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K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 2 

ON OPTIMALITY OF THE LR TESTS IN THE SENSE 
OF EXACT SLOPES 

Part II. Application to Individual Distributions 

FRANTISEK RUBLIK 

Optimality of the likelihood ratio test statistic in the sense of exact slopes is established in the 
case, when sampling is made from q populations, and each of them is supposed to have either 
normal, or exponential, or Laplace, or Poisson distribution. 

The optimality mentioned in the title will be proved by means of the assumptions 
(A I) - (A VII) or (ARII), (ARVI), which are presented in Section 1 of [12], 
where also a general framework and basic notations can be found. Since this paper 
is continuation of [12], its sections are numbered from 3 to 6, and references to 
relations from the Sections 1 and 2 are related to [12]. 

3. OPTIMALITY IN THE CASE OF THE NORMAL DISTRIBUTION 

Let k > 1 be an integer. For a vector Q = (^12, ...,glk, . . . , ^ _ 1 fc)' belonging 
to Ua, a = (k - 1) fc/2, denote 

/ I , #12> •• ->Qii) 

(3.1) R(Q) = lQl2'h •••'^fc 

\Qik> Qua • • •' - / 

the symmetric matrix, having for j > i on its (i,j) position the element QU, and put 

(3.2) S = {(/.', <rl5..., ak, Q')' e Um; at > 0 for all i, iieRk,QeW , 

R(Q) is positive definite} 

where m = 2k + (k — 1) k\2. If y = (ji', at,...,ak, Q')' belongs to 3 and 

'al 0 
(3.3) a=\ • • . 1, V(y) = oR(Q)a 

'k 
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then denote 

(3.4) Py m N(n, V(y)) 

the /c-dimensional regular normal distribution with mean \i and the covariance 
matrix V(y). Thus the densities (1.14) are in this case of the form 

(3.5) f(x, y) = (Irz)-"2 \V(y)\~"2 exp [- t fx - /i)' V(y)"1 (x - „)] 

and the dominating measure is the Lebesque measure on (Uk, &k). 

Theorem 3.1. Let (A I) hold. 

(I) If we denote for y, y* e 3 by 

(3-6) r(y,y*) = [ I f e - y*) 2] 1 / 2 

i 

the usual Euclidean distance, then in the notation (3.1) —(3.5) the assumptions 
(ARII), (A I I I ) - ( A V), (AR VI), (A VII) are fulfilled. 

(II) Let us assume that (1.4) holds, Tu is the statistic (1.28) and 9 e Q1 — Q0. 
The relation (1.29) holds a.e. Pe, (1.9) holds a.e. P0 with C(9) = 2 J(9) (i.e. Tu is 
optimal in the sense of exact slopes), and if 9 e Qx — Q0, then the assertions (I) and 
(II) of Theorem 1.3 are true. 

At first we recall that if the random variable xl h a s chi-square distribution with d 
degrees of freedom, then (as proved in a general case by means of Markov's ine
quality in [2], p. 2) 

(3-7) P[y2

 = c] = r+(c), P [ X

2

 = c] ^ r~(c) 

where 

(3.8) r+(c) = inf {E[exp (t7

2)] e~tc; * = 0} , 

rd-(C) = i n f { E [ e x p t e 2 ) ] e - ' c ; ^ 0 } . 

Since 

(3.9) E[expM)] = {(;;2t)""2 \t\ 

one can easily prove the following assertion. 

Lemma 3.1. 

(3.10) lim lim sup — log rd(Лc) 
C~* oo Л-* oo Л 

00 

(3.11) ' lim lim sup - log r+(Ad) = — oo 
A-* oo d-*oo d 

(3.12) lim lim s u p - log rj(Ad) = — oo 
J-»0 + d-> + oo d 

Proof of T h e o r e m 3.1. It is obvious from Theorem 1.2 that it is sufficient 
to prove the assertion (I). 
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(AR II) This assumption is obviously true. 
(A III) In proving this assumption we shall use the notation 

(3.13) x(n) = (xl,...,xn)eXn, X=Rk. 

Let us denote 

(3.14) 3 = ( (0 , . . . ,0 ) ,1 , . . . ,1 , (0 , . . . ,0 ) ) ' 

the parameter, corresponding to the N(0,Ik) distribution, and assume at first that 

(3.15) y = 5 . 

Let us denote 
1 " 1 " 

(3.16) x = - J xj , _ = - £ (XJ ~ x) (xj - x)' 
n j=i n j=i 

and for positive constants M, a, fi put 

(3.17) A(
n

l) = {x(n); | * | > M} , An
2) = {x(n); Xt(l) > a} , 

4 3 ) = {xw; Xk(l) < p} 

where Xt(l) = ... >. Xk(l) are the characteristic roots of I. Since 

PlAi"] = P[xl > nM2] 

from (3.7) and (3.10) we obtain that 

(3.18) lim sup - log P&[A„J)] < -n 
n-*co n 

for / = 1, if M is sufficiently large. Further, 

P*[Ai2)] = P,[tr(_) > a] = PfeVi) > na] 

and from (3.7), (3.11) we get that (3.18) holds for j = 2, if a is sufficiently large. 
Since according to Theorem 3.3.8 in [13] the random variable |n_| is distributed 

k 

as UXn-p 

k[Ai3)] _ P,[An
2)] + P,[|_| < afc" V ] = P,[An

2)] + kP[X
2_k < n(ak~^Y'k] . 

