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K Y B E R N E T I K A - VOLUME 27 (1991), NUMBER 6 

SEMISTOCHASTIC DECOMPOSITION SCHEME 
IN MATHEMATICAL PROGRAMMING 
AND GAME THEORY 

TRAN QUOC CHIEN 

This work deals with the optimization problem sup inf S(x, y), which plays, undoubtedly 
xeX yeY 

a crucial part in mathematical programming and game theory. On the basis of probability theory, 
a solving approach — semistochastic decomposition is proposed. This method is finite with 
probability 1 without any hypothesis about convexity or differentiability as it is usually required 
in traditional methods. 

1. INTRODUCTION 

Decomposition method was used first in linear programming by Dantzig and 
Wolfe [1]. The decomposition idea was then further developed by numerous authors 
(see Benders [2], Geoffrion [3], Van Roy [4], Kornai and Liptak [5] and references 
therein). In [6, 7] it was shown that decomposition methods can be unified in a general 
scheme of the following problem 

s* = sup inf S(x, y) , (1) 
xeX yeY 

where X and Y are nonempty sets and S(x, y) is a real function on X x Y. 

Problem (1) is also the main problem in game theory [18]. However, existing 
iterative algorithms for solving problem (1) (see [7 — 12]) converge only under 
certain hypotheses about convexity and differentiability. As regards the solving 
scheme in (6), no convergence criterion has been there established except the trivial 
case when Yis finite. 

On the other hand, using duality theory one can convert optimization problems 
of the form 

/ * - inf/(-) (2) 
zeZ 
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where Z is a set and f(z) is a real-valued function on Z, to the ones of form (1), where 
problems 

inf S(x, y) 
yeY 

are relaxed problems (see [13 — 16]). This fact enables us to apply duality theory for 
solving optimization problems of the form (2). Therefore, it is desirable to work up 
an efficient method for solving the most general problem (l). 

2. SEMISTOCHASTIC DECOMPOSITION SCHEME 

First let us define some necessary notions. Given a positive number e, zEe Z is 
called an e-optimal solution of problem (2) if 

\f(ze)~f*\Ss, (3) 

(xE, ve)eX x Y is called an e-optimal solution of problem (1) if 

\S(xe,ve)-infS(xe,y)\ = £ (4) 
yeY 

(i.e. ye is an e-optimal solution of problem inf S(xe, y)) 
yeY 

and 
\S(xE, yE) - 5*| = e. (5) 

Henceforth, instead of strictly optimal solutions we shall work with e-optimal 
solutions, where e is a given precision. 

Further suppose that Yis a subset of W and v is an r-dimensional random vector 
the values of which can be generated by a generator. 

The semistochastic decomposition scheme consists of the following steps. 

Initiation: Choose a precision e > 0, positive parameters e1, e2, e3 and a nonempty 

set F c 7 . 

Iteration: k = 0, 1, 2, ... 

(i) Solve the master problem 

s' = sup inf S(x, y) . (6) 
xeX yeY 

Let (x*, y) be an e-optimal solution of problem (6). 

(ii) Solve the subproblem 

s" = inf S(x*,y). (7) 

Let y* be an e2-optimal solution of (7). If 

\S(x*, y) - S(x*, y*)\ = e3 , (8) 

stop, (x*, y*) is the desirable solution. Otherwise, generate a vector value of the random 
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vector v. Denote the just generated vector by vk+1, set 

F : = Yu{y*,vk+1} (9) 

and go to iteration k + 1. 

Remark 1. It is easily seen that 

s' = s* = s". (10) 

Furthermore, s' decreases whilst s" generally is not monotoneous. 

Remark 2. Suppose that the procedure terminates. Then we have 

[s' -S(x*,y)\^Sl (11) 

|s" - S(x*, y*)\ $, s2 (12) 
and 

\S(x*, y) - S(x*, v*)[ ^ £3 • (8) 

From (8) and (11) it follows 

\s' - S(x*, y*)\ ^ fil + e3 . (13) 

Combining (10), (12) and (13) we have 

- e 2 ^ s* - S(x*, y*) ^ fil + e3 . (14) 

Consequently, if 

max {e2, e1 + e3} ^ s (15) 

from (12) and (14) it follows that (JC*, y*) is an e-optimal solution of problem (l). 

In the sequel we denote by P(E) the probability of an event E. 

Lemma 1. Suppose that a subset M c Y satisfies 

P{veM} > 0 . 
Then 

P{3k:vkeM} = 1. (16) 

Proof. The assertion immediately follows from the law of large numbers [17]. D 

Remark 3. (16) is equivalent to 

P{vk $ M Vfc} = 0 . (17) 

For y e Yand 3 > 0 we denote 

Bd
y = {y'eY: \\y' ~ y\\ ^5} n Y . 

