> = <a„ ..., aM>})] =
M fc

= (ff2/l<2)I I L
i = l i = 0 <a, a M > 6 { 0 , l k}M, Ea, = *,a< = j

.[j2P({co:(oeQ,<A1(<o),...,AM(co)y = ial,...,aM)})'] =
M fc

= (*2//<2) I I j 2 P({»: « 6 C A((a>) = j}) . (6.28)
i = l y = 0

However, when investigating the probability of the random event A^co) = j , the
well-known binomial formulas may be of use. Or, it is just the probability of occurren
ces of an event with probability l/M in a series of k independent and identically
distributed random samples. Because of the irrelevance of the order, for each
i ^ M,

P({co: o> e Q, A fa) = j}) = (j) (l /M)' (1 - 1/Af)*-' , (6.29)

and this expression can be written as the binomial coefficient b(j, k, p) with p = l/M .
Using the identity from [1], p. 179 (Russian translation),

I j 2 b(j, k, p) = k2p2 + kp(l - p) , (6.30)

hence,
i=o

M k

D2Y* = (<r2//c2)Y, lJ2b(j,k,llM)
i = l ; = o

= (a2jk2)M(k2IM2 + (kjM)(\ - 1/M)) = a2\M + (a2jk)(ì - l/M) =

= (a2jM) (1 + (M - l)//c) . (6.31)

м
The relations £Y* = ft and D2((l/M) £ Y,-) = <r2/M hold trivially, so that the lemma
is proved. , = 1 •

Consider the algorithm $4*(k, c) defined as a special case of the algorithm si\
in which Nt is of the form c6, c > 1, Q ;> 1, and for each i = 2, 3, ..., Q + 1 we have
Nt = IV ̂ j/c, hence, K = logc IVt + 1, moreover, let kt = k for each / = 2, 3, ..., K.
Other parameters, i.e. Nl9 kl9 p, ... are the same as in s/t and will not be explicitly
introduced. Let Y*(stf*(k, c)) be the random variable defined for sf*(k, c) by the

55

'/J£- 4&Z
relation (6.15). Suppose, moreover, that to each ith level processor just c (i — t)st
level processors are subjected, so that card 91} = c for each i <£ K — 1 and j S
£Nt+v

Theorem 6.1. Algorithm stf*(k, c) satisfies the relation

D2(Y*(,<(k, C))) = p(l ~~ p)(k1Niy
1 iV^c(l+(c^)/lclnc) <

< D2(yo)Mc""1)/fclnc- (6.32)

Proof. Considering the way in which random variables Yj are defined we can
easily see, that random variables Y[, Yl

l9 ..., YJJ. + l are statistically independent for
each i :g K — 1. Hence, Lemma 6.1 yields

D^(yj+1) = D*(Y>) (l / c) (l + (c - l) / f e) (6.33)

for each j ^ IVi + 2. The supposed statistical independence of random variables X,7

implies that Xtj are also statistically independent, so that

D2(Y;) = (l / A 1) P (l - p) (6.34)

for eachj <* IVj. Combining (6.33) nad (6.34) we obtain

o2(rf) - P(i - P)(i/k1)(i/c
,c-i)(i + (c - m*-1 =

= p(l - p) (1/fc.iV.) (1 + (c - l)/fe)'^N ' , (6.35)

as K = logc IVj -f 1. A simple modification of the right-hand side in (6.35) yields

D2(Y*(j**(k9c))) = p(\ - p)(l / ik1N1)(c ,^ (1 + (c-1) / k>) l o^ J =

= p(l - p)(l/k1JV1)iVi08c(1 + (c-1) / k) =

= p(i - p)(i/fc1N1)M t t (l+(c"1)/*) / IBC <

< p(l - ^ (l / k ^ O ^ r 1 ^ 1 " " = D(r0)M
c~1)/kInc* (6.36)

where we have taken profit of (6.16), (6.17), and of the simple fact that In (1 + x) <

< x for each x > 0. The assertion is proved. •

Let us recall that, given 8 > 0, F cz A as above with card A = N9 the algorithm
ja^ is called S-correct with respect to the problem (A, F>, if it yields <5-correct
estimates of the relative frequency of elements of Fin A, i.e., if

P({co: coeQ9 \Y*(J*X) (©) - (card F)/N| < (1/2IV)}) ^ 1 - <5 . (6.37)

Intuitively said, sJx is <5-correct if with a probability at least t — 8 the value of the
form vjN which is the closest to the estimate Y*(s^t) (OJ), is also the true value of the
parameter p = card F/card A.

Theorem 6.2. For each e > 0, <5 > 0, c > 1 and each problem (A, F> there exists
a <5-correct algorithm stf*(k9 c) the unit time computational complexity of which is
in ^(IV£)-class.

Proof. Choose 0 < et < e. The value Y*(stf*(k9 c)) can be understood as a sin-

56

gleton set of statistically independent and identically distributed random variables,
so that the Chebyshev inequality reads

P({co: co e Q, \Y*(j**(k9 c)) (co) - p\ £ (1/2IV)}) <

< D2(Y*(jtf*(k, c)))/4N~2 . (6.38)

Given e > 0 and c > 1, choose k such that (c — l)/k In c :§ ex/2, hence

k £ 2(c - l)/e, I n c . (6.39)

Moreover, set IV- = IV2, and

fc, - r ^ - i ^ c - D A i n c n = r r i A F (- i) M i n c] ^ (6 4 0)

where r x 1 is the upper integer part of x. (6.32) then yields

D2(y%<(k ,c))) / i /V"2 = 4D2(Y*(^*(k,c)))N1 <

< 4p(l - p)(k1Nx)~
i
 N[+(c-l)!k]nc S 4Sp(\ - p) g 5, (6.41)

as p(l — p) rg | for each pe <0, 1>. Combining (6.39) and (6.41) we obtain

P({to: w e Q, \Y*(j*\(k9 c)) (to) - p\ > 1/2/V}) < 8 , (6.42)

and the 5-correctness of the algorithm s#*(k, c) is proved. Its unit time complexity
then reads as

k! + Kk = k! + (log, Nt) k - fc- + (2 log, IV) fc . (6.43)

Now, fc, = rd~1N2(c~ 1)Mlnc1 and e, :> 2(c - l) /k lnc , hence, fct - kt(N) e &(NEl).
At the same time, 2 log, IV is in o(Nn) for each r\ > 0, c > 1, hence

fcj(IV) + (2 log, IV) k e (P(IV£i) c ^(N£) , (6.44)

as £t < e. The assertion is proved. •

Our aim is to go on in our effort to weaken, step by step, the supposed kind and
degree of co-operation and synchronization among processors of the same level
working in parallel and constituting hierarchical parallel algorithms for Monte-Carlo
methods. Let us consider one of the possible immediate modifications of the algorithm
$$x defined and investigated above. Informally said, the modification consists in the
fact that each higher-level processor, when taking random samples from the set
of its subjected lower-level ones, may with a positive probability wrongly sample
some processor outside of this set of its "subjects". In such a case the information
obtained from this "foreign" processor is incorporated into information set on the
output of the higher-level processor. I.e., this higher-level processor has no possibility
to realize its mistake and to take some correct measure. Random samples are con
sidered, as above, to be the only tools of communication between processors of
different levels. Hence, this model violates the assumption of disjointness of the sets,
from which the higher-level processors take their random samples and preferences
given by each processor to its subjected ones will be only of statistical character.
For the sake of simplicity we suppose the equiprobable probability distribution

57

on both the subsets of lower-level processors (i.e. the "subjected'' as well as the
"other" ones). Suppose, that a higher-level processor has c subjected processors
from the total number C of lower-level processors (1 __\ c < C). Then it communica
tes with the lower-level processors through random samples such that, in each sample,
with the probability (1 - e)jc each among the subjected processors is sampled, and
with the probability ej(C — c) each among the other processors is sampled. The
value e > 0 can be seen as a quantitative measure of incompleteness of the co
operation, in the case of si1 we have a = 0.

When describing this algorithm formally (we shall denote it by si l9 explicitly
introducing the parameters important in the given context), let us take profit of the
description of algorithm s/x in those parts where both the algorithms are analogous.
Consider, hence, again a set A = {al9 a29..., aN} and its subset V with the aim to
estimate the value card V/card A, consider integers K9 Nt > N2 > ... > NK9

kl9 kl9..., kK9 and a system {Xij9 i = 1, 2, ...9Nl9 j = 1, 2, ..., kj of statistically
independent random variables taking the probability space <fi, £f9 P> into A and
satisfying (6.7), so tliat the random variables Xij9 defined by (6.8), satisfy (6.9).
Also the variables Y"/("), i S Nl9 are defined as in the case of algorithm s4t9 i.e. by
(6.10), hence, their expected values and dispersions satisfy (6.11).

For each i = 1, 2, . . . ,K - 1, let M{ be a decomposition of the set {1, 2, ...,JVj
of integers into Ni+l9 disjoint nonempty subsets 9t[99t2i...99liri+l9 moreover, let
a real si9 0 < et < 1, be given. For each i _Z K — 1, k <£ Ni+1 and I __ fc1 + 1, let
Z*itk,i,ei ^ e a random variable taking <£>, 5^, P> into {1, 2, ..., Ni+1} and realizing
the random sample intuitively described above, i.e. "random sample from the uni
form probability distribution over SVk with possibility of error the probability of which
is e / \ Hence,

P({co: coeQ9 ZhkJtH(m) = s}) = (1 - a,) (card S^)™1 , (6.45)

if s e Wk9

P ({ (o : o) 6 f l , Z , (M >) = s}) = £ ,(card({l,2,. . . , iV£} - ^ i)) " 1 , (6.46)

i f se{ l ,2 , . . . , iY ,} -31{..
All the random variables ZikJr. are supposed to be statistically independent.

For each i 5̂ K — 1, k 51 Ni+1 define random variable Yk\s.(co) by the relation
(6.14) with ZiJcJ(co) replaced by ZLkj%Ei(co). Our attention will be focused, again,,
to the random variable Yjc

%EK_l9 defined by the relation analogous to (6.15). This
value will be denoted by Y*(co) with possible explicit mentioning of other parameters
and will be taken, again, as a statistical estimation of the unknown value p =
= card F/card A. Analogously as in the case of algorithm sft we shall investigate
the dispersion D2Y* of this estimation, the validity of the relation D2Y* _t D2Y0

is clear. Namely, we shall seek for the values kl9 kl9..., kK9 the sum of which ap
proximates the time computational complexity of s4'2, such that the dispersion
D2Y* was small enough to estimate the relative frequency of elements from Vin A
in the sense specified above.

58

Because of the fact that, for each i :£ K — 1, k ̂ -Vi+1- / <J fcJ+1, the random
variable Zikl$Ei takes with a positive probability every value from {1, 2 , . . . , ATj,
the same random variable l£ e i - 1 , J ̂ -Vf+1, may occur in lwo (or more) sums
defining random variables Y^/.(cO). Y^J2(<o). Hence, if i = 2, then random variables
Yje., j <; Ni+l9 are not statistically independent and this fact makes a computation
or even estimation of the value D2Ye* very difficult. So, we have to be satisfied with
estimations of much rougher nature than in the case of algorithm sfv Let us in
troduce two auxiliary assertions for the upper bounds of dispersions of random
variables will be of use in what follows.

