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KYBERNETIKA —VOLUME 15 (1979), NUMBER 1 

Information Theoretical Optimization 
Techniques 

FLEMMING TOPS0E 

It is the object of this paper to show that a game theoretical viewpoint may be taken to underlie 
the maximum entropy principle as well as the minimum discrimination information principle, 
two principles of well known significance in theoretical statistics and in statistical thermodyna
mics. Our setting is very simple and certainly calls for future expansion. 

INTRODUCTION OF ABSOLUTE AND RELATIVE GAMES 

Let (I, </) be a measurable space, referred to as the state space. The state space 
is discrete if I is countable and J consists of all subsets of I. By 77 we denote the 
set of countable decompositions of I in measurable sets, directed in the usual way by 
refinement. 770 denotes the subset of 17 consisting of finite decompositions. 

By a distribution we mean a probability measure on (/, J). The set of all distribu
tions is denoted by M. For p.e M and n e II, \x | n denotes the restriction of \x to the 
ff-algebra generated by %. For a point function <p on I, <<p, /i> denotes the expectation 
of q> w.r.t. /.i. For a set function (p on «/, <<p, /*>„ denotes expectation of (p w.r.t. 
H | n, i.e. 

(<p,H->K = Z<l>(A)n(A). 

We employ the usual conventions regarding arithmetic involving ±00, eg. 0 . a = 0 
if a is an extended real number or if a is some udefined quantity. 

We need a very primitive concept of a code. To us, a code is a set function K : J* -> 
-» [0, 00] such that 

(1) X e_K(^) = - f o r a11 n e n • 
Ann 

If the reader fixes his attention to a specific n e II, if he changes the base e to 2 and 
if he assumes that K is integer valued, he will realize that (1) is transformed into the 



well known Kraft inequality concerning binary cedes; the reason why we insist on 
equality in (1) is because we only have codes without superfluous digits in mird. 
We see that our definition of a code does not reflect the structure of individual code
words, only the lengths of the codewords. The fact that we allow K to take arbitrary 
real values corresponds to a convenient mathematical idealization and can to some 
extent be justified by the noiseless coding theorem. 

We denote by K the set of all codes. There is a natural bijection between K 
and M by which KSK and r\ e M correspond to each other by the formulas 

(2) K(A) = log (\\r\(A)), 17(A) = e~K(A) ; AeJ . 

We write K *-» r\ and call K the code adapted to r\ when (2) holds. Note that when 

K<r-ni, then K(A) = 00 and rj(A) = 0 are equivalent statements. 

If (A„) are pairwise disjoint measurable sets, and if K e K, then 

<U^)=-log(£e-<^). 

All our results concern the study of subsets of M. Consider one such subset, say C. 
We think of C as the set of "consistent" distribution, in more suggestive terms, C 
consists of those distributions which are consistent with the "preparation" of the 
"physical system" under study. 

With C we shall associate various games. All games will be two-person-zero-sum 
games. Basicly, the idea is as follows. We think of the two participants as the "obser
ver" of the physical system and as "nature". The observer chooses, or "plays", 
a code and nature chooses a distribution. Nature is bound to choose a consistent 
distribution whereas there are no limitations to the codes the observer can play. 
The cost of the game, seen from the point of view of the observer, is measured by 
the average codelength. We assume that nature acts in a way which is least favour
able to the observer (hence we are led to zero-sum games). 

We may consider it the objective of the observer to transmit the results of (inde
pendent) observations of the system. The average codeword length then really mea
sures the cost of transmission per observation. Dually, one could think of the code 
as a device enabling the observer to carry out the observation. 

Now, let us be more concrete. Assume that (/, J) is discrete. Then, with each 
subset C s M we associate a game denoted by the same letter C and called the 
absolute game associated with C. The game C is defined by the cost function 

(K, fi) ->• <JC, /.> ; (K, 11) e K x C . 