Hence taking into account Lemma 2.1, (3.7) and (3.12) we see that (3.18) holds 
for / = 3, if /9 > 0 is sufficiently small. Thus in the notation 

(3.19) An = \)An
J) 

J = I 

according to (3.18) and Lemma 2.1 the inequality (1.19) is true. 

Now we shall utilize the fact that the likelihood function 

- log L(x(n), y*) = - - log 2n - \ £ log Xj(y*) -
n 2 j=i 

- \ tr V(y*)~1 [_ + (x - /i*) (x - /**)'] 
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where Xt(y*) >,...>, Xk(y*) are the characteristic roots of V(y*). Thus 

- log L(x<">, 3) = - - log 2n - i tr ( I ) - i||x||2 

n 2 

which together with (3.17) and (3.19) implies (1.20) with N = k + 1. Further, for 
every symmetric positive definite matrices V(y*), 2 according to Theorem 1.10.2 
in [13], p. 22 

(3-20) ^[V(y*)-1l]^i^l 

and for x(n) e X" — An therefore 

(3.21) 

- log L(x<">, y*) = - \ log 2ic - i £ g(Xj(y*)) - | (x - /i*)' V(y*)~1 (x - n*) 
n 2 y = i 

where 
(3.22) g(z) = log z + flz . 

Obviously 

(3.23) g(z) = g{f) 

(3.24) # (z ) -++oo if z -> 0+ or z - » + o o . 

Hence if we denote 
r, = {y* e 3; $ < Xk(y*), Xt(y*) <_ a) 

then combining (3.21) —(3.24) we see that if c is a real number, then there exist 
positive real numbers /? < a such that 

(2.25) - log L(x(n), 3 - rx) < c 
n 

whenever x<"> e X" — An. Let 

r2 = {y*e3;\fi*\ =_ M] . 

Utilizing for 9* e rx - T2 and xin) e X" - A„ the inequalities 

(x - n*)' V(y*)~i (x - \i*) = Xfy*)-1 \x - n*\2 , 

\\x - n*\ = \fi*\ - \\x\ > M - M 

and (3.23), we obtain from (3.21) that for M > 0 sufficiently large 

(3.26) • -logL(x(n),r1- T2)<c 
n 

whenever x(n) eXn - An. Since the set rc = rx n V2 is compact, and according 
to (3.25), (3.26) the inequality (1.21) holds, (A III) is proved provided that (3.15) 
holds. 

Let y +- 5. If we denote for y* e 3 by g(y*) the unique parameter from 3, corre
sponding to' N[V(y)~1/2 (\i* - n), V(y)'1/2 V(y*) V(y)'/12] and put Zj = T(Xj) = 
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= V(y)-V2(Xj - / i ) , t hen 

(3.27) - log I ( x « y*) = - log L(z<n\ g(y*)) - i log \V(y)\ 
n n 

P,[An] = Py[Bn] , Bn = {(xu ..., xn); (T(Xl),..., T(xn)) E An] . 

Since the set g_1(r) is compact if E is compact, validity of (A III) follows from its 
validity in the case (3.15). 

(A IV) One can choose a number <50 > 0 such that V = {y* e Um; \\y* — y\\ < <50} 
is a subset of 3, and 

(3.28) X,(y*) < 2kjy) , \V(y*)\~x'2 < 2\V(y)\~v2 

whenever y* e V. If y* e V then 

(3.29) (x - »*)' V(y*Yx (x - »*) = \x ~ ff . 
Ikfy) 

Denoting B = {x e Uk; \x — ju|| > 1 + 2<50} we see that for x e B, y* E V 

(3.30) \x - n*f = l\x - 4 - [a - n*l]2
 = \x - 42 -

- 2<S0|x - /ij > |x - / i f . 

Since (ARII) and separability of Um imply measurability of L(x, V) and this function 
is bounded on Uk — B, combining (3.28) —(3.30) we easily obtain validity of (A IV). 

(AV) According to (3.27) we may assume, that (3.15) holds. Since (3.16) is the 
MLE of mean and covariance matrix 

<-^logA l(I) + ^1(2) + i H 2 

and (1.24) follows from (3.18) and Lemma 2.1. 
(AR VI) If y = (ti', a,,..., ak, Q')', yn = (#, a<?\ ..., <#>, Q'n)' belong to 3, then 

(3.20) implies that 

(3.31) K(y, yn) = ^ - fl.)' V(yn)~
x (»-»„)-± + ^g (XM) 

2 _/=i Vj(y)J 
where the function g is determined by (3.22) with ft = 1. Let us assume that (1.25) 
holds and 

lim nn = jl, lim V(yn) = V, lim R(̂ „) = R . 
/1-+00 n-»oo n-»oo 

If \vtJ\ = +00 for some i, j , then A^yJ _ max (a*n))2 -> + oo and from (3.31), 
(3.23) and (3.24) we obtain that 

(3.32) limK(y,yn) = +oo 
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which is a contradiction with (1.25). Proceeding similarly in the case \V\ = 0 or 
|/*£j = +00 for some i, we obtain (3.32). Hence lim yn = y e 3, from which we 
easily get (1.26) and (AR VI) is proved. 