Lemma 6.2. Let Yl9 Y2, ..., YM be random variables taking the probability space
(Q, S?9 P> into Borel line (R9 ^ 0 > , then

M

D2((l/M) £ Y.) ^ max D2Yt-. (6.47)
i=l i = l , . . . , M

Proof. A simple computation yields

D2(Y! + const.) = £(Yt + const.)2 - (E(Yt + const.))2 =

= £Y2 + 2 const. EYt + (const.)2 - (£YX)2 - 2 const. EYt - (const.)2 =

= £Y2 - (£Y2)2 - D2Y! , (6.48)

So, we may limit ourselves to the case when EYt = EY2 = ... = £YM = 0. In such
a case, M M • M

D2((l/M) S Y(.) = £((1/M) £ Y;)
2 = (l/M)2 £(v. Yty =

i - 1 i = 1 i =1
M M M M

= 0/M)2 £(I I 7,1}) = (1/M)2 £ I £(77,) g
i = l 7 = 1 i = l j = l

M M

= 0 / M) 2 I Zv/((£72)(£7/))^
/ = i y = i

M M

^ U W I Z V (m a x (£yi2)2) = max (E*f) = max D 2 ^ . (6.49)
f = i y = l i = l , . . . , M i = l „ . . , M i - = l , . . . , M

using the Schwartz inequality

\fgd^^((\pdn)(U2dn)) (6.50)

hence, in terms of random variables,

E(Yirj)sJ(m)(EY})). U (6.51)

Lemma 6.3. Let X, Y, U be random variables taking the probability space <0, Sf, P>
into the Borel line, such that the pairs <[X, t/> and < Y, U} of random variables are
statistically independent. Let, moreover,

P({co: coeQ, U(co)) = 1}) = p, P({co: coeQ, U(co) = 0}) = 1 - p .
(6.52)

59

Then
D2(UX + (1 - U) Y) = p D2X + (1 - p) D2Y+ p(l - p) (EX - EY)2

(6.53)
Proof. Using the assumption that random variables X, U and Y, U are statistically

independent, a simple calculation yields

D2(UX + (\ - U)Y) = E(UX + (\ - U) Y)2 - (E(UX + (1 - 17) Y))2 =

= E(U2X2 + 2(7(1 - U)XY+ (1 - U)2 Y2)-(EUEX + E(\ - 17) EY)2.
(6.54)

Evidently,

EU = p, E(\ - U) = 1 - p , U2 = U , 17(1 - [7) = 0 ,

(\ - U)2 = \ - U , (6.55)
so that

D2(UX + (\ - U) Y) = p EX2 + (1 - p) EY2 - (p EX + (1 - p) EY)2 =

= p EX2 + (1 - p) EY2 - p2(EX)2 - (t - pf (EY)2 - 2p(l - p) EX EY=

= p(EX2 - (EX)2) + p(\ - p)(EX)2 + (1 - p)(EY2 - (EY)2) +

+ p(i - p)(EY)2 - 2p(l - p)EX£Y =

= p D2X + (1 - p) D2Y + p(l - p) (EY - EY)2 (6.56)

and the assertion is proved. •

Similarly as above we shall consider the algorithm stf*(k, c), resulting as a special
case of algorithm $?2, supposing that Nt = ce, c > 1, Q _r 1, N{ = A7i+1/c for each
(" = 2, 3, ...,_>+ 1, card 91} = c for each i _2 K — 1 and j ^ iVi+1, and k2 =
— k3 = ... = kK = k. The random variable Ye* will be denoted, in this case, by
Y*(s#*(k, c)) and we shall study its dispersion.

Theorem 6.3. Consider the algorithm stf*(k, c) and suppose that, for each i =
= 1,2, ...,K, Ei = sK^1lc

K~i-\ Then

D2(Y^*(k, e))) ^ &f-& (0k'Nl), (6.57)
where

in the sense that ratio of both the sides in (6.58) tends to one as Nx -» oo.
Proof. Random variables Yl(*), ¥_?(*)>..., }#_(") a r e defined by arithmetical

averages of values of disjoint sets of statistically independent random samples,
hence, they are statistically independent as well. Let random variables
^i.«i-i(")» ^2t8i-i(")» ***> 5N»,£i-t(") ^ e a*so statistically independent. For each i rg K,
j _g Ni9 evidently

- - j , , - = P = P({™-<» 6 G, £_,(o>) e F}) . (6.59)

60

In order to assure the statistical independence of random variables ¥?**, Y^], ...
..., Yir+\ „., a sufficient condition is that the sets

{Zyjto), Z^co), ..., Zl:l(co)} , (6.60)

{Z'i-iH, Z<-,»,..., Zkl(eo)} ,..., {Z[-»r(o>), ZZr(°>\ • • - « + I H }
must be disjoint. A sufficient condition for this property to hold is, that each pro

cessor takes random samples only among its subjected processors, hence, for each

{ Z i ' i < _ l (a)) , Z ^ i l _ I , . . . , Z ^ l . » } c 9lj . (6.61)

Denote by Aj the random event defined by (6.61), then the assumed statistical in
dependence of random variables Zl

k*
J
Eij(*) implies

P(Aj) = (I - et)
k , pfnAj) = (1 - <.,)*"'•« . (6.62)

1=1
Nf+1

If the random event f) Aj occurred, then, for each j <£ /V/+1, YJ+*(CD) is the
i = i

arithmetical average of k statistically independent random samples with the same
dispersion D2Y}Eii for each of them. Moreover, the samples are taken from a c-
element set with respect to the uniform probability distribution over this set. So,
Lemma 6.1 yields, in such a case

D2^1 = G) D 2 r i - - ' (, + f T i) - (6-63)
Nt+i

Supposing that the event f) Aj did not occur, we cannot avoid that Yj+
8i(co) is defi-

1=i

ned by an arithmetical average of statistically dependent random samples with the dis
persion D2Yj ei_l for each of them, Lemma 6.2, then yields D2YJ+* _ D2Y[\Ei^r

Omitting the indices j and ei9 for the sake of simplicity, and using Lemma 5.3 with
EX = £Ywe obtain the following recurrent relations

D2Yi+1 _

_ (1 - £/)
ft*'+> (1/c) D 2 r (l + (c - l)/k) + (1 - (1 - e,)*"'*1) D2Yt =

= D2Y;.[1 - (1 - £ / r - + (1 - a f - ((ljc) + (c - l)/ck)] =

= D2Y/[1 - (1 - e r i + 1 (1 ™ (1/c) ™ ((c - l)/cfe))] =
= D2Y,[1 - (1 - ef)

fciV<+> ((ck - k - c + l)/ck)] =

_ D2Y;.[1 - (1 - , ,) * * • ' ((c - l)/c) ((k - l)/k)] . (6.64)

Combining the obtained results, we have

D\Y:(^2(K C))) = D*Y* = (D2^fn [i - a - s{r^(^r) (^~)\ (6-65)
where D2Yl = p(l — p)jkv Using the relation In (1 — x) < —x for 0 < x < 1

61

we obtain

In D2r« < In(p(l - p)/fc.) +Jjn(i - (1 - •,)»«•« (--=--) (^)) <

< in o(i - P)/fct) - i'(i - « i r*- (c - ~ i) (- •-"--) =

-W-^-%((i-*£) (^(-f-)). (-)
Because of the kind of approximation for x(fc, iVj) which is to be proved, the follow
ing approximation

A__i±i_Y'+ 1«e-" ' + 1*' (6.67)
V Ni + J

may be used. As we have assumed e£ = sK^ljc
K'~l~l for each t = 1, 2, , . . ,K — 1,

and Ni+i = Nt\c> we obtain Ni+1Et = NKsK„t = %_! for each f < K. So we have

hence,

ln D2YK < ln (p(l - p) /^) - (K - 1) c""**-' (—) í ^ ~ ^) ' ^6 '68)

D y" < (p(l - p ^ e - ^ - 1) - " * * - 1 ^ - 1) / ^ * - 1) / *)

= PV- '"" -°) (e-(Iogc/Vi-l)\c-fi---ifc((c-l)lc)((fc-l)lfc)
1

= P (í ~ P) /e-ln.?V1logce+l\e-"£K-ik((c~i)/c)((/c-i)//c)

k!

p (p — 1) / / 1 yogeey-£K-* fc((c-l)lc)((k~l)l/0

fci V W

p(l _ p) (c \e_Bjc- lk((c-l)/cliic)((*-l)/*)

~ ~~~~~~ v~~J .
and the assertion is proved. •

(6.69)

The notion of c5-correctness for the algorithm si'2 with respect to a given 5 > 0
and problem {A, V} with card AL = N is defined in the same way as in the case of
algorithm s/l9 hence, by (6.37). We shall prove also an assertion describing the time
complexity of a 5-correct algorithm . ^ (^ c)> hence, this assertion can be seen as
an analogy of Theorem 5.1.

Theorem 6.4. For each e > 0 and 8 > 0 there exist fc, c, k1 e 91 and sx > 0 such

62

that for each sK^.l g et and for each algorithm s4\ with parameters k, c, kt and
eK-x holds: _e/* *s ^-correct with respect to the problem <_4, V> and the unit time
computational complexity of s4\ belongs to _>(N£)-class, where N = card _4. •

Proof. An easy calculation yields

d fx — 1\ __ x In x — (x — 1) (In x — 1)

dx \x In x) (x In x)2

= l n (l + (x - l)) + l - x x - l + l - x

. (x lnx) 2 (x lnx) 2 ' l j

as x > 1. I.e. x = 1 + t]9 rj > 0, implies that In (1 + 17) = >y — f(^|), f(^l) e />(??),
f(r/) > 0. Hence, (c — l) /c lnc is a decreasing function of c for c > 1, moreover,

r c - 1 (1 + rj) - 1

> i + c l n c »r-o+ (1 + rj) In (l 4- r\)

= l i m 7T T7i ./ \ 7T\ = l • (6 J 1)

n-o+1 + IJ — (f(n)jn) -fw
Hence, (c — l)/c In c < 1 for c > 1, setting

x(k, c, «__.) = e ^ * (i ^ i) (i z i) , (6.72)

we obtain that x(k, c, e^-i) e (0, 1), as %_! > 0. The assertion of Theorem 6.3
can be written as

D2Y*(^*2(k, c)) < -MLzJP) jvj-*(-.««-«) (6.73)
fe.iVj

Setting fet = fe^At) = QjV1-x(,i,c'8'c"l) for an appropriate Q we assure that, like
as in the proof of Theorem 6.2.,

D2(Y*(s^*2(k, c)) < 8/4N2 (6.74)

for given k, eK„1 and c. Hence, there exists a <5-correct algorithm s/*(k,c) with
respect to the problem (A, V} and with unit time computational complexity kt +
+ k log,N, i.e., in ^AT^^-'^-class.

The only we have to prove is that for each e > 0 there exist k, c and et such that
%_! ^ £! implies x(k, c, £K_i) > 1 — e. Evidently, for each L > 0,

lim - — i = lim ^ i = lim e-£*L = 1 , (6.75)

c - » i c l n c ji-co fe £K-»o +

so that we may uniquely define

c0 = inf {c: (c - l)/c In c > 1 - (a/3)} , (6.76)

k0 = min {k: k e 91, (fe - l)/fe ^ 1 - (a/3)} , (6.77)

et = sup {e: e-£,co ^ 1 - (e/3)} . (6.78)

63

Explicit expressions for c0, fc0, and s{ could be easily settled, but they are not import
ant in what follows. Setting k -= fc0, c = c0, and aK_3 ^ st we obtain that

- 1\ A - 1\ > .- . .*. A o - l \ A o ~ - \ >
\ c ln c / \ fc) \c0 ln c0y V fc0

£ (1 - (H/3))3 > 1 - 3(e/3) - I - 6 . (6.79)

So, I — x{k,} c, fi/c-i) < £9 hence,

^ i -x (* , c .«x - i)) c ^(]vfi) (6.80)

and the theorem is proved. D

Let us close this chapter by emphasizing the fact that an investigation of parallel
probabilistic algorithms the outcomes of which are statistically independent random
samples, but which manipulate with these samples in a way leading to not necessarily
independent random variables, is very difficult and the results having been obtained
till now are not too numerous. So, the results achieved in this chapter are just very
rough approximations of the characteristics in question. Their precisation, weaken
ing of assumptions, as well as some alternative hierarchical structures, perhaps more
adequate under certain types of statistical dependences, should and could be a matter
of further investigations in the future.

Let us also emphasize the fact, that the results presented above are not para
metrized by a fixed number of processors of various levels. They are deduced for the
optimum numbers of processors, respecting the explicitly introduced dependences
among numbers of processors of different levels, say, the exponential decrease of
this numbers with the increasing level. The optimality is taken in a purely theoretical
sense and from the viewpoint of minimal time computational complexity of the
resulting hierarchical computational procedure. A practical applicability of such
hierarchies is a matter of further considerations.