This function is well defined since (/, J) is discrete. The range of the cost function 
is [0, 00]. Put 

a = sup inf <K, /*> , 



P = inf sup <K, fi) . 
KeK fieC 

We call 11 an optimal strategy for nature if \i e C and if 

(3) inf <K, ji) = a . 
KeK 

And we call K an optimal strategy for the observer if K e K and if 

(4) sup <K, M> = /? . 
J I E C 

Clearly, a Si /?. If a = /?, we call this number the fa/we of the game. A strategy 
KeK for the observer is called a cost-stable strategy if <K, t̂> is finite and indepen
dent of n for fie C. 

Then consider an arbitrary state space (/, J). If we try to define the absolute game 
associated with a subset C S M, we run into difficulties. Firstly, <K, H) is not well 
defined. This is a minor difficulty since one could reasonably consider the limit of 
<K, n}„ as 7t ranges over 77. But doing so, one sees that unless /J, is discrete one will 
obtain the value oo. The conclusion is that even though one could consider the abso
lute game, this game will be of no interest since the observer can not discriminate 
between the possible moves by means of the average codelength (analogous remark 
applies to nature). 

The way out of the difficulty is to measure the performance of the observer relative 
to some fixed code. Thus we shall consider improvements in average codelength 
rather than average codelength itself. As there is a natural one-to-one correspondence 
between K and M, the fixation of a code implies the fixation of a distribution. 

With the above remarks in mind, consider a fixed pair K, ^ where K<-^^. We call 
K the reference code and ^ the reference distribution. All codes will be related to K. 
Therefore, we define a codeimprovement A (relative to K) as a set function A : J -*• 
-*• [—oo, oo) such that the set function KA defined by 

(5) KA(A) = K(A) - A(A) ; AeJ 

is a code. Note that the value of A(A) for sets with K(A) = oo has no influence on the 
value of KA(A). Accordingly, two codeimprovements are considered to be identical 
if they only differ on sets with infinite codelength for K, i.e. if they only differ on 
sets of ^-measure 0. 

The measure p obtained from KA by the one-to-one correspondence between K 
and M is given by 

(6) n(A) = e J U )
 n(A) ; AeJ . 

Note that \x is absolutely continuous with respect to ^ and that, conversely, any 
probability measure \x which is absolutely continuous with respect to ^ induces 



a codeimprovement by means of the formula 

(7) A(A) = log M A ) M A ) ] ; AeJf , 77(A) > 0 . 

The value of A(A) for sets with ^(A) = 0 may be defined arbitrarily in [—00, 00). 
The set of distributions absolutely continuous with respect to rj is denoted by Mn 

and the set of codeimprovements relative to ;c (where K *-* 77) is denoted by Kn. We 
have seen that (6) and (7) define a one-to-one correspondance between Mn and Kn. 

Let A e Kn. Then A is a set function. But we may also consider A as a point function. 
As no confusion seems likely to arise, we shall use the same letter for both functions. 
The point function A : X -*• [— 00, co) is defined by 

A = log — , 
d;? 

where /J is the measure given by (6) and where d/i/d>/ denotes a finite and non-negative 
valued version of the Radon-Nikodym derivative of \i with respect to ^. We can 
recapture the set function A from the point function A by the formula 

(8) A(A) = \og(J~ [ e'^Y, q(A)>0. 

The set Kn may thus be identified with the set of measurable functions A : I -+ 
-> [ -00 , co) for which JV d^ = 1 with the understanding that functions which 
only differ on an ^-null set are considered as the same function. In terms of this 
identification, the correspondance between Kn and Mn is given by the formulas 

(9) ^ = e ^ , A=log^. 
d>7 d?y 

The commutative diagram 

K ^ ^ i 2 ) _ _ M 

(5) t t id 

(6) and (7) 
Kn « - ^ - ^ ~ > Mn 

or(9) 

summarizes our discussion. 

Lemma 1. Let A e Kn and let fi e Mn. Then 

(10) lim (A, n \ - <J, /.> 
ne/7 

in the sense that when one of the sides exists as an extended real number, then so 
does the other and equality holds. 