(A VII) Since according to (3.27) distribution of 2 log (L(jc(M), _j)/L(x(n), y)) does 
not depend on y, the assumption (A VII) is satisfied. • 

Example 1. Testing independence of subvectors. 

Let 0 be determined by (3.2), r >. 1 and 
r 

{l,...,k} = \J{ip...,iJ+1 - 1} , Xj = (x.,,Xi,+ i , . . . ,* . ,+._!) ' . 
_ = i 

If y e 0 and Py is the true distribution of x, then the covariance matrix of vector x 

/ - * 1 1 > -*12> • • •> -<lr 

% ) = ; ; 
y- 'r l ' -£-2> • • •> -V» 

where Zij = cov (x,-, Xj). If 

(3.33) H = {y e 0; I y = 0 for all / + ;} 

i.e., H is the hypothesis that the vectors xt, ..., xr are independent, then according 
to [9], p. 413 
(3-34) r- = 2 l 0 8 | S l = ''l08[nis,i/|s|] 
where Su is the submatrix of S = nl, corresponding to the vectors xh Xj. If n -> oo, 
then according to Theorem 3.1. (II) is the statistic (3.34) optimal in the sense of exact 
slopes. As it is shown in [9], p. 414, under (3.33) the null distribution of (3.34) tends 

r 

to Xd with d — 2~1(k2 — YJOJ+I ~ o)2) degrees of freedom, which according to 
J = i 

Theorem 3.1 (II) means that the approximate slope of (3.34) exists and equals its 
exact slope. 

Example 2. Testing equality of covariance matrices. 

Let 3 be the set (3.2), q > 1 and 0 = Sq. Hypothesis of equality of covariance 
matrices can be written as (cf. (3.3)) 

(3.35) H = {0 = (61,...,eq)e0; V(9t) = V(02) = ... = V(9q)} . 

As it is shown in [9], pp. 403 — 404, in this case 

(3.36) TH(x(">) = 2 log £_£_______ __ log A* , A* = - A f\ \l.\u* 
V } V ; L(;c(">,H) B N //=i A 

where for the sake of brevity we use the notation N — nu, nj = nu
j), and where 

Ij = (1/n) Sj is the sample covariance matrix of the sample from thejth population, 
and A = St + ... + Sq. As pointed out in [13], pp. 225 and 317, to achieve un-
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biasedness, instead of Tu the modified statistic 

1 N-q I Я -Ҷs, 
nt — 1 

nj-í 

(3.37) Tu(xW) - log X, X = — - — A 7 EI 
N - q / /=i 

is used for testing (3.35). Let us assume that (A I) holds. If 0 e 0 - H, then accord
ing to Theorem 3.1 with probability 1 

lim — Tu = lim — Tu = 2 J(9). 
u-+oo n u n-+oo >*2U 

Since for M sufficiently large Tu = T„ + c, optimality of T„ in the sense of exact 
slopes can be easily proved by means of (1.13) and Lemma 2.3. 

Now let 

(3.38) 3 = {(ft, a); fieU,a > 0} 

and for y —• (JX, a) e 3 let 

(3.39) f(x, y) = (271)-1'2 a'1 exp [-(2a2)'1 (x - M)2] 

be density of the one-dimensional normal distribution P = N(/i, a2) with mean fi 
and variance er2. 

Theorem 3.2. In the notation (3.38), (3.39) and (3.6) the assumptions (ARII), 
( A I I I ) - ( A V), (AR VI), (A VII) are fulfilled, and assertion (II) of Theorem 3.1 
is true. 

The proof can be performed similarly as in Theorem 3.1 and is left to the reader. 

Before presenting the next example, we recall that if <̂  is a partial order on a set S, 
then a function //(•) on S is said to be isotone with respect to < ,̂ if fi(x) 5̂  fi(y) 
whenever x <̂  y. 

Example 3. Testing isotonicity of means. 
Let 3 be the set (3.38), 0 = 3q, q > 1, <! is a partial order on S = { l , . . . , q] and 

H i = {(Hu (T,...,nq,a)e0; vector (fiu ..., fiq) is isotone and a > 0} 

is the hypothesis that means of the underlying normal populations are isotone (and 

the usual assumption of equality of unknown variances is imposed). Let 

H2 = { ( / . 1 , ( 7 , . . . , ^ , ( r ) e 0 ; ( 7 > O } 

by the hypothesis which places no restrictions on means, but still assumes equality 

of variances. It is easy see that in this case 

(3.40) TJx(u>) - 2 l o g M ^ L ^ = - 2 log X12 
K } uK } BL(x<u\Ki) 
w h e r e 

ЄГ n„ J 
_ i £ K&-ЧЃ 

= 1 i = l 

123 



i 1 nu(jy 

*2 = - E I«"-tf) 2 

nu j = i i = i 

and (X* is the unique vector from C = [}i e R?; /* is isotonic}, for which 
Z n^fo - AT)2 = inf { t nu

J)(xj - ^ ) 2 lueC}. 
j = i J = I 

If (A I) holds, then according to Theorem 3.2 the statistic (3.40) is optimal in the 
sense of exact slopes for testing H t against H 2 . We remark that the null distribution 
of S12 = 1 - A2/

2"
u is derived in Theorem 2.7 of [11]. 