REFERENCES

[1] W. Feîleп An Introduction to Probability Theory and Its Applications I, II. J. Wiley and Sons,
New York 1957 (vol. I, 2nd edition), 1966 (vol. II). Russian translation: Mir, Moscow 1964,
1967.

64

7. PARALLEL PROBABILISTIC ALGORITHMS FOR LINEAR
ORDERING

The problem, how to order the elements of a finite, but as a rule very large set,
with respect to a numerical (or, in general, ordinal) criterion, represents very often
an important subproblem of more sophisticated tasks of artificial intelligence.
The time complexity with which this subgoal can be solved may be decisive for the
applicability of a procedure solving the main problem. The time complexity ne
cessary to order a finite set with respect to a given criterion depends, besides some
other factors, on the cardinality of the arranged set and on the tools we have at our
disposal. The first of these two factors will be, in this chapter, always taken as a free
parameter. It measures the complexity of an instance of the solved general problem
with respect to which the time computational complexities or other characteristics
of the proposed solutions and algorithms are related. As far as the tools are connected,
just a very simple case will be taken into consideration, It is an oracle, which samples
at random two elements of the investigated set and computes and compares the
value of the criterion for these two elements. If their actual ordering does not corre
spond to these criterion values, the positions of the two elements are mutually
changed. Then the procedure goes on with another pair of elements sampled at ran
dom until the quality of the resulting sequence is sufficiently good in some statistically
motivated and defined sense, the more exact formulations will be given below.
In the center of our considerations will be the situation where we have a number
of identical mechanisms of this kind working simultaneously over the same set
or rather sequence of elements. We have to avoid possible data access conflicts
among different processors, but no other kind of co-operation or synchronization
will be supposed.

A formal description of the problem, tools and outcome situation in question
can be presented as follows.

Let s/, 3% be nonempty sets, let = be a linear ordering on J*. Hence, for each
x, y, z e $, x = x, (x = y) A (y ^ x) => (x = y), (x ^ y) A (y ^ z) => (x ^ z),
and (x ^ y) v (y ^ x). The usual conventions for x = y, y > x and x < y are
adopted. L e t / be a function (criterion) defined on s$ and taking its values in 3S.

Let A0 = <a°, a\, ..., a£> e stfN be an N-tuple of elements of s4. A0 is ordered
with respect to f supposing that i ^ j implies f(a°i) :g f(^) for all i,j = N. The
degree of ordering of At0 with respect to / is denoted by Qf(A0) and defined by

Q (A0) = c a r d ({OJy Uj =-N,i< j9f(at) > f(aj)}) ^ ^
card ({<*, j>, i,j S N,i < j})

where the denominator is evidently equal to %N(N — 1). So, A0 is ordered iff Qf(A0) =
= 0, so that the term "degree of disordering" would be perhaps more adequate.
The index/ will be omitted in what follows, as the criterion is taken as fixed.

For each i,j,N e 91 = {0, 1, 2, . . . } , 0 < i,j = N, the operator S(i,j) on sfN is

65

defined as follows:

[(i *J) v ((i <j) A (f(a{) £f(aj)))}^

S(ij)(iaua2,...,aNy) = <a1? a2,..., aNy . (7.2)

[0 < J) A (f(at) > f(aj))] => S(i,j) « a l f a2, ..., a*» =

= <al5 ..., fl|_i, a,, a f+1, ..., a^t, ah a i + 1 , ..., a ^ . (7.3)

So, at and ay are interchanged, if i < j and /(a,) > f(aj), in all other cases the
TV-tuple is unchanged.

Suppose, moreover, that for each i == 1,2, ... we have at our disposal a pair
<a,., /?,-> of random variables, mapping the probability space <£2, Sf P> into the set
<1, 2 , . . . , TV> of integers. We write aN and j3f to express this fact explicitly, if necessary.
All the random variables txu a2 , . . . , fil9 $2,... are supposed to be statistically in
dependent and equally distributed, for the sake of simplicity (and due to the Laplace
principle) they are supposed to generate equiprobable distribution on {1, 2, ..., IV}.
I. e.,

P({w; coeQ, at(w) = j}) = P({co: coeQ, pt(co) = j}) - 1/iV (7.4)

for each i = 1, 2, ...,jf <| TV. So we may define by induction, taking A0 as above,

A,. = A^co), = S (a , (» , ft(a>)) .4,.., , (7.5)

We may ask, given e, 5, 0 ^ s,5 ^ 1, A0e stfN, which is the minimum K(s, 8, A0),
supposing it exists, such that

P({w: weQ, Q(AK(w)) g e}) £ 1 - S . (7.6)

The formulation just presented evidently corresponds to the case of sequential
algorithm with the single oracle described informally above and formally by the
operator S((xt(a)), Pi(co)). Before investigating this case in more details, a formalization
of the case with more operators working in parallel will be useful. However, it is
possible, under such conditions, that two or more processors at the same time
instant sample, test and intend to replace the same element of the sequence At in
question. Instead of a more detailed investigation, if, when and under which conditions
this can be consistently executed, such a case will be consequently excluded throughout
all this chapter. So, if an element is sampled by two or more processors in the same
time instant, it is put on its original position without comparing or even changing
it with the (or some of the) other sampled element(s). The work continues with the
next random samples. A formal description of this situation can read as follows.

Two pairs <i,jf> and <k, /> of positive integers are called contraverse if they are
not set disjoint, i.e. if {i,j} n {k, 1} 4= 0. Define an operator <p on the set (9t x $!)*
of finite sequences of pairs of non-negative integers as follows: if <<al5 fet>,
<a2, b2>, ..., <aL, bL» e (91 x 9t)L, then the index i g L is called contraverse,
if <af, &f> is contraverse with some <#,., &,->, j 4= i,j S L, evidently, j is also contra
verse. <r

1(«a1, bi>, <a2, b2>, ..., <aL, bL») is defined as the sequence of pairs

66

of integers resulting from « a 1 ? b1>, ..., <aL, bL>> when erasing all members with
contraverse indices. As immediately follows, no two pairs in <l>(«a1? bt>, ...
..., <aL, bL») are contraverse, but <p(((at, bt>, ..., <aL, bL») may be the empty
sequence A.

Let us consider, now, that for each i = 1, 2, ... we have at our disposal L(i) > 0
pairs <aM , /?M> <aL2> Pi»> ••> <a

{\L(.> 0*,L(*)) °f random variables, each of them
mapping <£>, ̂ , P> into {1, 2, ..., N}. Again, we shall suppose that these random
variables are mutually statistically independent and generate the equiprobable
distribution on {1, 2, ..., N}. Hence, (7.4) is supposed to hold for each atj and
/3f7, i = 1, 2, ..., j = 1, 2, ..., L(i). Again, we may define by recursion

A i = A^m) =

= ^ (t o) , £-.(©)) S(b2(o>), 52(a>))... S(fcs<H. W) U i - 0 > (7-7)
where

«6,(a>), b^HX <b2(co), fi2(o>)>, ..., <&s.(a>), £ S i H » =

= P«<«MH»Pt.i(<»)>> o>,2H>Ptt2(<x>y>,.... <«ifL(o» PtMtMyy)' (7-8)

so that 0 ^ S, ^ L,.. If S, = 0, hence if «b1(o>), bi(o>)>» ..., <&Sf(
tt))» ^ s , H » = / 1 '

we set 4̂£ = ^ j - i . Also in this parallelized case our main effort will be to assure the
validity of (7.6). As can be easily seen, the optimal choice of the number L(i) of
processors working in parallel and the way in which L(i) depends on N is far from
being trivial. An unlimited increasing of the number of processors does not make
the situation better but rather worse. It is because of the increasing number of data
access conflicts, in the sense specified above, which prove the retarding influence as
far as the speed of the work of the algorithm is concerned.

In order to compare and classify the advantages of a sophisticated parallelization
let us return, for a while, to the sequential case as described above with the aim to
obtain an explicit expression or estimation for the value K(E, 8, A0) assuring the
validity of (7.6). Or, under some simplifying, but in our context acceptable assump
tions, K(s, 8, A0) can be interpreted as the unit time computational complexity of
the algorithm in question. Our considerations concerning the value K(s, <5, A0) can
be expressed, as shown below, as an appropriately formulated problem of the pure
combinatoric probability theory with the results presented in the form of a particular
lemma. Because of the fact that the proof of this lemma uses an appropriate approxi
mation through the normal (Gauss) probability distribution, let us recall very briefly
this notion (cf. [3] or other textbook or monography for more details).

Consider, again our fixed probability space <f2, Sf, P> together with the Borel
line (E,@ty. I.e., E = (— oo, oo) and 33 is the minimum cr-field of subsets of E
containing all semi-open intervals. A mapping X taking Q into E is called a random
variable with normal (Gauss) probability distribution with zero expected value
and unit dispersion, in short: N(Q, l)-distribution, if X is measurable, i.e.

{{co: WGQ, X(O>) eB}:Be^}} a $f> (7.9)

67

(a sufficient condition reads

{{co: co e Q,X(co) £ \}:xeE}} c Sf)), (7.10)

and if, for each x e E,

<*>(*) = P({«>: co G Q, X(a>) £ x}) = - £ - f_M e ^ / 2 dy . (7.11)

In such a case, in fact,

EX = ff „, X d* = 0 , D2X = Jf „ (X - £X)2 d<2> = j™x X
2 d<2> = 1 .

(7.12)
Given 0 < <5 < L, 5-quantile of IV(0, 1) denoted by aa>N(0>1) or simply â in the sequel
is defined by

P({w: co e Q, X(co) £ ^,N(o.i)}) = <5 (7.13)

where X is a random variable with IV(0, l)-distribution. Evidently, if 0 < 5 < -},
thena3 j N (0 t l) < 0.

Lemma 7.1. Consider the Bernoulli schema with the parameter p, 0 < p < 1.
It is a sequence X|,X2, ... of statistically independent and identically distributed
random variables taking the probability space <£>, S?, Py into {0, 1} and such that,
for each i = 1, 2,

P({eo: OJ e O, Xf(co) = 1}) = p . (7.14)
/»

Set S„(co) = ^Xf(co). Given a positive integer N and positive reals a, 5, 5 < \,
define *=l

n*(a, IV, p) = min {n: P({w: co e Q, Sn(co) > a/V}) > 1 - 8} . (7.15)

Then
n*(a, IV, p) = (a/p) IV + f(a, IV, p, 8), (7.16)

where f(a, N, p, (5) e *(iV) (i.e. lim AT"-1 f(a, IV, p, <5) = 0) for each a > 0, p e (0, 1)
N-+00

and 7T e (0, ^-). A non-asymptotic version of this assertion reads: for each y > 0
there exists N0(y) such that IV ^ No();) a n d ft = (<xfp)N1 + y imply n ^ /i*(a5 AT, p),
so that P({OJ: co e Q, Sn(co) > aIV}) > 1 - S. Explicitly,

My) - (- - « • V(i - pMJf**"*'*1™-1 (7.17)
will do.

Proof . Evidently, if

S „ » = (S„(a>) - np) (np(\ - p)Yi/2 , (7.18)
then

P({co: COEQ, Sn(co) > a/V}) =

68

ForNfixed,

Iira(a/V - np)(np(l - p))~1'2 = - c o . (7.20)
rt~» oo

As the V(0, 1) distribution is symmetric with respect to zero value, the approximation
(5.1) (Chapter VII in [3]) may be used, so that

P({co: co e _, _„(_) > uN}) ~ 1 - „ (f ~ "P) . (7.21)
VVM1 - _))/

Hence, the demand

P({co: co e _, S„(_) > aN}) > 1 - (5 (7.22)

reduces to

*(iK))H
or to

aV — np
< a д ł W (0 f i) . (7.24)

VM- - P))

A simple modification yields

aV - ud sj(np(l - p)) < np . (7.25)

If n = (a/p) IV, then
l im

 aN Z ̂ ^/M1 - P)) -_ i i m a^-a_ V((a/P)^p(l " P)) __ ^ ^ 2 g >
N->oo np N-+Q0 aIV

hence, the minimal n* satisfying (7.25) satisfies (7.16) as well.

