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K Y B E R N E T I K A — VOLUME 14 (1978). N U M B E R 6 

An Attempt to Formalize the Notion 
of Heuristics in State Space 

IVAN KRAMOSIL 

A proposition is suggested how to define formally the notion of heuristic procedure using the 
apparatus of state space. The suggestion is of discussive character. 

The notions of heuristics and heuristic procedures or algorithms occur often in 
papers and considerations dealing with artificial intelligence or computer science. 
Strangely enough, the use of these notions is (almost always) informal and rather 
vague and it is based on a supposed "common sense" of the reader that he will 
understand these expressions in the same way as the author intended or at least in 
a way not substantially different from the intended one. Some authors emphasize 
several aspects which can be taken as attributes of heuristics or at least as typical 
features of heuristic procedures, but these properties are far from being exhaustive 
and categoric as well as far from being mathematically formalized or even form-
alizable. Also some counterexamples, i.e., examples of procedures or solutions which 
cannot be or should not be considered as heuristic ones are far from being so rich 
and exact as to be able to serve as a ground of a "negative definition" of heuristics. 

A heuristic procedure is one which goes very well, quickly and easily in some 
"typical" or "usual" cases, but does not go or goes very badly in other cases. The 
examples of both the groups of inputs are easily obtainable, but the boundaries 
between them are very unsharp ar.d vague. Deciding to use some heuristics or 
proposing a heuristic procedure we usually profit of a side information, however, 
it is very difficult or even impossible to classify the pieces of information being at 
our disposal into the "direct" and "side" ones. 

Here we propose a possibility how to formalize the concept of heuristics using the 
notion of state space and the apparatus of mathematical logic. In no case we would 
like to pretend as if the formalization proposed here were the only possible or the 
best one, our only intention is to present our ideas as a subject for further discussion 
and critique. 



Let us start with the notion of state space. Consider a nonempty set ££, the elements 
of which are denoted by s (possibly indexed) and called sfafes. Intuitively, states 
are to formalize various states or configurations or situations of the environment 
in which a subject (human being, robot, automaton) is to solve a problem, to execute 
a procedure or computation, to take a decision. The environment is not static and it 
may transit from a state to another one; either according to its internal laws of 
development, or according to interventions (actions, operations) executed by the 
subject, or according to some random influences if we want or need to distinguish 
them from the internal laws. In order to formalize the possibilities of the subject to 
intervene in the environment and change its instantaneous state let us introduce the 
notion of operator. Operator q> is a partial mapping defined in ££ and taking its 
values again in £f; by Dom (<p) we denote the set of states for which it is defined. The 
partial character of the mapping q> corresponds to the fact, that real, physical 
operators are applicable only in certain states of the environment, not in all states 
(there is usually a complex of conditions ascribed to an operator, under which it is 
applicable). The pair {££, $> is usually called the state space, $ = {q>}. 

The next part of our construction is a language ££ which enables to speak about 
states of the state space, about their properties and relations among them. To be 
able to express also the dynamics of the environment let us parametrize the particular 
statements by the name of the state to which the statement is referred. Formally it is 
done by replacing ££ by the two-sorted (or more than two-sorted if ££ itself was 
many-sorted) language ££* by enriching each elementary formula by a new variable 
or constant (term, in general) of a new, situation type and considering only those 
formulas in which just one situation term occurs; in listing the variables, constants 
or terms occuring in a formula of ££* this situation one is listed as the last. As a rule, 
and this will be the typical situation for our further considerations, the means of the 
language ££* do not enable to distinguish any two states s, s' e ££, i.e., the information 
about states, expressible in ££*, is not complete from the point of view of distin
guishing among states. 

We shall need a formalization of what we have just said. Let Ax be a set of formulas 
of ££*, called axioms, and expressing the known state-independent true assertions 
(corresponding to general laws governing the basic features and dynamical develop
ment of the environment in question) as well as the assertions concerning particular 
states and containing names of these states as situation terms. Moreover, consider 
the usual deduction rules of mathematical logic corresponding to the type and 
order of the language ££*. Instead writing AxY A for denoting the fact that A 
(a formula of ££*) can be derived from the formulas contained in Ax via the deduc
tion rules we shall write simply YA, as Ax will be supposed to be fixed and, hence, to 
play the same role as logical axioms. 

The level of distinguishing among states on the grounds of ££ and Ax is formalized 
in the following definition. If A is a formula of ££ and s a situation variable or term, 
then A[s] denotes the formula of ££* resulting when A is parametrized by s. 



Definition 1. Let sr, s2e S£, let s1( s2 be situation constants or terms corresponding 463 
to these two states (their names). Then s1; s2 are equivalent with respect to S£ and Ax, 
formally s1 « s2(S£, Ax), iff for all formulas A e JSf 

hA [s t ] iff rA [s"2 ] . 

As S£ and Ax will be fixed in what follows we write simply s t « s2. Clearly, « is an 
equivalence relation on 5*\ Denote by S£0 the quotient algebra 5^/«; its elements 
will be, if useful, considered also as sets of states, i.e., as subsets of Sf. 

Let J be a system of subsets of £f (i.e., J <= 0>(Sf)) satisfying the only condition 
that lxeJ and I2 => J. imply J2 e J: Elements of J are called important sets 
(of states). In general, important sets need not be definable in the language S£*, 
they even need not be expressible as unions of elements from Sf0. This "independence" 
of S£* and the other language in which important sets are described is of crucial 
significance in what follows. 