Example 4. Testing the hypothesis fi _: fi0 by means of Student's t-statistics. 
Let us assume, that 0 = 3 is the set (3.40), fi0 is a chosen real number and 

(3.41) n = {(n,a)e©;iiSli0} . 

It is easy to see that the likelihood ratio test statistic 

0 x <. fi0 

^ = 2 1 ° г í ^ = {n.os[1 + ^ ] X > џ0 

where in the notation s2 = (ljn) £ (xy — x)2 

7 = 1 

n(*(,,)) = ̂ z£> j(n _ t) 
s 

is the usual Student's t-statistic, for which (1.6) is distribution function of the Student 
distribution with n — 1 degrees of freedom. Thus if T„(s) > 0, then the level attained 
by Tn is the same, as the level attained by T„. This together with optimality of Tn 

(following from Theorem 3.2) means that the Student t-statistic is optimal in the 
sense of exact slopes for testing the hypothesis (3.41). 

4. APPLICATION TO THE EXPONENTIAL DISTRIBUTION 

Let 

(4.1) 3 = {(n, a);neU,a > 0} 

and for y = (ft, a) e 3 let 
(4.2) , P7 = E(n, a) 

be the exponential distribution, defined by means of the density 

exp [—(x — pL)\a~\ x _• [x 
x < n 

with respect to the dominating Lebesque measure v on the real line. 

Theorem 4.1. Let q >. 1 be an integer, (A I) holds and 0 = 3q. 
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(I) In the notation (4.1), (3.6), (4.2), (4.3) the assumptions (AI I ) - (AVII ) are 
fulfilled. 

(II) Let us assume that (1.4) holds, Qt = 0n Ch Ct is a closed subset of U2q and C2 

is either closed or open. Let QeQx — Q0. If Tu is the statistic (1.28), then (1.29) 
holds a.e. Pe, Tu is optimal in the sense of exact slopes (i.e. C(9) = 2 J(9)) and 
assertions (I), (II) of Theorem 1.3 are true. 

Proof. Obviously it is sufficient to prove the assertion (I). 

(A II) These conditions follow from Lemma 2.4. 

(A III) Let us denote 

_ 1 " 
(4.4) fi = min {xu ..., xn) , x = - £ Xj , & = x - fi 

n j=x 

and for positive constants M, a < (3 put (cf. (3.13)) 

(4.5) A(1) = {*<»>; fi<n), 4 2 ) = (XW; fi > ft + M} 

4 3 ) = {*(n); * < a}, 4 4 ) = {*in); * > fi . 
It is obvious from (4.3) that 

(4.6) lim sup - log P7(An
J)) < -Y\ 

n-*oo n 

for j = 1. Since P7[fi > n + M] = (l - F(M\a))n, where E is distribution function 
of £(0,1), choosing M sufficiently large we see that (4.6) holds for j = 2. As it is 
shown in [5], pp. 166-167 (cf. also [3] and [4]), the random variables Y} = 
= 2(n + 1 - j)ja . (Xn

J) - Xa
J-xy)J = 1, . . . , n, where Xn

J) is thejth order statistic 
and Z ( 0 ) = n, are independent, and each of them is chi-square distributed with 
2 degrees of freedom. This means that 

(4.7) * = i _ 0 , - ft - (X<'> - ft = f _ 1} = f xl(»-i> 
n j = i 2n j = 2 2n 

which together with (3.7) and Lemma 3.1 yields validity of (4.6) for; = 3, 4, if a > 0 
is sufficiently small and /? > 0 is sufficiently large. Hence making use of Lemma 2.1 
we see that for this choice of the constants in the notation 

(4.8) 4 = U A[J) 

J = I 

the inequality (1.19) holds. Since 

(4.9) ilogL(x'"',^={-[10g,T* + ^ ! ] '-"• 
— 00 fi < fi* 

validity of (1.20) follows from (4.8), (4.5) and (4.4). 

Further, denoting 
rx = {y* eE;n*e(n- e~c, n + M>} 

125 



and taking into account (4.9), (4.8), (4.5), (4.4) and (3.23) we see that for xt") e 

G R" - A„ (3.25) holds. If pi* < ft, then 3c - ii* = a and for x(n) e Un - A„ 

- log L(x{n), y*) < - Гlog a* + — 1 . 

n L < * * _ 
Hence taking into account (3.24) we see that there exist positive numbers „._ e (05 a), 
/?! such that in the notation 

E2 = {y* e 3; a* e <a - a l 9 0 + &>} 

the inequality (3.26) holds whenever x('° e 1R" — A„. Since the set Ec = Ej r\ E2 

is compact and (3.25), (3.26) imply (1.21), validity of (A III) is proved. 

(A IV) If <5e(0, a) and V is the set (1.22), then Vc V, where V = {y* § 3; 
\fi* — pi\ < d, \a* — a\ < d}. Since one can easily verify that L(x, V) — G(x, V) 
where §G(x, V) dx < + oo, validity of (A IV) is obvious. 