For y > 0 and n = (a/p) V 1 + },(7-25) reduces to

aNi+y + ad V((a/p) p(l - p)) V < ™ 2 > aN , (7.27)

or to an equivalent relation

iV̂ + a , V ((l - p) / a) i V < 1 + ^ 2 > l . (7.28)

If 0 < y < 1, then y/2 - \ < 0 and N n + y) / 2 <\,\i b <\, then aa < 0. Hence,
(7.28) holds supposing that

A" > 1 - ad V((l - p)/a), (7.29)
so that,

7 V > (l - a , V ((l - J p) / «)) 1 / y - (7-30)

If y > 1, then y/2 — \ > 0 and N(y~l>/2 > 1, an analogous reasoning then implies
that (7.28) holds supposing that

Ny > #7/2-1/2 _ (^^((i _ p)la))Ny/2-1/2 =

_ J V ^ - ^ (l - a . V ((l " _) / «)) , (7-31)

69

so that
N/-(v/2-i/2) = Klii + U2 > (! _ a<s ^ ((! _ p)/a)) f (7.32)

hence
tf > (l - a , V ((l - p) / a)) 1 / W 2 + 1/2>, (7.33)

Clearly, if

IV > (1 - as V((l - p)/a))"»*{i/y.i/(y/2+i/2M ? / 7 J 4)

then (7.28) holds in both the cases. As

max {1/y, l/(y/2 + 1)} = l/min {y, y/2 + 4} , (7.35)

(7.34) agrees with (7.17) and the assertion is proved. •

When analyzing in more details the lemma above and its proof, the reader can
easily discover the discrepancy consisting in fact, that (7.16) and (7.17) have been
stated in a categoric form, but when proving them, the approximation (7.20) was
used. A more detailed analysis of this approximation and its proof (cf. e.g. [3])
shows, however, that (7.16) holds in the stated form and the lower estimate introduced
in (7.17) could differ from its correct value just by an additive constant, i.e. by
a value depending only on y. In the sequel we shall focus our attention to the asymp
totical behaviour of the estimate n* as the linear function of IV with the multiplicative
constant ctjp. It is why we have admitted the use of (7.20) not to charge our explana
tion by technical difficulties irrelevant for what follows.

The next theorem solves the problem stated above (cf. (7.6)).

Theorem 7.1. Consider a sequence A0 e sin and a sequence {<ais /?f>}̂ L i of pairs
of statistically independent random variables defined on <JQ, y , P> and satisfying
(7.4). Let AL0, A^(o)), A2(co)9... be generated by (7.9) from A0 through {<a/5 /?;>}r=i-
Set

n*(6, e, IV) = min {n: P({Q(An(co)) S e}) £ 1 - 3} , (7.36)

for e, 5 > 0 given, let e < Q(A0) to avoid trivial cases. Then

((Q(A0) - e)lQ(A0)) N2 + fx(5, e, N) :g n*(S, e, N) Z

S ((Q(A0) - e)/a) N2 + f2(5, s, N) , (7.37)

where ft(8, a, IV), i = 1,2, are appropriate ^(IV2)~functions for each 0 < 5 < \y

0 < e < Q(A0). Moreover, for each y > 0, for n = ((Q(A0) — e)/e) IV2 and for each

N > (1 - adM0A) V((l - e)l(Q(A0) - B)))iW**i,M2K,+ m-t, (7 . 3 8)

the inequality

P({co: cO G Q, Q(An(m)) £ e}) > 1 - 6 (7.39)
holds.

Proof. Denote a pair <a;, a^y as undesirable in A0 -= <al9 a2, ..., #„>, if i < j
and f(at) > f(aj), clearly, there are just Q(A0) (1/2) IV(IV — 1) undesirable pairs

70

in A0 and our aim is to reduce this number to (ej2)N(N — 1) at most. So, we have
to remove at least (Q(A0) — e) ($N(N — 1)) undesirable pairs from A0. Moreover,
there exists A0 such that each undesirable pair must be sampled before its deleting.
The probability of sampling of an undesirable pair is at most pt = Q(A0)^N(N — 1):
: N2 as the number of undesirable pairs in At does not increase with i increasing.
At the same time, this probability is at least (e/2) N(N — 1)//Y2 supposing the goal
was not achieved yet. Evidently, each pair <a,-, &> of random variables samples
each pair from {l, 2, ...,jV} x {1, 2, ...,jV} with the same probability JV~~2. Hence,
denoting by S* (Sn9 resp.) the number of successes in n sample of the Bernoulli
sequence with the probability pt (p29 resp.) of success, we obtain

P({co: co e O, S„(co) = ocN2}) > P({co: coeQ9 Q(An(co)) < e}) >

> P({w: co e Q9 S
2(co) £ ajV2}), (7.40)

where

Hence,

a = (Q(A0) - e) jrN(N - l)/jV2 . (7.41)

«/Pi = (Q(A0) - e)/S(-40) , */F2 = (Q(A0) - # , (7.42)

and Lemma 6.1 immediately implies (7.37). The relation (7.38) follows either im
mediately from (7.17) when replacing JV by jV2, p by e and Q(A0) - a by a, or by
a deduction analogous to that of (7.17). •

The value Q(An(co)) is a random variable. So, instead of the quality of ordering
criterion defined by (7.6) we may ask, whether EQ(An(*)) < e; here £ is the expected
value operator. In general, both the criteria are not comparable, i.e., neither of them
follows from the other one. Or, let Q(An(co)) = et > 0 on a set the probability of
which is 1 - 5t95t < <5, let Q(An(co)) = 0 otherwise, then £Q(^(-)) = (1 - <5,) e,. =
= et — 5tet < e for et and 8t appropriately chosen, but (7.6) does not hold. On
the other side, let Q(An(co)) = et < e with the probability 1 — <5, Q(An(co)) = 1
otherwise. Then (7.6) holds, but EQ(An(-)) = (1 — 8) et + 8 = et - et8 + 8 > e
for appropriate et and 8.

Theorem 7.2. Let A09 {<[ah /3̂ >}?°=i? fi > 0 and Ax(co)9 A2(co), ... be as in Theorem
7.1. If

K = K(e9 A0) ^ (In (Q(A0)/e)) N2 , (7.43)

then EQ(AK(')) < e. Moreover, if Kt satisfies EQ(AKl(-)) < e, then \Kt(N) -
-K(e ,^0)(jV)|G^(jY2) .

Proof. Consider a sequence Ai9 i ^ 0. If EQ(At(*)) = 0, the assertion holds
trivially, so let Q(At) > 0. Hence, there are Q(A^ BN9 BN = %N(N — 1), undesirable
pairs in At in the sense of the proof of Theorem 7.1. Using the same argumentation
as above we can see that the probability of sampling and removing of an undesirable
pair is at least pN = Q(At) BNJN2 in each step. Hence, in At„t the number of un
desirable pairs will be smaller than in At with the probability pN at least, so that,

71

?ŕ " źâď?
this number will be Q(At) BN - 1 at most. With the complementary probability the
number of undesirable pairs rests unchanged. Applying the operator of expected
value we obtain

EQ(Ai+1(>)) = (EQ(A) BN - 1) B^lpN + EQ(A-l) (1 - pN) =

= £fi(A«) - PNBN' = EQ(At)(l - N~2) , (7.44)
hence,

EQ(AK{'))SQ(A0)(l-N-2)K. (7.45)

A well-known inequality yields, for K = <5/V2,

(1 _ N^y < e - \ (7.46)

hence, relation (7.43) holds, if e~* <; sJQ(A0)9 i.e. if 5 ^ In (Q(A0)/e) and the assertion
is proved. The necessity of Kt(N) £ K(e, AL0) (N) - f(N),f(N) e ̂ (N2), immediately
follows from the fact that there is A0 e $#N such that equality holds in (7.44) and from
a more detailed analysis of the approximation (7.46). •

So, as can be easily seen, also in case the quality criterion is changed the unit
time complexity of the investigated sequential probabilistic algorithm rests in the
^(iV2)-class. A substantial improvement could be reached by application of the
Bayesian approach, taking also the initial sequence A0 as sampled at random and
replacing both the criteria introduced above by their expected values with respect
to the a priori distribution in question. Or, till now, we have tacitly accepted the worst-
case analysis or, what is the same, the minimax principle, supposing that having
sampled and mutually replaced an undesirable pair, only this one undesirable pair
was removed from the sequence. Such cases, of course, exist, but their number is
very small when compared with the number of cases, when removing of one un
desirable pair from the sequence implies that also some other undesirable pairs
disappear. Then the quality of the ordering increases more rapidly than we supposed
above. An appropriate a priori distribution, e.g. the uniform one, would convert this
fact into a significant reduction of the time complexity. However, because of the
reasons mentioned in Chapters 3, 4 and 6, we shall not investigate the Beyesian
approach in more details. We shall rather concern our attention to the parallel
probabilistic algorithms, as we have mentioned above when introducing the corre
sponding formalized model. The data access conflicts will be solved as described
in this formalization; if two or more processors want to operate on the same data
item in the same step, the item is blocked and is not accessible in this step (time
instant). The next combinatorial lemma will be of use in the sequel.

Lemma 7.2. Let $£ = [au a2,..., aN} be a nonempty set, let XUX2, ... be a se
quence of statistically independent and identically distributed random variables.
Each of them maps the probability space (Q, if, P> into stf and generates the uniform
probability distribution on si. Set, for each i = 1,2,'...,

q(U to) = [ay.j g N, (3! k £ i) (Xk(co) = aj)} , (7.47)

72

where 3! k stands for "there is just one k such tha t . . . " . Hence, q(i, co) denotes the
set of elements from stf, sampled just once by the random variables Xu X2, ..., X(.
Then there exists an <p(jV)-function f(N) such that

sup {£ card q(i, •): i = 1, 2, ...} = zV/e + f(N) , (7.48)

where e = 2-718... Informally, the expected value of the relative frequency of
elements sampled just once does not exceed l/e = 0-36 no matter how large the set
s# and the random sample in question may be.

Proof. Cf. [4]. D

Theorem 7.3. Let A0estfN, let A, (co), A2(co), ... result from A0 by (7.7), using
a sequence {<al7, j8,7>}, i = 1, 2, ..., j = 1,2, ...,L(i) of pairs of statistically in
dependent random variables satisfying (7.4) for each i,j within the given scopes.
For given e > 0 and for <£ = {L(ty?=1

 d e f i n e

K(e, A0, N, <£) = min {k: EQ(Ak(-)) ^ s} . (7.49)

Then there exists a non-negative ^(N)-function f(N) such that, for each JS?,

X(e, A0, N, jgf) = e2 (In (Q(A0)/e)) N + /(N) . (7.50)

Proof. Cf., again, [4]. D

The obtained result seems to be interesting and non-trivial. It shows, that
in the absence of a sophisticated synchronization and co-operation among processors
working in parallel an increase of their number makes their work not better, but
worse. The reason is simple: an increasing number of processors block other pro
cessor including themselves by demanding the same data and this disadvantage
quickly overcomes the speed-up resulting from the increasing number of processors.
Supposing to have at disposal a full and "free of charge" cooperation among the
processors, the sequence A0 could be re-arranged in a constant time independent
of N, by N2 processors. Each of them tests and, if necessary and after a negotiation
with other processors, interchanges one pair of elements from A0. However, even
this informal and verbal description of this co-operation reflects how complicated it
must be. Let us remark, that the non-trivially optimal unit time complexity is reached
with N + #(N) processors working in parallel. In order (qualitative) sense this value
is the square root of the cardinality of the investigated set {1, 2. ...,N] x {1, 2, ..., N}
as well as the square root of the number of undesirable pairs. This number is at least
(e/2) N2 throughout the work of the algorithm, as after having reached this value,
in average, the algorithm stops its work. Let us recall similar results about quadratic
speed-up reached as the optimal one by two-level hierarchies of parallel probabilistic
searching algorithms, as proved above. It holds under the condition that the inspection
of outputs of processors and cumulation of their results is not a negligible or
hardware matter. Namely, we have supposed that time demands increase linearly
with the number of processors working in parallel, and perhaps logarithmically
with the cardinalities of the sample spaces in question. Hence, the results of this

73

chapter, namely, Theorem 7.3, support and specify the general result from [6],
proving the quadratic speed up to be the best one accessible by two-level hierarchical
parallel re-arranging of probabilistic algorithms with statistically independent
samples. It is worth mentioning that the increase of the number of processors with
the square root of the size of the instance in question of the solved problem is taken
as the upper bound from the practical point of view, cf. [1], e.g. So, that our result
can be seen as interesting also from this position.