12 Notice that A on the left hand side of (10) refers to the set function A whereas 
the A on the right hand side refers to the point function A. Clearly, we have to assume 
fieMn — otherwise neither the left hand nor the right hand member of (10) could 
determine well defined numbers. 

Proof. With a " + " disignating "positive part", and a " — " designating "negative 
part" we claim that 

(11) \im(A + ,fi)n=(A + , f i ) , 
neU 

(12) lim<A-,/z> =<A~,n). 
%en 

Once this is proved, the result follows. We only prove (11) as (12) may be proved 
analogously. 

Let s > 1. For i e Z put 

A; = {S'' ^ A < S'+1} 

and let n denote the decomposition of X into the sets A; and the set {A = 0}. 
For every i e Z, every x e A; and every measurable subset B of A; with ri(B) > 0 

we have 
s'1 .A(x) < A(B) = s.A(x). 

Let a = 7i. Consider a fixed A; and let BtJ denote the sets in a contained in A, 
and of positive ^-measure. Then 

|f Adu-Y, KBu) • 4Bij) < (s - 1) f A ^ • 
IJ .41 i J A, 

In case $A+ dfi < oo, it follows that 

I ( V d» -1KB) • *+(B) ^ (s - i) !A+ da 

so that (11) holds. If J.d+ dp = oo, it follows by putting s = 3/2 that 

YKBtj)-4Bij) = Jf * & ^ all i 

so that 
^li(B).A+(B)= co , 
Bea 

hence (11) also holds in this case. • 

It will follow from a later result that, under a slight restriction (which is perhaps 



entirely superfluous), we also have 

(13) \im<A,p\ = <A,p>. 
7te/To 

This will follow in a rather roundabout way. We would have preferred to be able 
to give a direct proof. 

Justified by Lemma 1, <<d, p} is to be interpreted as the average codeimprovement. 
Let n e M and let C be a subset of Mn. With C we associate a game denoted by 

C I n and called the relative game associated with C. The game C || n is defined by 
the payoff function 

(A, n) -> (A, n> ; (A,fi)eKn x C. 

The range of the payoff function is [ - c o , oo] supplied with an extra element "not 
defined". Put 

a = inf sup (A, p} , 
neC AeKq 

P = sup inf (A, p) . 
AeKn neC 

Here it is understood that only well defined values of (A, p} should be considered. 
We call p an optimal strategy for nature if p. e C and if 

sup </d, p) = a.. 
AeK^ 

And we call A an optimal strategy for the observer if A eKn and if 

i n f < ^ > = p. 
peC 

Clearly, a ;> p. If a = j8, we call this number the ua/ue of the game. A strategy 
A eKn is a payoff-stable strategy if <J, /.> is finite and independant of p. for peC. 

THE ABSOLUTE GAME 

In this section we assume that (I, J) is discrete. The following trivial identity plays 
a key role for the discussion of the absolute game. 

Lemma 2. Let n e M and denote by ;c the code adapted to tj. Then, for any pe M, 

<K, p} = D(p || 17) + H(n) . 

Here, D(. || .) denotes information gain, cf. e.g. [10], [12] or [4], and H(.) denotes 
entropy. The properties of these functions which we shall need, can all be found 
in the sources just mentioned. The letter "£)" instead of the familiar "I" is suggested 



by Csiszar and Korner in a forthcoming book. D may be taken to stand for "distance", 
"divergence" or "discrimination". 

Lemma 2 implies: 

Lemma 3. For any n e M, 

min <K, /*> = H(n) 
KSK 

and the minimum is achieved for the code adapted to [i. If H(fi) < oo, the minimum 
is not achieved for any other code. 

Let C £ M and put 

HmJC) = sup H(n). 
ueC 

Lemma 3 shows that an optimal strategy for nature in the absolute game C is the same 
as a distribution [i with p. e C and H(p) = Hmax(C). Such a distribution is also called 
a canonical distribution for C. For discussions of the "Maximum Entropy Principle", 
which we are thus led to, see [8], [7], [14] and [2] just to mention some references. 