(A V) As pointed out in [6], p. 211, the estimate y = (ft, a) defined by (4.4) is 
MLE of the unknown parameter y, if n > 1. This together with (4.9) means that 
for n > 1 with probability 1 

n L(;c(n),y) [_ °" J G 

Thus in the notation S = (0, 1) 

and 

where ¥(&) = — log a + a. Since !P is decreasing on (0, 1), increasing on 

(1, + oo) and !P(z) -> oo if either z -> 0+ or z -> oo, taking into account (4.6) and 
Lemma 2.1 one can easily prove (A V). 

(A VI) Since 
a* a — a* a — a* ^ 

log — + _ f— + ._._:._* 
e7 ( T * CT* 

+ oo [i < n* 

from (1.25) we obtain that for all rc sufficiently large 

K(y, y„) Z -g(aja„) 

where g(x) = log x — (x — 1). Since #(x) < 0 for x + 1 and g(x) -> — oo if either 
x —> 0+ or x -> + oo, we see that <r/cr„ -> 1 and (1.26) holds. 

(A VII) Validity of this condition follows from validity of (4.10) for n > 1. • 

Example 5. Testing the hypothesis ft < /<0 by means of an F-statistic. 
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- џ 
џ = < 

[Mc 

Let us assume that 0 = 3 is the set (4.1), pi0 is a chosen number and 

(4.11) H = {(n,a)e0;}i£no}. 

As stated in [5], p. 312, for testing this hypothesis the statistic (cf. (4.4)) 

F B ) t = - * ( * - - ) ( / • - A l p ) 2 = * = » 

EW»-/i) + ( « ^ ) ( i r i i ) 
j = 2 

can be used (and in such a case G„ in (1.6) is an F distribution function). It is easy 
to see that the MLE 0 = (fi, a) of the unknown parameter from H is determined 
by the formulas 

fi S Mo a = x — fi 

[Mo fi > Mo 

Hence the likelihood ratio test statistic for testing (4.11) 

(4.12) rJxW) = 2 iogM - j = <L . r. 5 1 
V ; V ^ L(x<n), H) ] 2« log 1 + „ 

I L n - - J M > Mo 
where T„ = F„„. Let us denote L„(s) the level attained by T„ and L„(s) the level 
attained by T„. If !f„(s) > 0, then (4.12) implies that L„(s) = Ln(s) and from Theorem 
4.1 we obtain that the statistic T„ is optimal in the sense of exact slopes for testing 
(4.11). 

5. APPLICATION TO THE LAPLACE DISTRIBUTION 

Let 

(5.1) 3 = {(fi, a); u e R, a > 0} 

and for y = (M, a) e 3 let 

(5.2) Py = L(M, a) 

be the Laplace distribution, defined by means of the density 

(5.3) / ( x , r ) = i e x P r - f c ^ n 
with respect to the dominating Lebesque measure v on the real line. 

Theorem 5.1. Let q ^ 1 be an integer, (A I) holds and 0 = 3q. 

(I) In the notation (5.1), (3.6), (5.2), (5.3) the assumptions (ARII), (A I I I ) - (A V), 
(AR VI) and (A VII) are fulfilled. 

(II) If (1.4) holds, Tu is the statistic (1.28) and 0eQt- Q0, then (1.29) holds a.e. 
P0, (1.9) holds a.e. Pe with C(9) = 2 J(9) (i.e. Tu is optimal in the sense of exact 
slopes), and the assertions (I) and (II) of Theorem 1.3 are true. 
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In proving the theorem we shall use the following lemma. 

Lemma 5.1. Let x ( 1 ) g * ( 2 ) <.. . .<. x("> be ordering of numbers xt,..., x„ accord
ing to their magnitude. Let us denote 

, x ( k + D 

(5.4) 
2/c + 1 

J x ( f c ) 
+ x (k+1) 

n = 2k 

the median of the numbers x1 ?..., x„. 
(I) If \i is a real number, then 

(5.5) 

(II) If k > 1, then 
(5.6) 

~" I AI 

I \XJ - p\ = 

Z 1*7 - ^ 1 = 1 1*7 - A*| 
J = i i = i 

J = l 

7c 27c 

Z j ( x ° ' + 1 ) - * ( J ) ) + Z (" - j) ("°"+1) " * ( i ) ) " = 2fe + 1 
j = l J = 7c+1 
7 c - 1 2 7 c - 1 

Z j ' (*° ' + 1 ) - x ( i )) + Z (" " J) (*°'+ 1 ) - * ( i ) ) M = 2k 

U = l j=k 
The relation (5.5) is according to [7], p. 26 proved in [8], and the proof of (5.6) 
is left to the reader. 

Proof of Theorem 5.1. (ARII) This regularity assumption is obviously true. 
(A III) Let ft be the sample median (5.4) and 

(5.7) »-~t\xJ- Ŕ 
П j=í 

Let us denote for positive real constants a, a < ft 

(5.8) A(1) = {x<">; \fi\ > a} , A(2) = {x(n); a < a} , A<3) = {*<»>; a > fl . 

Since the random variables (xj — n)\a are L(0, 1) distributed, in proving (4.6) we may 
assume that 
(5.9) y = £ = (0,1) . 