Lemma 2. Suppose that 5 > 0 and Yis bounded. Let E denote the event that for 
all n e N the set {vu ..., v„} is not a (5-net of Y Further let E denote the event 

3y e Y VneN:vn$ B^2 . 
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Then we have 

E c E. 

Proof. If [vlt ..., vn} is not a <5-net of Y, there exist y„ e Ysuch that 

vk$B>n V fe - ! , . . . , » . 

Therefore, if E occurs, there exists a sequence {y„} c= Y such that 

VneN V/c = l , . . . , n : ^ B J n . 

Since Yis bounded, there exists a cluster point y of the sequence {y„}. It is easily 
seen that 

VntB?4* Vn. (18) 

If y e Y, set y = y and we are done. Otherwise choose y e Ysuch that 

ly-y\\=tf. (19) 

From (18) and (19) it follows 

VnttfJ1 Vn 

which means that the event E also occurs. • 

Lemma 3. Suppose that <5 > 0 and Y is bounded. Let {yx,,.., ym} be a £<5-net of Y 
and let Fk, k = 1, ..., m, denote the event 

VntK* V«-
Then 

E C-Ej + E2 + ... + Em, 
where E is the event defined in Lemma 2. 

Proof. Suppose that the event E occurs, i.e. there exists y e Ysuch that 

vABf Vn. 

Since {yx, ..., ym} is a .fr<5-net of Y, there exists yk, 1 ^ /c rg. m, such that 

It is easily seen that 

vntB
s
yf Vn 

which means that the event Fk also occurs. • 

Lemma 4. Suppose that Yis bounded and the random vector v satisfies 

V5 > 0 Vy e Y: P{y e BJ} > 0 . (20) 
Then 

P(£) = 0 , 

where E is the event defined in Lemma 2. 
Proof. Since Yis bounded, there exists a £<5-net {yif ..., ym} of Y. In virtue of 
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Lemma 2 and Lemma 3 we have 

EczE, + E 2 + ... +Fm 

where Fk, k = 1, . . . , m, are the events defined in Lemma 3. By Lemma 1 we have 
P(Efc) = 0 V k = l , . . . , m . Consequently, our assertion follows from the inequality 

P(E) = P(E1) + P(E2) + ... + P(Era). D 

Theorem. Suppose that Yis bounded, the random vector v satisfies condition (20), 
function S(x, y) satisfies 

V£ > 0 35 > 0 V x e l : \\yi - y2\\ =S=> \S(x, yx) - S(x, y2)\ = £ (21) 

and the parameters sl5 e2, e3 satisfy 

ex + s2 < s 3 . (22) 

Then the procedure of the semistochastic decomposition scheme is finite with prob­
ability 1. 

Proof. Set 

e4 = i(e3 - 8j - s2). (23) 

By (21) there exists 5 > 0 such that 

Vx 6 X: \\yi - y2\\ = d => \S(x, y,) - S(x, y2)\ = 84 . (24) 

Let E denote the event that there exists n eN such that {vu ..., vn} is a S-net of Y 
By Lemma 4 we have P(E) = 1. Supposing that E occurs, we shall show that the 
procedure terminates not later than after n iterations and the theorem is thus proved 
for P(E) = 1. 

Therefore suppose that {vt, ..., vn] is a <5-net for some n e N. If the procedure does 
not terminate before the nth iteration, at the nth iteration we have 

| s ' - S ( x * , y ) | ^ e i (11) 

linf S(x*, y) - S(x*, y)\ = st (25) 

and 

|s"-S(x*,3;*)| = 82 . (12) 

Since {vt, ..., vn) c: Y, there exists y' eY such that 

\S(x*,y*)-S(x*,y')\^£A. (26) 

From (12) and (26) it follows 

\S(x*, y') - s"\ = e2 + £4 

whence 
inf S(x*, y) = S(x*, y') = £2 + £4 + s" = £2 + £4 + inf S(x*, y) 
yeY yeY 

which entails 

\S(x*, y') - inf S(x*, y)\ = £2 + £4 . (27) 
ye? 
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Combining (26), (27), (25) and (23) we obtain 

\S(x*, y*) - S(x*, y)\ = s, + s2 + 2. e4 = s3 . 

So criterion (8) is satisfied and the procedure terminates. • 

Remark 4. Condition (21) is satisfied if S(x, y) is uniformly continuous on X x Y 

or S(x, y) is continuous on X x Y and X, Y are compact sets. 

Remark 5. If Y satisfies 

V<5 > 0 Vy G Y: n(Bd
y) > 0 , 

where fi is the Lebesgue measure, then each random vector v with positive density 

function on Y, e.g. the uniformly distributed vector, satisfies condition (20). 

Remark 6. Analogously we can establish the semistochastic decomposition for the 

following problem inf sup S(x, y). 
xeX yeY 

(Received January 22, 1990.) 
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