A procedure (for solving a problem, taking a decision, reaching a goal) is, in the 
most general form, a mapping p ascribing to each s e S" an infinite sequence of opera
tors from <P, formally, p : Sf -*• $"> (finite sequences of operators can be always 
considered as special cases of the infinite ones supposing there is an "empty operator" 
A in <P). Clearly, because of the limited abilities in distinguishing the states of S£ 
by the means of S£ we are not able to define a procedure explicitly, rather we define 
a mapping from ^ ( ^ 0 ) ' n t 0 SP(^\ i-e., to a set of states distinguishable from 
others by S£ we ascribe a set of operator sequences from (P00, i.e., a branching plan. 
In other words, not being able to separate a particular state, we must take into 
consideration simultaneously several possibilities how to proceed; just in the process 
of executing the environment will force us to follow the way ascribed by the procedure 
in question to the actual initial state. 

As a rule, the subject's activity in the environment is not senseless, it aims to reach 
a goal. The goal usually consists in transforming of the state (configuration) of the 
environment into a desired state, more formally, into a state satisfying some a priori 
given goal conditions. Let G be a formula of S£* with one free variable s, let {s : s e 
e S£, G[_s]} be just the set of desired goal states. A pair <s, G>, s e S£, is called 
a problem (in the state space <<9ff, $>). 

Definition 2. Let <<9", <P} be a state space, let p be a procedure, let <s, G> be a prob
lem. Procedure p solves the problem <s, G>, iff, denoting p(s) by (pi(p2cp3 ..., there is 
an index i such that 

(i) for all j < i, ( p / ^ - i •••ji(s) •••) e Dom (<Pj+i)> s e Dom (<Pi)« 
(ii) YG(q>{q>i.1...(p1(f)..)). 
The minimal i satisfying (i) and (ii) will be denoted by l(s, G, p), for other s put 
/(s, G, p) = oo. Denote 

p(G) = {s:seS£, l(s, G, p) < oo} . 



464 Definition 3. Let {Sf, <P~) be a state space, let p be a procedure, let <s, G> be 
a problem. Procedure p is called heuristic in the state s, iff there are sl5 s2 e Sf, 
sx x s2 x s, such that st e p(G), s2 e Sf — p(G). Procedure p is called heuristic, 
if it is heuristic in all states of Sf and if, at the same time, p(G) e J', i.e., p(G) is an 
important set. Procedure p is called semi-heuristic, if there is at least one s e Sf in 
which p is heuristic and if again, at the same time, p(G) e J'. 

Very often we speak about heuristic procedures not only in the "absolute" sense, 
but in comparison with other procedure or procedures. Also this notion can be for
malized by the means of our apparatus. 

Definition 4. Let (Sf, <P> be a state space, let p., p2 be procedures, let <s, G> be 
a problem. Denote 

<Pu P2> (G) = {s : s e Sf, l(s, G, Pl) < l(s, G, p2)} . 

Procedure px is called heuristic with respect to p2 in the state s, iff there are s1? s2 e Sf, 
sx & s2 & s, such that sx s <pu p2> (G), s2 e Sf — <p1; p2> (G). Procedure Pi is 
called heuristic with respect to p2, if it is heuristic with respect to p2 in all states of Sf 
and if, at the same time, <p l s p3> (G) e J. Procedure px is called semi-heuristic 
with respect to p2, if there is at least one s e y in which px is heuristic with respect 
to p2 and if, at the same time, <px, p2> (G) e J. 

Intuitively said, a procedure is heuristic if it solve the problem (or solves it sooner 
than another procedure) for an important, e.g., great enough or probable enough 
set of states and if, however, for any such state there is an indistinguishable state in 
which the procedure fails or is at least less effective than the other procedure with 
which the former one is compared. In the case of a semi-heuristic procedure this 
uncertainty takes place only in some cases, on the other hand, there are states distin
guishable from the others and such that we can be sure that the procedure goes or 
goes well for these states. Of course, the crucial role is played by the formalized theory 
(Sf, Ax, h>, enriching the language or the set of axioms we make the quotient 
algebra Sf\x refined. If it becomes refined enough to separate the states with 
l(s, G, p) < oo from the other states, the procedure ceases to be heuristic or even 
semi-heuristic, in spite of the fact that it has not been changed, as far as considered 
from the platonistic point of view, i.e., as mapping from Sf into <PCC. We do not solve 
here the problem which are the relations among non-heuristic, non-semi-heuristic 
and algorithmical procedures. 

Let us finish this explanation by an example. Consider a procedure consisting in 
driving a nail into a wall with a hammer. For the sake of simplicity we may identify 
the set Sf of states with the set of all walls supposing a nail and a hammer to be at 
our disposal in all states. The only operator <p being at our disposal is "strike the nail 
one time with the hammer", i.e., <£ = {up}. Consider the only possible procedure 
p : Sf -+ $c°, p(s) = (px for all s 6 Sf. Let i f b e a formalized language which is able 
to express the visually verifiable properties of walls, e.g., colour, quality of surface. 



eventually temperature, etc., but .§? has no means to express the internal properties 465 
of walls, their construction, chemical quality of the raw material used, etc. Namely, 
i f is not able to express the fact whether there is or is not a metallic objection in the 
wall which could prevent the nail from driving in the wall. Hence, our procedure p 
is heuristic, as there are two walls, not differing from each other from the observa
tional point of view, but such that in one case the procedure successes (if there is no 
metallic objection, a finite number of strikes will do), in the other case the same 
procedure fails (if there is a metallic objection inside the wall). Considering, e.g., the 
set of all purely wooden or brick walls as an important one (remember, that this pro
perty is not expressible in i f ! ) we can see that our procedure goes for all states inside 
this important set, i.e., it is a heuristic procedure in our sense. 

Below we refer some works which may be useful for an orientation in the problem 
domain connected with heuristics or heuristic procedures. The author kindly asks 
the readers to send their opinions, comments, remarks or objections either in the 
form of a discussion contribution to Kybernetika, or in the form of a private com
munication to the author. 

(Received June 16, 1978.) 
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