Since the distribution function E(x) of L(0,1) equals 2 _ 1 ex if x ^ 0 and 1 — 2 _ 1 . 
. e~x if x > 0, utilizing the formula for density of the jth order statistic we get that 
the moment generating function of XU) 

(5.10) cp/t) = f t ; e*n(j Z | ) F ( x y - \ i - E(x))-I/(x)dx = 

= nyjZijG(t>n^) 
where for 1 < j < n and 0 < t < d = d(j, n) = min {j, n — j + 1} 

G(t, n,j) < f^ e
( t + J ) x dx + f+0° e- ( ("--l+1)- t )x dx < 2\(d - i). 
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Hence utilizing (5.10) and Markov's inequality we see that for 0 < a i < d(j, n) 

logP[X^ > a] < logn + logf" " X\ + i n f | l o g G f r ' " , J \ o < t < d\ < 

(5-U) / » - l \ 
< log n + log I . 1 + log 2 — ad + 1 + log a . 

Since 2{X) = « ^ ( - x ) under (5.9), obviously 

P[\P\ > a] = 2P[/2 > a] 

and making use of (5.4), (5.11), Lemma 2.1 and the Stirling formula one can show 
that (4.6) holds for / = 1, if a is sufficiently large. 

Let Zj = \xj\. If jl denotes median of zu ..., z„ then according to (5.5) 

(5.i2) -ih-fi\i-i\ w - w u - 1 [*, - A • 
n j=x n j=i n j=i 

We know that (cf. (4.2)) 

(5.13) se(zj) = E(0, 1) 
and if Z„J) is the /th order statistic generated by zu ..., zn, then according to [5], 
pp. 166-167 the random variables Y,. = 2(n + 1 - j)(Z(i+1) - Z(J)), / = 1 , . . . 
...,n — 1 are independent, each having chi-square distribution with 2 degrees of 
freedom. This together with (5.6) and (5.12) means that 

P[£<a] SP[h2„-i = na]. 

Hence making use of (3.7) and (3.12) we get that (4.6) holds for/ = 2, if a is suffi
ciently small. 

Since according to (5.5) 

P[a > P] < p [ i t Zj > (}] < P[Z^ > 0/2] + P [ - t zj - Z (1 ) > ftp], 
[nj=i J \_nj = i J 

taking into account (5.13) and validity of (4.6) in the case (4.1) —(4.5) we see that 
(4.6) holds for / = 3 if /Ms sufficiently large. Thus putting (for this appropriate 
choice of the constants) 

(5.14) An = U An» 
j = i 

and making use of the Lemma 2.1 we see that (1.19) holds. 
Obviously 

(5.15) - log L(x(n), y*) = - log 2 - log a* - — £ |x,- - /i*| 
n na* /=i 

which together with (5.14) and (5.8) implies (1.20). Since for x(n) e X" — A„ according 
to (5.15) and (5.5) 

- log L(x(n), y*) = - log 2 - g(a*) 
n 
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where g is the function (3.22) with a instead of/?, (3.24) implies existence of a_ e (0, a), 
/?_ e (0, + oo) such that in the notation 

T_ = {y* € 3; a* e <a - <tlt fi + 0_>} 

the inequality (3.25) holds, whenever .x00 e x " - A„. Combining (5.15) with 

i " i » 1 " 1 " 

-- Z |*j - A«* = - Z I N - M I = M - - Z W> - Z tol = * + \fi\ 

n j - \ n j<=i * n j-i n j=i 

we obtain existence of a number a_ > 0 for which in the notation 

r2 = {y*e3;\n*\ = |JI + at\) 
(3.26) holds, whenever x(n) e X" - An. Since E = P. n T2 is compact and (3.25), 
(3.26) imply (1.21), (A III) is proved. 

(A IV) If e e (0, a) and V = (ji - s, \i + e) x (<x - e, a + e), then (1.23) ob
viously holds. 

(AV) and (A VII) As stated in [7], p. 26, the estimate y = (fi, a) defined by (5.4) 
and (5.7) is the MLE of unknown parameter y, if n > 1. This together with (5.15) 
yields that with probability 1 

1 L(xitt\ 3) , a , 1 " , . 
-log ~r^~~i = - log- - i + — _r x, - ii\ 
n L{xw,y) a na j=i 

which means that (4.10) is valid and (A VII) is proved. 

Let us assume that (5.9) holds and g(x) = x — log x. Then 

e i LvV-U) " 
- log — > e 
n L(x{n), y) 

< P g(à) > + P 
!Vi £1 [W>_J 

and taking into account (5.8) and (4.6) we get validity of (A V). 

(AR VI) Since 

(5.16) K(y, y„) = log - ' + ---—-"- + - exp "* hnl 

a an an 

- 1 

each of the possibilities an -> 0, an -> + oo, |_uj -4 + oo leads to the equality 

lim K(y, y„) = + oo 
n-+oo 

which is a contradiction with (1.25). But if y is a limit point of {y„}, then (5.16) and 
(1.25) imply that K(y, y) = 0, and since Fy + p. if y + y, (1.26) is proved. Q 
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6. APPLICATION TO THE POISSON DISTRIBUTION 

Let 

(6.1) _ = <0,+00) 

and for y e 3 let Py be the Poisson distribution, defined by means of the density 

(6.2) f(jty)=LlZ _/_ 0,1,2,... 
j ! 

with respect to the counting measure v on X = {0, 1, 2 , . . . } , where 0° = 1. 