Another useful consequence of Lemma 2 is: 

Lemma 4. Let fiu \x2, ..., fi„ be distributions and let (pt, p2, . . . , pn) be a pro
bability vector. Then 

H(ZP^) = L>v H(pv) + 2> v D(nv 1 Zpjfij). 

Proof. Put Y\ = £ p v / v Denote by K the code adapted to n. Then 

H(n) = <K, >?> = <K, XPv/̂ v> = E^v<'c, /iv> - E P , [ D ( / . V II »?) + H(/.v)] = 

= I > v D ( ^ 1 »/) + ZPv-H^v) • • 

We shall now search for canonical distributions. Topological considerations come 
into the picture. Note that as (/, J) is discrete, there is only one sensible topology 
on M. Besides the natural condition Hmax(C) < oo, we shall also assume that C is 
convex. We remark that in view of the basic applications, we do not wish to assume 
that C is closed. 

Theorem 1. Assume that C E M is convex and that Hmax(C) < oo. Then there 
exists a unique distribution jic such that p.„ -* \ic for every sequence (/J„) <=, C such that 
H(n„) - Hmm(C). 

In the terminology of convex analysis, the theorem says that the entropy function 
strongly exposes every convex set C with Hmax(C) < oo. 



Proof. Recall Pinsker's inequality D(fi || n) = \ || \i — ^||2 where ||. || denotes 
total variation. From Lemma 4 we then get, for every n and m: 

tfmax(C) = tf(Au„ + i / O = 1 tf(/z„) + | tf(/tm) + 

+ | D(/.„ || |/x„ + §/.m) + I D(fim I ift, + |/xm) = 

^itf^ + itf^ + i l ^ - ^ p . 
It follows that ||\in — /im|| -» 0 for n,m -* oo. Hence there exists /(c e M such that 
jin -*• \ic. It is easy to see that \ic is independent of the particular sequence (\in). • 

The distribution /xc of Theorem 1, we call the center of attraction for C. Clearly, 
if the canonical distribution exists, it must be the center of attraction. But fic may 
fail to be the canonical distribution since neither \ic e C nor tf(/ic) = tfmax(C) need 
hold in genera] — we can only assert that fxc s C, the closure of C and, by lower 
semi-continuity of tf, that tf(fic) = tfmax(C). 

It is an important observation that the trivial inequality tf(/t) = tfmax(C) for 
H G C can be strengthened. 

Theorem 2. Assume, that C is convex and that tfmax(C) < oo. Then, for every 
/i e C, we have 

H(fi) + D(fi I nc) = tfmax(C) . 

Proof. Choose (/*„) _ C such that 

«[Hmax(C) - tf(/Ol - 0 . 
With the given /i G C we associate the distributions 

1 ~ - 1 /•- + - /u; « _ 1 • 

Then /** e C, hence tf(/i*) ^ tfmax(C). By Lemma 4 we have: 

tf(/*„*) = ( l - ~\ H(n„) + i tf(/.) + ( l ~ ; ) !X/+, I /-'„*) + ^ D(/i || /*„*) _ 

^ ( / l - i N \ t f ( / i n ) + -tf(/i)+-D(/t|/tB*) 
\ n / n n 

and 

H(/.) + D(> || tf) = n[tfmax(C) - #(/.„)] + H(nn) 

follows. As /»* ->[ic, and as D(. || .) is jointly lower semi-continuous, 

lim inf D(/i || n*) = D(/. || / i c ) , 



16 and combining with the previous inequality we get 

H(n) + D(n 1 fic) g tfmax(C), 
as desired. D 

We remark that the inequality of Theorem 2 also holds for f i e C . More important 
than this remark is the observation that the inequality characterizes \ic: 

Proposition 1. Let C £ M be convex with Hmax(C) < oo. If fi* e M has the 
property that 

H(n) + D(n || »*) <. Hmax(C) 

for all /x 6 C, then fi* = nc. 