Let us close this chapter by a result, showing that under a modification of the
notion of contraverse pair the lower bound for the unit time computational com
plexity of our parallel probabilistic algorithm could be reduced to &(i), i.e. to a value
independent of N. Two pairs </,j>, <[k, /> of integers will be called strongly contra
verse, if i = k and j = / (not i = k or j = I as above). Evidently, the possibility
of blocking is reduced, so that a greater number of processors can be used in parallel
when re-arranging the sequence A0.

Theorem 7.4. Consider the model investigated in Theorem 7.3 just with contra-
version replaced by strong contraversion, set

C l - = l / l n (l / (l - l / e)) . - e (7.51)

Then for each <£,

K(e, A0, N, <£) = c, In (Q(A0)\e) . (1.52)

Proof. Let ^ £ = « % (©) , j8u(o))»Ji0
1, let (€i = (p£t according to (7.7). Taking

£%i as a random sample from the uniform probability distribution over M = N2-
element set we obtain, that <a0((o), Pij(co)} e ^,- iff

<[<Xij(co), Pij(to)> e q0(L(i), <») =

= {<a s , a r >:< S , r>e{l ,2 , . . . , iV} x {I, 2, ..., N], (3! k ^ L(i)) x

x «a,£H,/5£fe(W)> = (a s , a r » } ' . (7.53)

Applying Lemma 7.2 to M = N2 we obtain

£ card q0(L(i), •) ^ N2je (7.54)

and this optimum is reached with L(i) = N2 + q(N), q(N) e #(N2), processors
working in parallel. Using the same argumentation as in the proof of Theorem 7.3
(cf. [4]) we obtain, that the expected number of undesirable pairs eliminated in one
step is at least

(N2 /e)Q(A (.) i /Y(N-l) / iV2 . (7.55)

Hence, the relative frequency of undesirable pairs eliminated in one step is at most
1/e, so that

EQ(Ai+l(-)) = EQ(Ai('))(l-e~l), (7.56)

EQ(Ai(-))^Q(A0)(i-c-J, (7.57)

74

Hence, if

i^ln(Q(A0)/ f i)/(ln((l - e - 1)) - 1) ^

= In (Q(A0)/fi)/ln (1 + e" v) = e In (G(i40)/e), (7.58)
then

Q(A0)(1 -e-J^EQiAt))**. D (7.59)

Let us emphasize the purely theoretical speed-up obtained by this modification
of the notion of contraversion which should not be over-estimated. When applying
this algorithm we had to solve the problems arising when two or more processors
want to replace an element in different way. To synchronize such a task in a con
sistent way is far from being trivial and free of charge. It is why we consider our
original model as the much more adequate one from the point of view of practical
application.

In [7] and [8] a very interesting parallel probabilistic algorithm is presented
which looks for the elements of a large finite sequence or set which are important
from the viewpoint of an ordinal or numerical criterion. E.g., the smallest or the
greatest element, the kth element from the bottom or from the top, given a positive
integer k, etc. However, the supposed abilities of the basic processing units in [7]
and [8] are different from our ones so that the results are not immediately comparable
with those achieved here. They are not presented here in more details because of
the shortage of space necessary to introduce an alternative mathematical formalism.
In every case, [7] and [8] may serve for a useful confrontation. Finally, other sorting
algorithms which could serve as an outcome or a motivation for other parallel
probabilistic searching and sorting algorithms can be found in the practically oriented
monographies [1], [2], [5] or elsewhere.

R E F E R E N C E S

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman: The Design and Analysis of Computer Algo
rithms. Addison-Wesley, Reading 1974. Russian translation: Mir, Moscow 1979.

[2] H. Barringer: A Survey of Verification Techniques for Parallel Programs. (Lecture Notes
in Computer Science 191.) Springer-Verlag, Berlin—Heidelberg—New York 1985.

[3] W. Feller: An Introduction to Probability Theory and its Applications I., II. J. Wiley and
Sons, New York 1957 (vol. I, 2nd edition), 1966 (vol. II). Russian translation: Mir, Moscow
1964, 1967.

[4] I. Kramosil: Parallel probabilistic ordering algorithms with a simple conflict control strategy.
In: Aplikace umele inteligence AI 88, Prague 1988, pp. 39—46.

[5] J. Miklosko and V. E. Kotov: Algorithms, Software and Hardware of Parallel Computers.
Springer-Verlag, Berlin—Heidelberg—New York and Veda, Bratislava 1984.

[6] J. H. Reif: On synchronous parallel computations with independent probabilistic choice.
SIAM J. Comput. 13 (1984), 1, 46-56.

[7] R. Reischuk: A fast probabilistic parallel sorting algorithm. In: 22nd IEEE Symp. on Foundat.
of Comp. Sci., Nashwille, Tennessee 1981.

[8] R. Reischuk: Probabilistic parallel algorithms for sorting and selection. SIAM J. Comput.
7-/ (1985), 2, 396-409.

75

8. SOME MODIFICATIONS OF PARALLEL PROBABILISTIC
SEARCHING ALGORITHMS

In Chapter 4 we investigated hierarchical parallel probabilistic searching algorithms
under some simplifying conditions which have been motivated mainly by our aim
to make the model as transparent as possible and easy to describe and handle from
the mathematical point of view. A modified model, resulting when abandoning the
condition of safe and failure-proof work of each testing device, was investigated
in Chapter 5. In this chapter we would like to review, very briefly and referring to
more detailed papers, two other modifications of the elementary model explained
in Chapter 4. The first of them takes into consideration possible data access conflicts,
at least at the basic level, the other modification supposes that there is a possibility
of co-operation among the first-level processors, even if this co-operation may be
rather limited and of stochastic kind. In both the cases we limit ourselves to two-level
hierarchies, postponing the investigation of corresponding many-level structures
till another occasion.

Let us turn back to the model explained in Chapter 4. There, random samples
were taken as non-conflict in the sense that if two or more processors sample the
same element from A in the same time instant or step, all of them may and will test it.
Let us accept, now, a more realistic assumption which is, in a sense, something like
a dual extremum: if two or more processors sample the same element from A in one
step, this element is blocked and it is not accessible to any processor at this step.
Moreover, the processors are not supposed to be able to distinguish this case from
that one where xeA—V has been sampled, so that they output zero value in both the
situations. Each first-level processor is able to repeat its activity in the next time
instant or step according to the model explained in Chapter 4, to test the elements
which were sampled and not blocked, and to cumulate, on its output, the information
whether at least one element from A has been found in a finite sequence of samples.
If it is the case, the processor outputs a unit value, it outputs zero value otherwise.
The higher-level processor works in the same way as in Chapter 4, i.e., without
considering the possibility of data access conflicts. The testing oracles of all levels are
supposed to be reliable, i.e. they work, like as in the model introduced in Chapter 4,
without any danger of failure. The interpretation of the outcome value of the (unique)
highest-level processor is the same as in Chapter 4. Again, the unit output value of this
processor proves the set V to be nonempty without any doubts, the zero output
value is taken as the decision that V is empty, but this decision is, in non-trivial
cases, charged with a positive probability of error, which at the first sight, must be
at least as large as in the conflict-free case-

Let {{Xij)1'=1" = 1, {Z,}J=1} be the system of random variables defined in Chapter 4
and satisfying (4.1) and (4.2). Set, for i ^ m, j ^ n, and coeQ,

y(i,j,co) = /AXiJ(co)) fl [1 - - (i ^ f t M] , (8-1)
k = l,k*i

76

and define, on the fixed abstract probability space <£>, Cf, P>, a random variable
3C0 taking its values from (0, 1} in this way:

3C0(co) m 3 f 0 « A , V>, co) = 1 iff £ £ y(Zl(co),j, co) > 0 , (8.2)
Z = l j = l

3C0(co) = 0 otherwise .

As can be easily seen, y(i, j , co) = 1 iffx,7(a>) is in K a n d differs from all XkJ(co)
with k #= i. Supposing that Xn(co),Xi2(co), ...,Xin(co) are samples from A taken
by the ith processor, then y(i,j,co) = 1 iff the ith processor samples an element
from F i n the j t h step and no other processor samples the same element at the same
step. Hence, the ith processor tests this element and outputs the unit value. Moreover,

n

^ y(i,j, co) > 0 holds iff the event just described occurs at least once in the sequence
J = I

of n steps. But only the processors the indices of which are sampled at random by
variables Z . , Z 2 , . . . ,Z f e are asked for their output values, so that 2£0(co) = 1 iff
there is at least one among the sampled first-level processors which outputs unit
value, hence, £0(co) is nothing else than the output value of the unique second-level
processor, as defined informally above. The more simple case of conflict-free samples
from Chapter 4 can be obtained by simply setting y(i,j, co) = y^X^co)). Evidently,

£ £y(Z,H,j,a>) = £ txv(XZl{(a)J(co)). (8.3)
i = i j = i ; = i j = i

Considering a searching problem <A , V> and a two-level HPPSA defined in this
chapter, if V 4= 0, then the random event 3C0(co) = 0 can be interpreted as an error.
The following assertion offers certain estimations for the probability of this error.

Theorem 8 .1 . Let <A , V> be a searching problem with card A = N, card V =
= v > 0, let SC = °I(A, V, m, n, k) be a two-level HPPSA for <[A, V), then

(l - I) \ *{„«,.«.,.«>) = 0}) < (l - J(l - i)™"1)" + (l - I) \ (8.4)

P r o o f . Cf. Theorem t i n [1] . •

Theorem 8.2. Let the notations and conditions of Theorem 8.1 hold. For each
e > 0 there exists reals C,(E) , c2(e) and c3(e) independent of N such that if N = 4c?,
m =

 rC! yjN1, n =
 r c 2 ^/N1 and k =

 r c 3 JN1, then

P({co: coeQ, £0(co) = 0}) < £ . (8.5)

P r o o f . Cf. Theorem 2 in [1] . •

The following assertion proves that the results for m, n and k stated in Theorem
8.2 are the best possible ones in the qualitative sense.

Theorem 8 .3 . Let if be a HPPSA for a searching problem <[A, V> with A = N,
card V = 1. If n = n(N) and k = k(N) are such that nke#(N), then there exists,

77

for each £ < t, N0 = N0(e) such that, for all N = N0

P({co: coeQ, &0(co) = 0}) > £ . (8.6)

Proof. Cf. Theorem 3 in [1], the same holds also for the conflict-free algorithm
defined by the random variable #"(<A, Vs), •) in (4.3). •

The interpretation of Theorems 2 and 3 is similar to that of the assertions proved
in Chapters 4 and 5. Hence, accepting the simplifying assumptions that each random
sample from A needs a time units and each random sample from {1, 2, ..., m} needs
ji units independently of N and m, the expression an + /3k + const may serve as
a very rough estimation of the total time complexity of the HPPSA 6C(m, n, k).
Now, Theorem 2 claims that the corresponding probability of error can be kept
below a given £ > 0 with an(N) + (3k(N) in the 0(v/iV)-class, moreover, according
to Theorem 3 it cannot be reduced to the ̂ (x/N)-class. In both cases, what is actually
needed is that the product of n and k must be in 0(N), but when taking m(N) =
dxN

q, k(N) = d2N
l~q, 0 < q < 1, q * i , then an + [3k is in ®(Nmax{l~q'q)) and

this result would be qualitatively worse than that with q — \. To summarize, the
time complexity is in the same class as in the conflict-free case investigated in Chapter
4. A more detailed optimization of the expression an + fik within the tf^A^-class,
i.e., the computation of the multiplicative constants minimizing this expression,
would be a purely technical matter.