Theorem 6.1. Let q > 1 be an integer, (A I) holds and 0 = Eq. 
(I) If we denote x(y, y*) = |y — y*|, then in the notation (6.1), (6.2) the assumptions 

(ARII) (A I I I ) - (A V), (AR VI) are fulfilled. 
(II) If (1.4) holds, Tu is the statistic (1.28) and OeQ1- Q0, then (1.29) holds 

a.e. Pg, (1.9) holds a.e. Pe with C(6) = 2 J(6) (i.e., Tu is optimal in the sense of exact 
slopes) and the assertions (I) and (II) of Theorem 1.3 are true. 

Let us put 

(6.3) 0 / 0 = 1 , x/0 = + 00 if x > 0 , 0 log y = 0 if y _ 0 , 

x log(+co) = +00 if x > 0 

and for y e 3, x € <0, + 00) denote 

(6.4) g(x, y) = y - x + x log (x/y) . 

Before carrying out proof of the theorem we shall establish validity of the following 
assertion. 

Lemma 6.1.Let the random variable £ has Poisson distribution Pr 

(I) If the real number a > y, then 

(6.5) l o g P [ £ _ a ] _ -g(a,y). 

(II) If 0 S a < y, then 
(6.6) logP[£ = a\= -g(a,y). 

(III) If z e <0, £), then 

(6.7) E [ e x p ( 2 z a ( £ , y ) ) ] < - ^ — . 
1 — 2z 

Proof. (I) If y = 0, then (6.5) holds. If y > 0, then z = log (aly) e <0, +00) 
and making use of the Markov inequality we obtain that 

P[£ = a]^ E[ez«] Q~za = exp [y(ez - 1) - za\ . 

(II) The proof is similar as in the case (6.5). 

(Ill) Let us assume that y > 0 be an arbitrary but fixed real number and 

Px(y) = P[g(Z, y) = \t,Z > y] , P2(y) = P[g(£, y) = \t, £ _ y] . 
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Since g(x) -» + oo if x -> + oo, the set A = {j;j is an integer, j > y, g(j, y) >, %t) 
is non-empty. If we denote a = mm{j;jeA}, then taking into account the fact 
that g increases on (7, + 00) and making use of (6.5) we obtain the inequality 

(6.8) log Px(y) = log P[£ = a] = -g(a, y) = - \t. 

Since g is decreasing on <0, y) and g(0) = y, similarly as in (6.8) the relation (6.6) 
implies that 

logP2(y) = -it 
and we see that 

(6.9) P[^,y) = ir] = 2 e - ' / 2 . 

As pointed out in [1], p. 294, for every non-negative measurable function g 

(6.10) jgdP = J + 00P[sr = t]dt 

in the sense that if either integral exists, so does the other and the two are equal. 
Combining (6.9) and (6.10) we get 

E[exp (2zg(Z, y))] = J J °° p\g(Z, y) = 1 log t] dt < 1 + f+a0 2 f ^ dt = 
L 2z _ 

= 1 + 4z/(l - 2z) . 

Since for y = 0 the inequality (6.7) obviously holds, the lemma is proved. • 

Proof of Theorem 6.1. (I) 

(AR II) This assumption is obviously true. v 

(A III) Let us denote 

(6.H) 7 - - 2 > i . 
n j=i 

If y = 0, then for An = {x<-n) eXn; X > 0} the relations (1.19) and (1.20) hold, 
and denoting Fc = <0, \c\ + 1> we easily obtain (1.21). 

Let y be a positive real number. 

If P > 1, then z = 1 — / j - 1 e (0, 1), and taking into account Markov's inequality 
and (6.7) we see that 

n 
py{ E 9(xj, y) > H/3] = e-ZB/? Efexp (zq(x, y))]n < exp [-«/3 + n + n log 2/S] . 

J'=I 

This together, with (6.11), ££(nf) = P„y and (6.5) yields existence of positive real 
numbers a, /? such that in the notation 

(6.12) 4*> = {x<">; y > a} , A<2> = {x̂ ">; £ ^(x,, y) > «^} 
J = I 

the inequality (4.6) holds for / = 1, 2. Hence if we put 

(6.13) 4 = 4 ^ 4 2 ) 

then (1.19) follows from Lemma 2.1. 
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According to the Stirling formula from Section le.7 in [10] for x = 1, 2, . . . 

(6.14) x! = y/(2nx) xx e~x e J ( x ) , (x + i ) _ 1 < \2A(x) < x _ 1 . 

Since log x < x, 

log x! < \ log 2TU + \ log (x + 1) + x log x - x + 1 + < n + 2 + x log x . 

