
Kybernetika

Ivan Kramosil
An attempt to formalize the notion of heuristics in state space

Kybernetika, Vol. 14 (1978), No. 6, (461)--465

Persistent URL: http://dml.cz/dmlcz/124269

Terms of use:
© Institute of Information Theory and Automation AS CR, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124269
http://project.dml.cz

K Y B E R N E T I K A — VOLUME 14 (1978). N U M B E R 6

An Attempt to Formalize the Notion
of Heuristics in State Space

IVAN KRAMOSIL

A proposition is suggested how to define formally the notion of heuristic procedure using the
apparatus of state space. The suggestion is of discussive character.

The notions of heuristics and heuristic procedures or algorithms occur often in
papers and considerations dealing with artificial intelligence or computer science.
Strangely enough, the use of these notions is (almost always) informal and rather
vague and it is based on a supposed "common sense" of the reader that he will
understand these expressions in the same way as the author intended or at least in
a way not substantially different from the intended one. Some authors emphasize
several aspects which can be taken as attributes of heuristics or at least as typical
features of heuristic procedures, but these properties are far from being exhaustive
and categoric as well as far from being mathematically formalized or even form-
alizable. Also some counterexamples, i.e., examples of procedures or solutions which
cannot be or should not be considered as heuristic ones are far from being so rich
and exact as to be able to serve as a ground of a "negative definition" of heuristics.

A heuristic procedure is one which goes very well, quickly and easily in some
"typical" or "usual" cases, but does not go or goes very badly in other cases. The
examples of both the groups of inputs are easily obtainable, but the boundaries
between them are very unsharp ar.d vague. Deciding to use some heuristics or
proposing a heuristic procedure we usually profit of a side information, however,
it is very difficult or even impossible to classify the pieces of information being at
our disposal into the "direct" and "side" ones.

Here we propose a possibility how to formalize the concept of heuristics using the
notion of state space and the apparatus of mathematical logic. In no case we would
like to pretend as if the formalization proposed here were the only possible or the
best one, our only intention is to present our ideas as a subject for further discussion
and critique.

Let us start with the notion of state space. Consider a nonempty set ££, the elements
of which are denoted by s (possibly indexed) and called sfafes. Intuitively, states
are to formalize various states or configurations or situations of the environment
in which a subject (human being, robot, automaton) is to solve a problem, to execute
a procedure or computation, to take a decision. The environment is not static and it
may transit from a state to another one; either according to its internal laws of
development, or according to interventions (actions, operations) executed by the
subject, or according to some random influences if we want or need to distinguish
them from the internal laws. In order to formalize the possibilities of the subject to
intervene in the environment and change its instantaneous state let us introduce the
notion of operator. Operator q> is a partial mapping defined in ££ and taking its
values again in £f; by Dom (<p) we denote the set of states for which it is defined. The
partial character of the mapping q> corresponds to the fact, that real, physical
operators are applicable only in certain states of the environment, not in all states
(there is usually a complex of conditions ascribed to an operator, under which it is
applicable). The pair {££, $> is usually called the state space, $ = {q>}.

The next part of our construction is a language ££ which enables to speak about
states of the state space, about their properties and relations among them. To be
able to express also the dynamics of the environment let us parametrize the particular
statements by the name of the state to which the statement is referred. Formally it is
done by replacing ££ by the two-sorted (or more than two-sorted if ££ itself was
many-sorted) language ££* by enriching each elementary formula by a new variable
or constant (term, in general) of a new, situation type and considering only those
formulas in which just one situation term occurs; in listing the variables, constants
or terms occuring in a formula of ££* this situation one is listed as the last. As a rule,
and this will be the typical situation for our further considerations, the means of the
language ££* do not enable to distinguish any two states s, s' e ££, i.e., the information
about states, expressible in ££*, is not complete from the point of view of distin
guishing among states.

We shall need a formalization of what we have just said. Let Ax be a set of formulas
of ££*, called axioms, and expressing the known state-independent true assertions
(corresponding to general laws governing the basic features and dynamical develop
ment of the environment in question) as well as the assertions concerning particular
states and containing names of these states as situation terms. Moreover, consider
the usual deduction rules of mathematical logic corresponding to the type and
order of the language ££*. Instead writing AxY A for denoting the fact that A
(a formula of ££*) can be derived from the formulas contained in Ax via the deduc
tion rules we shall write simply YA, as Ax will be supposed to be fixed and, hence, to
play the same role as logical axioms.