Let us also mention briefly also the case of many-level hierarchies. Many-level
hierarchical parallel probabilistic searching algorithm (for the searching problem
<A, V}) will be defined as in Chapter 4, cf. (4.16) and (4.17), but the corresponding
random variable 3C, enabling to understand this algorithm as a statistical test for the
emptiness of V, will be modified in a way reflecting the possibility of data access
conflicts. The intuitive definition of the modified random variable 3C0 reads as
follows: Set

V0= V, (8.7)

V, = Vr(co) = {/: / < Nr, X y(i,j, co)>0],

where
; = i

y(i,j, r, co) = TLv^UX'tM) XI C1 ~ X^«<<-»(*-X«>))) • (8-8)

This agrees, for y(i,j, co) = y(i,j, 1, co), with the definition of HPPSA above, when

Vt(a>) = {/: / ^ Nu X y(i,j, co)>0], (8.9)
; = i

for r = K we obtain
"K

VK(co) = {1} = AK iff Zy(l,j,K,co)>0,
; = i

"K

VK(co) = 0 iff £ y (l J , # , £ ») = 0 . (8.10)

y = i

78

Evidently, Vk(w) = 0 implies V,(w) = 0 for each k <; I ^ K. Finally, set

{w: WEQ, ?r0(w) = 1} = f){w:weQ, Vk(w) =f= 0} , (8.11)

3C0(w) = %0«A, V>, w) = 0 otherwise .

As before, the random event 2C0(co) = 1 is taken as the decision that V =t= 0 and
this decision is always correct, being based on the positive testing of at least one
element from V by a first-level processor. The random event &0(w) = 0 is taken as
the decision that V = 0 and it may be charged by an error, or, elements from Vcan
be either disregarded by first-level processor or the report about their finding can be
disregarded by higher-level processors. Hence, the value P({w: w e Q, %0(w) = 0})
may be taken, if V =1= 0, as the probability of error connected with the algorithm
in question. Trying to keep this probability below a given s > 0 uniformly for all
nonempty V czA, we shall use this assertion.

Lemma 8.1. For each e > 0, 3 > 0 there exists a natural number n0 = n0(e, <5)
independent of N such that for all n _ n0 and for m = L<5Nj — 1

-SKD)-
Proof. Cf. Lemma 1 in [1], Q

The just referred proof of Lemma 1 in [1] or an immediate computation yield
that the threshold value n0 reads esS~l In (l/e). As can be easily seen, an analogous
threshold value for conflict free random samples is n0 = b~l In (l/e). Hence, the
corresponding time computational complexity increases (as e3 > for 5 > 0) when
admitting data access conflicts, but the increase is only a multiplicative one, as e6 does
not depend on N.

So, let us take a <5, 0 < S < 1, and suppose, just for the sake of simplicity of the
following considerations, that N = card A is of the form (1/<5)K. Set N0 = N, N{ =
= ci/V,-., i = I, 2, ...K, hence, Nk = SkN0, and consider Nt processors of the ith
level. Given e > 0, set

«, = e/K , n0(8, e) = (ea/5) (In (l/£ l)) . (8.13)

Each of the first-level processors, there are Nt in total, takes n0 independent and
sequential random samples from the uniform probability distribution over the basic
set A, and those among the sampled elements which were not sampled, simultaneously,
by another processor are tested as far as their membership in the set Vis concerned.
If we denote

««.-.*)-•(--=(- -£)"")". M
then with probability at least 1 — ct(Nu n0,N) at least one first-level processor
takes the unit output value, i.e. reports an element from V. Moreover, n0 and NL

79

are chosen in such a way that

1 - a(Nl5 n0,N) >. 1 - et - 1 - (e/K). (8.15)

There are AT2 second-level processors and each of them takes n0 independent and
sequential random samples from the uniform probability distribution over the set Ax

of (indices of) outputs of the first-level processors, hence, card Ax = Nx = SN.
For those (indices of the) first-level processors among the sampled ones which were
not sampled, simultaneously, by another processor, the sampling second-level
processor tests whether their output values were 1 or not, i.e. tests the membership
of the sampled first-order processor in question in the subset Vx of Ax defined by
(8.9). If the result of this test is positive, then the report about the sampled element
of V occurs on the output of the corresponding second-level processor and this
output takes the unit value (otherwise, the zero value). If at least one first-level
processor discovered an element from V, so that Vx #= 0, then with probability at
least 1 — <x(N2,n0,Nx), an element from V is reported also at the second level.
But, as can be easily seen,

a2(N2,/i0,/V1) = a(/V1,«0,iV), (8.16)
so that

1 -<x(iVa.»o.-Vi)fc 1 - (e / K) . (8-17)

Now, the induction step is evident: there are N3 third-level processors and each
of them looks for a report about an element from V among n0 non-collising random
samples from the (outputs of the) second-level processors. Supposing such a report
is found, the corresponding third-level processor outputs unit value and so on.
Combining the corresponding conditional probabilities and using the supposed
statistical independence of all random variables in question we obtain that if V #= 0,
then with probability at least

(1 - BX)K > 1 - Ksx = 1 - e (8.18)

the report about an element from V reaches the output of the unit Kth, i.e., the
highest level processor. Hence, the probability of error is majorized by e.

At each level we have taken n0 sequential samples and the operations on different
levels are also sequential, so that, in total,

Kn0(\ogx/dN) (e'/<5) In (e/log1/5iV)^ =

= (\ogx/dN) (edld) In (e/logl /,N - In e) (8.19)

sequential samples have been taken. Taking the unit time complexity for each sample,
independent of the cardinality of the corresponding sample space, and neglecting
the other operations, expression (8.19) approximates the time complexity of the
suggested special algorithm answering, within the probability of error uniformly
majorized by the given s > 0, the question whether V = 0 or not. As in the conflict-
free case, this complexity is, again, in the $(log N log log /V)-class, the only difference
being represented by the multiplicative constant e"5 > 1.

SO

A more detailed optimization of the suggested many-level hierarchical parallel
probabilistic searching algorithm including the optimization of the corresponding
multiplicative constant, as well as a more detailed investigation of many-level hierar
chical parallel probabilistic searching algorithms in general, i.e. with different n,'s
for different levels and with JV-'s not necessarily in the form of a geometric sequence,
all these questions would be of great interest and would deserve further research,
but the limited extend of this work forces us to postpone such an investigation till
another occasion.

Let us turn back, now, to the two-level conflict-free hierarchical parallel prob
abilistic searching algorithms as introduced in Chapter 4, but now we shall consider
the possibility when each processor may, at least partially, take profit of the successes
reached by other processors, or it may take profit of an oracle which simulates the
"expected" or "average" behaviour of other processors. A more detailed informal
description seems to be worth introducing after an appropriate formalization.

Let
V* = <{Xip YtJ, l /^jr-! J - i , {z . }U> (8.20)

be a structure consisting of mutually statistically independent random variables
defined on the abstract probability space <[Q, £f', P>, taking their values in A (for .Xy),
in the set {1, 2, ,.., m} of integers (for YtJ and Zt), and in the binary set {0, 1} (for L!"0-),
and such that, for a fixed value Q, 0 <; Q = 1, for each i = m,j ^ n, r = m, I = k,
and a E A,

P({co: coeQ, Xu(co) = a}) » l/JV , (8.21)

P({co: toeQ, Y^co) = r}) = P({co: coeQ, Zt(co) = r}) = l/m , (8.22)

P({co: COEQ, U^to) = 1}) = Q , (8.23)

we shall omit the symbols ...to: to e Q, ..., if no misunderstanding menaces. Define
binary random variables Wtj, 1 <J i <j m, 0 f£ j f£ n, as follows: Wit0(to) = 0 for
each i ^ m, toe Q,

Wi}(co) = sign [xviX^co)) + Wu^(co) + WYij((0)J^(to) L l , »] (8.24)

for j > 0, recall that iv is the characteristic function or identifier of the subset V
of A, and sign (x) = — 1 for x < 0, sign (x) = 1 for x > 0, sign (0) = 0. Now, set

^ H = s ign [IW Z i (t 0) »] . (8.25)
i = i

Informally, the ith processor or (/ = m) takes in the jth (j ^ n) sequential step
three statistically independent random samples: an element X^co) from A, the value
WY.jUohj-i(co) of the Y0(co)-th processor in the (j — l)st step, and an auxiliary result
(0 or 1). The ith processor takes the unit output value (W(J(cu) = 1) iff either it took
already this value in the (j — l)st step, or if it sampled an element from V, or, finally,
if it is sampled a processor which reached already the unit value and is willing (with

8t

the probability Q) to share this knowledge. The processors having terminated their
activites, the supervizor samples some of them, asks for their final output values
WZt(oi)t„((o) and computes ^*((o) which can be understood as a statistical decision
function solving the problem whether V = 0 or not. As can be easily seen, if V = 0,
then $l*(co) = 0 (or if &_((o) = 1, then after all, XtJ((o) e V for at least one i = m,
j = n must hold), if &*.(<o) = 1, then F=t= 0 for the same reason. If F + 0, then
the value ty*(co) = 0 represents an error the probability of which is to be, uniformly
for all V a A, majorized by a given threshold value, choosing appropriately n, m
and k.

Let
W*(co) = sign [xv(Xij(co)) + W*}_ _(<»)] , (8.26)

evidently, W*j(co) = Wtj((o) for each co e Q, i ^ m, ;' 52 n. In fact, Wi* agrees with
WtJ iff Q = 0 in (8.23), so that no information sharing among processors is possible.
Moreover, random variables W*- are statistically independent (which is obviously
not the case for JYj/s) so that, setting v = (card V)JN and applying the expected
value operator £, we obtain by an easy calculation that

-»!„<.>,/•) = I [-»../(•) niY.jH = >m s
.s= 1

a i VKJX-) m^-H = *»] = -*£(•) =
s = l

= P ({ ^ » = 1}) = 1 - (! - ") ' • (8-27)

Given V cz A, let {T0}7= 1,3 = 1 be a system of mutually and with respect to each
Xij, Uu and Z, statistically independent random variables taking (Q, 3f, P> into
{0,1} in such a way that, for all i = m, ; _\ n

P({TiJ(co) = 1}) = EWWJ = 1 - (1 - t,y , (8.28)

Hence, random variables TtJ "simulate", in the sense of their expected values, random
variables WYiji.yj and, because of their supposed statistical independence, simplify
the computations. Consider the structure <& defined in the same way as in <&*, but
with Y,/s replaced by Tt/s and set

Wifi(m) = 0 for each oozQ, (8.29)

Wftj(co) = sign [Xv(Xij(co)) + Wfj.fa) + Tu(a>) Uu(co)] , (8.30)

for j > 0. ^ 0 (w) ls defined by (8.25), just with Wu replaced by Wtj. So, random
variables Tu play the role of an oracle which, "from the God-like position", knows
the actual state of things concerning the set Fand "helps" to each processor in the
degree or measure which is "in average" the same as if the processor asked for help
its colleague sampled at random by Y0-. If V — 0, then v = 0, hence T^co) — 0 for
til i S m,j __ n, © 6 Q, so that Wfj reduces to W*j and <&Q(CO) = 0 for each co e Q.
On the other hand, ^ 0 (w) = 1 does not imply that Xl7(w) e V for some i = m,
j g n, as the knowledge about the existence of an element in V might follow from

82

the oracle's consultation. Nevertheless, if V 4= 0, the result ^0((o) = 0 can be taken
as an error and we would like to minimize its probability uniformly for all V c A.

Theorem 8.4. For each e > 0 there exist a natural number JV0 and real numbers
c i (s) . c2(s) and c3(e) such that, for m = ^ 3

V
//Y1, n = r c 2

 3
y/N~[, k = r c 3

 3
V/IV1,

for all 0 * V c A, and for all N = card (A) ^ N0,

P({(o: coeQ, %/0(co) = 0}) < £ . (8.31)

Proof. Cf. the Main Assertion in [2]. n

When choosing m, n and k in 0(3y/N), it is an "almost optimal" choice in the
following sense.