Thus 
1 1 " 
- log L(xu ..., x„, y)> - y + y log y - (it + 2) - - £ x,. log x, = 

1 " 
= ~(n + 2) - - X #(A> v) _ ? 

n j = i 

and from (6.12), (6.13) we obtain (1.20). Further, from (6.14) one easily finds out that 

log x! >. x log x — x 

for all x = 0, 1, 2 .... Hence if y* > 0, then 
n n n 

(6.15) logL(x l5 ...,xn, y*) = -ny* + Z x ; l oS 7* ~ Z */ l oS */ + Z x ; = 
y = i j = i j f = i 

» y* " 
= n(y - y*) + Z *; l og Z #(*;> ?) • 

j = i y J = I 

But o(x, y) > 0, and for y* > y, (x l5 ..., X„)GX" - An therefore 

1 y* 
- log L(xu ..., x,„ y*) = y - y* + a log — 
n y 

which implies the statement (3) in (A III). 
(A IV) Since the function h(y) = log/(j, y) is increasing on <0,;> and decreasing 

on <;, + oo), for 5 > 0 
Q-JjJ -JjJ 

j' = <5 

(6.16) L(j, V) = sup {/(;, y) ; 0 = y < 5} = «j Д . 

j! 

; > < 5 

and obviously JL(j, V)dv(j) = Z L ( j ' V) < + G 0 -
7 = 0 

(A V) If y = 0, then L(x(n), S) = L(xc'°, y) = 1 with probability 1, and (A V) 
holds. 

Let y be a positive real number. Since the function g(\, y) is increasing on (y, + co) 
and q(x, y) -• + co if x -> + oo, there exists a > y such that g(a, y) > max {y, rj}. 
But g(0, y) and g is decreasing on (0, y), which together with (6.5) implies that 

Py \- log ^ 4 } = g(a, y)l = Py[g(% y) = g(a, y)] = Py[y = a] = 
|_n L(xw, y) 

= P"„y[£ = no] < exp [-o(?m, ny)] = exp [-ng(a, y)] < exp [-nn] . 
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(AR VI) It is easy to see that 

(6.17) K(y, y*) 
y 

ľ* — ľ + ľ l°g — y* > 0 
y* 

+ oo y* = 0, y > 0 

є 

and (AR VI) is true, if y = 0. Let y > 0. Since K(y, •) decreases on (0, y), increases 
on (y, + oo) and K(y, y*) -*• + oo if y* -*• 0 + or y* -> + oo, (1.25) implies (1.26) and 
(AR VI) obviously holds. 

(II) Validity of (1.29) a.e. Pe follows from Theorem 1.2 (I). 

If 0 e Q0, then the equality C(0) = 2 J(0) follows from (AR VI), (2.29), (2.30) 

and (1.13). Let 0 e Qx — Q0. This according to (AR VI) means that 

(6.18) J(0)>O. 

Since 

(6.19) Lu(t)SLu(t). L„(t) = supjP e 2 1 o g ^ ; ^ = t 

from (6.18), (I) and (1.13) we obtain that validity of C(0) = 2 J(0) (and by this 
also validity of the whole Theorem 6.1) will be established by proving the following 
lemma. 

Lemma 6.2. If q is a positive integer, then in the notation (1.2), (1.3) (1.7), (6.1). 

(6.2) and (6.19), irrespective of validity of (A I) 

(6.20) sup {L„(t); u = 1} = exp [ - i t ( l + o(l))] 

where lim o(\) = 0. 
(-• + 00 

Proof. Let 0 e 0. The random variables 

i it-*-'') 

are independent and ^ = w^^j has Poisson distribution with the parameter nu

J Oj. 

If t > 2q, then the number 

z = i - ( q / t ) e ( 0 , i ) 

which together with Markov's inequality and (6.7) yields 

(6.21) 

where 

(6.22) 

P* 
• L(x^u>, 0 ) ; 
2 log — > t 

L(x^,0) ~ _ 
= Pв[2І^,".ľЧ) = '] = 

Ј = I 

= exp (-z t) E[exp ( X zg(ţj, тÿ> j))ì < ™P W O ] 
Ј = I 

Ҫ)(t) = - z t + q log 
1 - 2z 

" K l + o(l)] • D 
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We conclude the paper with discussing the hypothesis of isotonicity of means, 
which is under assumptions of normality analysed in Example 3. 

Example 6. Testing isotonicity of means. 

Let 3 be the set (6.1), 0 = Eq, q > 1, <̂  is a partial order on S = {1, ..., q} and 

H«_ = {6 = ( 0 j , . . . , 0g) e 0; vector 0 is isotone and has positive coordinates} 

is the hypothesis that means of the underlying Poisson populations are isotone. If 
H2 = {9 e 0; vector 0 has positive coordinates} 

is the hypothesis placing no restriction on order of the means, then according to 
Theorem 6.1 the statistic 

(6.23) T12 = 2 1 o g L ( x ( " ) , H 2 I 
L/x^H,) 

is optimal for testing H t against H2 in the sense of exact slopes, provided that (A I) 
holds (we remark that T12 can be computed by means of the estimates, described 
in [11], p. 498). If n(

u
l) = n(2) = ... = n(q) tend to + co for u •—> oo, then according 

to Corollary 4.2 in [11] the function (1.31) is of the form (1.34) and from Theorem 
6.1 we obtain that the approximate slope of (6.23) exists and equals its exact slope. 

(Received April 22, 1988.) 
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