The level of distinguishing among states on the grounds of ££ and Ax is formalized
in the following definition. If A is a formula of ££ and s a situation variable or term,
then A[s] denotes the formula of ££* resulting when A is parametrized by s.

Definition 1. Let sr, s2e S£, let s1(s2 be situation constants or terms corresponding 463
to these two states (their names). Then s1; s2 are equivalent with respect to S£ and Ax,
formally s1 « s2(S£, Ax), iff for all formulas A e JSf

hA [s t] iff rA [s"2] .

As S£ and Ax will be fixed in what follows we write simply s t « s2. Clearly, « is an
equivalence relation on 5*\ Denote by S£0 the quotient algebra 5^/«; its elements
will be, if useful, considered also as sets of states, i.e., as subsets of Sf.

Let J be a system of subsets of £f (i.e., J <= 0>(Sf)) satisfying the only condition
that lxeJ and I2 => J. imply J2 e J: Elements of J are called important sets
(of states). In general, important sets need not be definable in the language S£*,
they even need not be expressible as unions of elements from Sf0. This "independence"
of S£* and the other language in which important sets are described is of crucial
significance in what follows.

A procedure (for solving a problem, taking a decision, reaching a goal) is, in the
most general form, a mapping p ascribing to each s e S" an infinite sequence of opera
tors from <P, formally, p : Sf -*• $"> (finite sequences of operators can be always
considered as special cases of the infinite ones supposing there is an "empty operator"
A in <P). Clearly, because of the limited abilities in distinguishing the states of S£
by the means of S£ we are not able to define a procedure explicitly, rather we define
a mapping from ^ (^ 0) ' n t 0 SP(^\ i-e., to a set of states distinguishable from
others by S£ we ascribe a set of operator sequences from (P00, i.e., a branching plan.
In other words, not being able to separate a particular state, we must take into
consideration simultaneously several possibilities how to proceed; just in the process
of executing the environment will force us to follow the way ascribed by the procedure
in question to the actual initial state.

As a rule, the subject's activity in the environment is not senseless, it aims to reach
a goal. The goal usually consists in transforming of the state (configuration) of the
environment into a desired state, more formally, into a state satisfying some a priori
given goal conditions. Let G be a formula of S£* with one free variable s, let {s : s e
e S£, G[_s]} be just the set of desired goal states. A pair <s, G>, s e S£, is called
a problem (in the state space <<9ff, $>).

Definition 2. Let <<9", <P} be a state space, let p be a procedure, let <s, G> be a prob
lem. Procedure p solves the problem <s, G>, iff, denoting p(s) by (pi(p2cp3 ..., there is
an index i such that

(i) for all j < i, (p / ^ - i •••ji(s) •••) e Dom (<Pj+i)> s e Dom (<Pi)«
(ii) YG(q>{q>i.1...(p1(f)..)).
The minimal i satisfying (i) and (ii) will be denoted by l(s, G, p), for other s put
/(s, G, p) = oo. Denote

p(G) = {s:seS£, l(s, G, p) < oo} .

464 Definition 3. Let {Sf, <P~) be a state space, let p be a procedure, let <s, G> be
a problem. Procedure p is called heuristic in the state s, iff there are sl5 s2 e Sf,
sx x s2 x s, such that st e p(G), s2 e Sf — p(G). Procedure p is called heuristic,
if it is heuristic in all states of Sf and if, at the same time, p(G) e J', i.e., p(G) is an
important set. Procedure p is called semi-heuristic, if there is at least one s e Sf in
which p is heuristic and if again, at the same time, p(G) e J'.

Very often we speak about heuristic procedures not only in the "absolute" sense,
but in comparison with other procedure or procedures. Also this notion can be for
malized by the means of our apparatus.

Definition 4. Let (Sf, <P> be a state space, let p., p2 be procedures, let <s, G> be
a problem. Denote

<Pu P2> (G) = {s : s e Sf, l(s, G, Pl) < l(s, G, p2)} .