Let H F c i , let v = (card V)\N, set $„. = P({Wfn(co) = 0}). As W^(co) =

^ W?j(co), qin < P({W*(co) = 0}) = (1 - v)\ Moreover,

qn = r t l^ i iH = 0}) - P({yAXnH) = <>}) -
= P ({ Z l » e ^ - F }) = l -v; (8.32)

due to the supposed statistical independence of the corresponding random variables
we obtain that

«u = ^ M * y M) - 0} n W j - i H = 0} n {r,Xa>) t / l ; H = 0}) -

' = P ({ / ^ (7 H) - 0}) P({W^(co) = 0}) [1 - P({Ttj(co) Utj(co) = 1})] =

= (1 - v)q,j.1[l - M l ^ / o)) = l})P({T£(a/) = l})]] =

= (\-v)qiJ-1[l-Q(l-(l-vy)-]. (8.33)

An easy induction immediately yields that

4* = (1 - »)"ff(l - 6(1 - (1 - *W) • (8-34)
J = O

This upper bound for qin does not depend on i and is, considering V 4= 0, evidently
maximal iff F is a singleton, hence, iff i; = 1//V. So, for each i = m,

«„ s « : = (i - (w f f (> - e(! - (- - (WW) • (8-35)
y=o

Theorem 8.5. Let the notations and conditions of Theorem 8.4 hold, let Q < 1,
let n(N) = cEiN", fc(IV) = ci2N

a for some oc < £, dif d2 > 0, let g* be defined by (8.35),
then

l i m f c *) f c = l . (8.36)
N-00

Proof. We have to prove that

' ^[(^iJSO-K1-!1-^))]^1- (837)

83

If n(N), k(N) e G(N% a < i then nk e &(N2*) c *(N), so that

lim (1 - - V = 1
iv-oo \ NJ

and we have to prove that

l/i-fiti-t,--^i lim Г"П (ì
iV-ao [_j' = 0 \ N

= 1 .

This assertion can be easily reduced to

izыШ-Q(l-(l~Шr
-£k%Қl-йЫl-ìï1))m0-

But, for 0 < x < 1,

hence,

0 > ln (1 - x) > -

|ln (1 - x)| <

1 - X

1 - X

so that, instead of (8.40), we have to prove that

» - » j = o i - e (i - (i - I / N) J)

As Q(\ - (1 - 1/N)J) < 6 < 1, (8.43) reduces to

limfcj'ell-fl-iYUo.
JV-oo y = o \ \ NJ J

Omitting Q as a multiplicative constant, an easy calculation yields

•%(•-(•-9)-'(•-% (•-*)>
-(-L-Va)--"(-(-3')
--»[-:?:(;)<-"'©>

--- »[(;)©-0©'-l,G)<-"'©>
-»©©•+»,?,(;)<-"'©'

(8.38)

(8.39)

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

(8.45)

84

Denoting the last expression in (8.45) by S, we can easily obtain that

as I ' \) < nj. Setting n = vLj/V*, k = d2n
a, we obtain that

Taking N0 such that, for N > N0, dtN
ajN < | , we have

1 - d{(N*lN) 2 | JV 1 -d , (N"/A

<
ra^aYj N^a

 + 2d\d2N**-2
 f (8 48)

and this expression tends to 0 for JV ->• co and a.< I. But, at the same time,

• > * £ * - - A CD®-
and both the items in (8.49) tend to 0 for N —> oo and a < ^ for the same reasons as
above. Hence, S -> 0 as well and the assertion is proved. •

Let us turn back, for a moment, to the original model with real, i.e. non-simulated,
co-operation among processors and with decision function W* defined by (8.25).
If Q > 0, the computation of parameters under which P({%/*(co) = 0}) < e, for
V 4= 0, is much more difficult than in the simulated case above. Or, using the oracle
Tjj, the probability with which a processor is given the information that F + 0
does not depend on whether an element from V has been already found or not.
On the other hand, to obtain ^*(co) = 1, we ultimately need Xi^co) e V for some
i = m, ; = n . In fact, setting

m n

-4-,>) = U U { * » } , (8.50)
. - = 1 j = \

we obtain that

p ({ ^ o » = o}) = P ({ % » = o } / { A M » = 0}) p ({ A m » = 0}) +

+ P({V*Q(co) = 0} /{ ,4 m » 4= 0}) P ({ A m » * 0}) ^

^ p ({ A m » = 0}) = (i - y y , (8.5i)

as Am,„(w) = 0 implies ^*(co) = 0, which was not the case for <&0. Hence, we urgently
need mn e 0(N) to be sure that P({^l(co) = 0}) < e for all 0 -# V c A = [a l t a 2 , . . .
..., aN], so that an analogy of the results from above with m, n e&(3y/N) is impossible.
But, even if the condition mn e @(N) is the same as in the case with Q = 0, the fact

85

that the knowledge about an element from V can propagate, more or less quickly,
among the processors, suggests an idea to optimize the product mn with n e -o(<jN)
and with ke#(^/N) as well. Because of the fact that the possible statistical dependences
among the corresponding random variables make the direct computation very
difficult, let us introduce a modified model which will be used to estimate the time
computational complexity of the original model for Q > 0.

The modification consists in separating the samplings from A from the samplings
of auxiliary processors and in postponing the consultation phase. So, having m
processors formalized by random vectors (Xitl,Xi2, ...,Xi<n), i = m, first of all
each processor takes n sequential samples from A, independent of each other as
well as of the samples taken by other processors, and tests the sampled elements
as far as their membership to Vis concerned. Set, for i S m,

WL0(co) = sign [t Xv(Xij(co))] , (8.52)
j = o

so that Wii0(co) = 1 iff x,7(o>) e V for at least one j = n, Wi0(co) = 0 otherwise.
Evidently, for each i ^ m

P[{WL0(co) = (I}] = (1 - v)», (8.53)

let us denote this value by q0 = q0(n). Take a system {Yip Utj}^mlj„l of random
variables satisfying the conditions described after (8.20) and including (8.21) to
(8.23) and set

Wtj(co) = sign [Wtj. 1(co) + WYlAw)J^(co) U^coJ] , (8.54)

j = 1, 2, ..., r. The intuition behind this definition is like that in the case of (8.24).
Hence, Wi}(co) = 1 iff either Wt tJ- x(co) = 1 or if Yu sampled (the index of) a processor
which took the unit value in the (j — l)st postponed auxiliary step and is willing to
share this knowledge, i.e. Uij(co) = 1.

Lemma 8.2. Let r = n, let Wi} be defined by (8.24), then for all i ^ m, j = n,
Wij(co) = 0 implies W,/co) = 0, hence,

P({Wij(co) = 0}) = P({Wi}(co) = 0}) . (8.55)

Proof. Let us prove that Wi}(co) = 1 implies Wtj((o) = 1. For j = 0 it holds
trivially, suppose the validity for; — 1. (8.54) yields that, if X^co) e A — V,

{co: Wij(co) = 1} = {co: Wu^(m) - 1} u

m

u U ({co: ^^(co) = 1, Yij(co) = I, U^co) = 1}) 3
7 = 1

M

=> {co: WLj^(co) = 1} u U ({©: WlJ?i(a>) = l,Y0-(a;) = l,Uu(co) = 1}) =

= {co: Wjp>) = 1} . (8.56)

86

If Xjj(co) E V, we obtain

{a>: XtJ(co) e V, W ; » = 1} . U ({a>: x » = a, W,» = 1}) =>
aeV

3 U ({co: Xu(co) - a, W » = 1}) = {a>: Xu(co) e V, W » = 1} (8.57)
aeV

and the lemma is proved. •

New, let Zj , Z2,...»Zk be the same random variables as above and set

^ » = s i g n [^ i r Z / (w) »] . (8.58)
z = o

An easy calculation yields

p({»T(«,) - o }) - i ^ n { « z * o » - o }) -
z = i

= p(n u { ^ » = ojZl(o>) = s}) =
Z = l s = 1

^ P(0 U { # - » - 0, Z,(o>) = 5}) = P({®*o(co) = 0}) , (8.59)
Z = l s = 1

so that the values for m, n and k, necessary to keep P({<&*(co) = 0}) below a given
threshold value, are also necessary to keep P({^J(a>) = 0}) below the same threshold
value.

Because of computational difficulties connected with an explicit expression for
P({<8f*((o) = 0}), let us appropriately approximate <&* by another random variable
<y*2. Set W*0(co) = WitQ(co) for all COEQ, for ; > 0 set

W*(co) = sign [W ^ M + W*j{(a)(co) l j »] , (8.60)

so that, in the jth auxiliary step, only one processor with the index Yi,••(&>) is sampled
at random and if its value is the unit, it is shared with all other processors with the
probability Q; the random events of sharing are statistically independent for different
processors. Random variable $/2 is defined by (8.58), but with ^zii<a),r(°)) r eP l a c ed
by Wzl((0)tr(co). As can be easily computed, the corresponding conditional probabilities
read as

?({»?,» = -} /{*£.» = ,» = HWk>) = *}/{*u-i(«) - y))
(8.61)

for all x, y E {0, 1}, and in this sense <3l* approximates ^ * .

Theorem 8.6. For each e > 0 there exist real numbers cx, c2, c3, c4 independent of
TV such that, for m = rclN

2/3\ n = rc2 \/N^, k = r c 3 y N 1 and r = r c 4 %/AP,

P({<3 l» = 0}) < s (8.62)

for all 0 =j= K c A - {au a2, ..., aN}.

Remark. As n, r, and k are the numbers of samples which are to be taken sub
sequently, their sum n + r + k may serve as a first and very rough approximation

87

of the computational complexity of the parallel probabilistic searching algorithm
with co-operation of stochastic type defined by the random variable <_/*. Theorem
8.6 claims this complexity to be in the 0(3y/N)-c\ass, as in the case of simulated co
operation investigated above, but the necessary number of processors increases
quadratically (in the 0(iV2/3)~class) when compared with the simulated case with m
in (9(3yfN). The reason for this increase is simple: in the case of <_/f, i __ 0, 1, 2,
processor cannot take profit of the oracle's knowledge that V + 0 without having
actually sampled at least one element from V.

Proof of Theorem 8.6. First of all, suppose that there is i S m,j S n such that
XIJ(CO) e V and denote, for j = 0, 1, . . . , r,

m

Uj = Uj(co) = card {i: i = m, W*j(co) = 0} = m - £ W,*(c.), (8.63)
(= 0

Vj = Vj(o)) = card {.: i = m, W*j(co) = 1, W*j_l(co) = 0} =
m m

= uj. ,(co) - Uj(co) = £ W*(co) - I W*j_ .(a>) . (8.64)
i = 0 i = 0

If Wr* .(w)v/-_i(co) = 1, then the number of unit values occurring for the first time
in the jth auxiliary step depends just on the results of "consultation random events"
Uij(co), so that Vj has the binomial probability distribution with the probability Q
of success. Abbreviating W? ^j-ifo) by Lj(co), we obtain

P({<p,(_) = *}/{".-.<_) = muLfyt) = 1}) = (" *) _ ' (! - e) " ' " ' . (8-65)

so that the well-known relation concerning the expected value of the binomial
probability distribution yields

£(_/•) /{«_--H = ml9 Lj(co) = 1}) = Qmx . (8.66)

(8.64) implies that, for ally = r, co e __,

Uj(co) = Uj.x(co) - _ .(©) , (8.67)

so that

Now,

E(uj(')í{uj-X(oo) = mt, Lj(co) = 1}) = ml - Om, = (l - Q) m, . (8.68)

£(«/•)/{-,(») = 1}) =
m

= I [£(, (-) /{ i» = • . • , -_» = _,})-({•,-,(-) = »,})] =
mi = 0

m

= (1 - fi) I m. t{«.-i(o>) = m j) = (1 - Q) &_,--(•) . • (8.69)
m i = 0

If Ly(co) = 0, then no new processor takes the unit value in the jth step, so that

E(UJ(-)I{LJ(CO) = 0}) = Euj^(.). (8.70)

The probabilities of the corresponding conditioning events read as follows:

P({Lj(co) = 1}/{w,-_H - m.}) = (m - mx)lm = 1 - (mxjm) , (8.71)
so that

P({Lj(co) = 0}/{Mj ._ tH = m-}) = m./m . (8.72)

Computing the expected values and setting M*(O>) = m"1 u y H w e obtain that

P({L,(») - 1}) - £ (1 - (m./m)) P({uj(<o) - « , }) - 1 - £«'(•) , (8.73)
mi = 0

m

? ({ ! » = 0}) = X (Wl/m) rt{«y(o,) = m j) = £«*(•). (8.74)
m i = 0

Combining (8.69), (8.70), (8.73), and (8.74), we have

£M*(.) = E(„;(.)/{L,H = -})-X{i» = 1}) +
+ E(u*(.)/{LXo>) = 0})P({LXco) = 0}) =

- (i - e)£«*-X-) (i - E - ; - I (-)) + (E « * - . (-)) 2 -

= (l-Q)Eu*^(-)+Q(Eu*_ ,('))>. ' (8-75)

Evidently, u*(co) = M*_ ,(eo) for each; = r,coeQ,so that £M*(-) = EM*„t = £«*(•).
Hence,

(£«*(•))/(£«*_,(•)) = (l - Q) + Q &;.,(•) s (i - e) + e &«:(•),
(8.76)

and
£ M * (.) ^ ((l - Q) + Q £ M 0 * (.) y . (8.77)

Recalling the definition of u* we obtain

£M*(«) = m"1 £ card {/: / = m, W*0(co) = 0} . (8.78)

Random events W*0(co) = 0 are identical with Wi0(co) = 0 and are, for different
i's, statistically independent with the same probability (1 — v)n, so we obtain

£M0*(-) = P({W*0H = 0}) = (1 - v)" £ (1 - 1/N)», (8.79)

as V * 0. So

£«;(.) = [(l - Q) + Q(i - ijNyy. (8.so)
Consider the random variables Z t , Z2, ...,Zk which sample the (indices of the)

processors after the rth auxiliary step, i.e., each T, samples among the values W*r(co),
i = m. Due to the supposed statistical independence of random variables Zh Xij, Yy,
Utj and due to their equiprobable distribution, for each / = k

{&.>» - l)/{card {* *SM - °) = mS -
= * < { « & . > » = ! } / { « , » = » ! > }) = 1 - (mAjm), (8.81)

so that, using the same simple computation as above,

W H . » - »)) = 1 - E « ? (') - (8-82)

89

Recalling our initial assumption and taking, once more, profit of the supposed
statistical independence of the corresponding random variables we obtain that

m n

K{**M = o}/{ u U { * , » } n V + 0}) =
i = l ; = l

m

= ?(n {**,(„,» = °}) = [£«*(•)]' s E(i - e) + Q(I - w =
i = i

- [(1 - 6(1 - (1 - 1 W))] f e r < (1 - (e«/N))fcr, (8.83)
as (l — x)" > 1 — nx for each 0 < x < 1. Hence, in order to have, for some et > 0,
the conditional probability in (8.83) majorized by e1? a sufficient condition reads

1 - 2 5) % «, , (8.84)

hence
fcrln(l - (QnJN)) < In e. . (8.85)

But, In (1 — x) < —x for each 0 < x < 1, so that a sufficient condition for (8.83)
to be majorized by ex reads

krQnN-1 > lne^ 1 (8.86)

This condition can be easily satisfied with n = c2 \ /N , k = c3
 3yj'N, r = c4

 3-jN,
where ch i = 2, 3, 4, depend on Q and e1? but not on N, say c,- > 3

yJ(Q~1 In e^1)
will do. This choice is optimal in the sense that n + r + k is in 0(3yjN), which is
not the case for other possibilities when n + r + k is in 0(iVa) for some a > ^.

Obviously,
m n

P({V*2(co) = 0}/{ U U {*•>)} n V + 0}) = 1 , (8.87)
« = i j = i

so that, after a simple factorization,
m n

P({^J(o>) = 0}) < P({ U U {Xu(co)} nV=®}) +
i = i ; = i

m n

+ P({W*2(co) = 0}/{ U U { * , » } n F + 0}) < (1 - 1/NT + s, , (8.88)
; = i j = i

for n, k, r defined as above. So, taking ex = e/2 we need mn > (In (lje))N to keep
(1 — 1/N)mn below e/2, so that the optimal solution is m = cvN

213 for an appropriate
cx = cx(e, Q). The theorem is proved. Q

Let us reconsider the proof of Theorem 8.6 from another point of view. If there
are i <. m, j =^ n such that x,j(oj) e V then the worst case is that with just one such
a pair <i , j) . In this case u*(co) = (m — l)/m = 1 — m _ 1 , setting into (8.77) we
obtain

HI n

P(u;(-)/{card (u U {Xjm)} P F) - 0) ^
/ =] J = l

^ ((i - Q) + e (i - i/m)y = (i - e / « y • (8.89)

90

Using the same computation as above,

P({9*(<o) = 0}/{card (U U {*./<»)} n V) - 1}) <_ (1 - Q/m)", (8.90)
i = i y = i

hence, to majorize this conditional probability by els we need

fcrln(l - Qjm) < In e< , (8.91)

which evidently holds if krQJm > lne^"1. This can be satisfied with k = c3 \ / /V,

r = cA
 3yjN, m = c^N213, supposing that c^cjc^ > Q ' M n e ^ 1 . To keep also

(1 — ljN)mn below e — ex > 0, we need n = c2
 3sfN for an appropriate c2. Such

a choice solves the case when X^co) e A — V for all i = m, j = n, by reducing its

probability below a fixed threshold value, say, e/2.

R E F E R E N C E S

[1] I. Kramosil: Hierarchies of parallel probabilistic searching algorithms with possible data
access conflicts. Problems Control Inform. Theory 7^(1989), 6, 381 — 395.

[2] I. Kramosil: A simulation of partial stochastic co-operation in parallel probabilistic searching
algorithms. In: Artificial Intelligence and Information-Control Systems of Robots 89 —
Proceedings of the conference held at Strbske Pleso, 6.— 10. 11. 1989 (I. Plander, ed.), North
Holland, Amsterdam 1989, pp. 159-162.

S U P P L E M E N T A R Y R E F E R E N C E S

[1] S. G. Akl: Parallel Sorting Algorithms. Academic Press, Orlando 1985.
[5] Y. Azar and U. Vishkin: Tight comparison bounds on the complexity of parallel sorting.

S.AM J. Comput. 16 (1987), 3, 458-464.
[3] P. Bachman and Phan-Mink-Dung: Nondeterministic computations — structure and

axioms. Elektron. Informationsverarb. Kybernet. 22 (1986), 5—6, pp. 243—261.
[4] G. Bobrow and A. Collins (eds.): Representation and Understanding. Academic Press,

New York 1975.
[5] D. J. Boxma: A probabilistic analysis of multiprocessor list scheduling: the Erlang case.

Comm. Statist. Stochastic Models 1 (1985), 2, 209-220.
[6] M. Broy: On the Herbrand-Kleene universe for nondeterministic computations. Theoret.

Comput. Sci. 36 (1985), 1, 1 - 19.
[7] M. Broy: A theory for nondeterminism, parallelism, communication, and concurrency.

Theoret. Comput. Sci. 45 (1986), 1, 1-61.
[8] C. L. Chang and R. T. C. Lee: Symbolic Logic and Mechanical Theorem Proving. Academic

Press, New York—London 1974 (Russian translation: Mir, Moscow 1982).
[9] A. Church: Introduction to Mathematical Logic I. Princeton Univ. Press, Princeton, New

Jersey 1956 (Russian translation: ILL, Moscow 1960).
[10] R. Davis and D. B. Lenat: Knowledge-Based Systems in Artificial Intelligence. McGraw-

Hill, New York 1982.
[11] J. Gill: Computational complexity of probabilistic Turing machines. SIAM J. Comput.

6 (1977), 4, 675-695.

91

[12] M. Karmarkar, R. M. Karp, G. S. Lueker and A. M. Odlyzko: Probabilistic analysis
of optimum partitioning. J. Appl. Probab. 23 (1986), 3, 626—645.

[13] G. A. P. Kindervater and J. K. Lenstra: An introduction to parallelism in combinatorial
optimization. In: Parallel Computers and Computations, CWI Syllabi 9, Math. Centrum
Amsterdam, 1985, pp. 163-184.

[14] L. Kronsjó: Computational Complexity of Sequential and Parallel Algorithms. J. Wiley
and Sons, Chichester 1985.

[15] L. Kučera: Kombinatorické algoritmy (Combinatorial Algorithms — in Czech). SNTL,
Prague 1983.

[16] M. Luby: A simple parallel algorithm for the maximal independent set problem. SIAM J.
Comput. 15 (1986), 4, 1036- 1053.

[17] Z. Manna and R. Waldinger: Special relations in automated deduction. J. Assoc. Comput.
Mach. 33 (1986), 1, 1-59.

[18] A. N. Maslov: Verojatnostnyje mašiny Turinga i rekursivnyje funkcii (Probabilistic Turing
machines and recursive functions — in Russian). Dokl. Akad. Nauk SSSR 203 (1972), 5,
1018-1020.

[19] D. Mitra: Probabilistic models and asymptotic results for concurrent processing with
exclusive and non-exclusive locks. SIAM J. Comput. 14 (1985), 4, 1030—1051.

[20] Parallelnaja obrabotka informacii, vol. 2 (Parallel Information Processing — a collection
of papers — in Russian). Nauková dumka, Kijev 1985.

[21] Sborník: Expertní systémy— principy, realizace, využití (Proceedings: Expert Systems —
principles, realizations, applications, V. Zdráhal, V. Mařík, eds.). ČSVTS FEL ČVUT,
Prague 1984.

[22] Sborník: Metody umělé inteligence a expertní systémy (Proceedings: Methods of Artificial
Intelligence and Expert Systems, Z. Zdráhal, V. Mařík, eds.). ČSVTS FEL ČVUT, Prague
1985.

[23] J. R. Shoenfield: Mathematical Logic. Addison-Wesley, Reading 1967 (Russian translation:
Nauka, Moscow 1975).

[24] J. R. Smith: Parallel algorithms for depth-first searches — planar graphs. SIAM J. Comput.
75(1986), 3, 814-830.

[25] J. Sztrik: A probability model for priority processor-shared multiprogrammed computer
systems. Acta Cybernet. 7 (1986), 3, 329—340.

[26] Wang Hao: A Survey of Symbolic Logic. North-Holland, Amsterdam and China Press,
Peking 1962.

[27] D. A. Watermann and L. Hayes-Roth (eds.): Pattern-Directed Interference Systems. Acade
mic Press, New York 1978.

[28] G. Winskel: Category theory and models for parallel computations. In: Category Theory
and Computer Programming (Lecture Notes in Comp. Sci. 240), Springer-Verlag, Berlin-
Heidelberg-New York 1987, pp. 266-281.

[29] M. Zaionc: Nondeterministic programs definable in typed lambda-calculus. Fundam.
Informaticae 8 (1985), 1, 63-72.

92

CONTENTS

Preface 3

1. Introduction 5

2. Mathematical Models of Classical Algorithms 10

3. Mathematical Models of Nondeterministic, Parallel, Probabilistic and Bayesian Algorithms 18

4. Parallel Probabilistic Searching Algorithms 29

5. Searching Algorithms with Limited Testing Reliability and with Generalized Loss Function 38

6. Parallel Algorithms for Monte-Carlo Methods 50

7. Parallel Probabilistic Algorithms for Linear Ordering 65

8. Some Modifications of Parallel Probabilistic Searching Algorithms 76

Supplementary References 91

93

		webmaster@dml.cz
	2013-11-20T16:02:07+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