Procedure px is called heuristic with respect to p2 in the state s, iff there are s1? s2 e Sf,
sx & s2 & s, such that sx s <pu p2> (G), s2 e Sf — <p1; p2> (G). Procedure Pi is
called heuristic with respect to p2, if it is heuristic with respect to p2 in all states of Sf
and if, at the same time, <p l s p3> (G) e J. Procedure px is called semi-heuristic
with respect to p2, if there is at least one s e y in which px is heuristic with respect
to p2 and if, at the same time, <px, p2> (G) e J.

Intuitively said, a procedure is heuristic if it solve the problem (or solves it sooner
than another procedure) for an important, e.g., great enough or probable enough
set of states and if, however, for any such state there is an indistinguishable state in
which the procedure fails or is at least less effective than the other procedure with
which the former one is compared. In the case of a semi-heuristic procedure this
uncertainty takes place only in some cases, on the other hand, there are states distin
guishable from the others and such that we can be sure that the procedure goes or
goes well for these states. Of course, the crucial role is played by the formalized theory
(Sf, Ax, h>, enriching the language or the set of axioms we make the quotient
algebra Sf\x refined. If it becomes refined enough to separate the states with
l(s, G, p) < oo from the other states, the procedure ceases to be heuristic or even
semi-heuristic, in spite of the fact that it has not been changed, as far as considered
from the platonistic point of view, i.e., as mapping from Sf into <PCC. We do not solve
here the problem which are the relations among non-heuristic, non-semi-heuristic
and algorithmical procedures.

Let us finish this explanation by an example. Consider a procedure consisting in
driving a nail into a wall with a hammer. For the sake of simplicity we may identify
the set Sf of states with the set of all walls supposing a nail and a hammer to be at
our disposal in all states. The only operator <p being at our disposal is "strike the nail
one time with the hammer", i.e., <£ = {up}. Consider the only possible procedure
p : Sf -+ $c°, p(s) = (px for all s 6 Sf. Let i f b e a formalized language which is able
to express the visually verifiable properties of walls, e.g., colour, quality of surface.

eventually temperature, etc., but .§? has no means to express the internal properties 465
of walls, their construction, chemical quality of the raw material used, etc. Namely,
i f is not able to express the fact whether there is or is not a metallic objection in the
wall which could prevent the nail from driving in the wall. Hence, our procedure p
is heuristic, as there are two walls, not differing from each other from the observa
tional point of view, but such that in one case the procedure successes (if there is no
metallic objection, a finite number of strikes will do), in the other case the same
procedure fails (if there is a metallic objection inside the wall). Considering, e.g., the
set of all purely wooden or brick walls as an important one (remember, that this pro
perty is not expressible in i f !) we can see that our procedure goes for all states inside
this important set, i.e., it is a heuristic procedure in our sense.

Below we refer some works which may be useful for an orientation in the problem
domain connected with heuristics or heuristic procedures. The author kindly asks
the readers to send their opinions, comments, remarks or objections either in the
form of a discussion contribution to Kybernetika, or in the form of a private com
munication to the author.

(Received June 16, 1978.)

REFERENCES

[1] G. Pólya: How to solve it. Princeton Univ. Press, Princeton. N.J. 1954. Russian translation:
Mir, Moscow 1961.

[2] H. Gelertner, N. Rochester: Intelligent behavior in problem-solving machines. IBM Journal
Res. Dev., 1958, pp. 336-345.

[3] N. J. Nilsson: Problem-solving methods in artificial intelligence. Mc Graw-Hill, New York
1971. Russian translation: Nauka, Moscow 1973.

[4] J. R. Slagle: Artificial intelligence: the heuristic programming approach. Mc Graw-Hill,
New York 1971. Russian translation: Nauka, Moscow 1973.

[5] Artificial intelligence and heuristic programming. N. V. Findler and B. Meltzer, Eds. Edin
burgh 1971.

[6] E. A. AneKcaHflpoB: OCHOBM TeopwH SBPHCTHTOKHX penieHHii. CoBeTCKoe paaao, MocKBa 1975.

Dr. Ivan Kramosil, CSc, Ústav teorie informace a automatizace ČSAV (Institute of Information
Theory and Automation — Czechoslovak Academy of Sciences), Pod vodárenskou VĚŽÍ 4, 182 08
Praha 8. Czechoslovakia.

		webmaster@dml.cz
	2012-06-05T05:39:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