Proof. Let (n„) £ C satisfy H(fi„) -> Hmax(C). It follows that D(n„ || n*) -> 0, 
hence }x„ ->• /.*. As /t„ -» / i c too, [i* = nc. D 

So far, our results have been analogous to results of Csiszar [4]. 

We now establish the main facts concerning our information-theoretical game. 

Theorem 3. Let C £ M be convex with HmM(C) < co. Then the value of the ab
solute game C exists and is //max(C), and the observer has an optimal strategy, viz. 
the code KC adapted to the center of attraction pc. Furthermore, this optimal strategy 
is unique, indeed, for any K e K and rj e M with K •«->>?, we have 

(14) sup <K, n) ^ i?max(C) + D(nc || tj). 
fieC 

We could also add that nature has an optimal strategy if and only if nc e C and 
H(fJ-c) — IImax(c)- This has been observed previously. 

Proof. Combining Lemma 2 and Theorem 2, we have 

inf sup <K, n) <. sup <KC, n) = sup [#(/i) + D(n || j.c)] ^ 
KEK neC iieC iieC 

g H m a x ( C ) . 

Since, as already noticed, Hm:ix(C) is bounded above by the inf sup we started with, 
there must be equality throughout. This shows that the value of the game C exists 
and is Hmax(C) and that KC is an optimal strategy for the observer. . . 

To prove uniqueness of an optimal strategy for the observer, let K e K and denote 
by y\ the distribution associated with K. Let (\i„) be a sequence in C for which H(n„) -* 
-*• IImax(c)- % Lemma 2, Theorem 1 and lower semi-continuity of D(. || .), we have 

sup <K, /i> £ lim inf <K, /.„> = lim inf [H(^„) + D(n„ \\ ?/)] ^ 
„eC n - c o n ^ c o 

^ IIma*(C) + D(Hc 1 »/) • 



This proves (14). As 

K = KC ot] = iic<> D(HC I n) = o , 

(14) implies that 

sup </c, /<> > Hmax(C), 
lieC 

unless K = ;cc. Hence KC is the only optimal strategy. • 

With a special assumption, taken from [4], the optimal strategy of the observer 
has an extra stability property: 

Theorem 4. Let C s M b e convex with Hmax(C) < co. Assume that pc is the cano
nical distribution and that pc is an algebraic inner point of C, i.e. that to any fie C 
there exists \x e C and 0 < a < 1 such that nc = <x[i + (1 — a) p!. Then, for every 
H e C, we have 

<KC, p> = / / m a x ( C ) . 

Proof. As fic is assumed to be canonical, <;cc, /jc> = H(/zc) = ffmax(C). Now 
consider any ^ e C and determine ft' e C and 0 < a < 1 such that nc = a\i + 
+ (1 — a) /.'. As KC is an optimal strategy for the observer, 

(15) <KC, n) <, Hmax(C) and <KC, pi') < Hmax(C). 

But a proper convex combination of these inequalities yields <KC, /J.C) < Hmax(C) 
which is known to hold with equality. Hence equality also holds in (15). • 

It is probably not true that \ic algebraic inner implies that \ic is canonical. 

The conclusion of Theorem 4 says that the strategy KC is cost-stable. 

Sometimes, it is possible, directly to determine a cost-stable code ;<*. Then it lies 
nearby to ask if K* = KC or, equivalently, if \a* = \ic where K* «-> p*. We shall see 
that adding a condition not quite as strong as p.* e C but somewhat stronger than 
p.* e C, an afirmative answer can. be obtained. 

Theorem 5. Let C £ M be convex. Let n* e M and let K* be the code adapted to 
H*. Assume that K* is cost-stable. Then Hmax(C) < co. If furthermore, 

MD(fi\\fi*) = 0, 
lieC 

then <K*, /i> = Hmax(C) ioTjj.eC and K* = KC, p* = \ic. 

Proof. Let h denote the common value of <K*, /*>; / i s C . For /i e C we have 

ff(/.) < H(At) + i)(M I J**) = <«*. /-> = h > 

hence Fmax(C) ^ h . 



Let (n„) S C satisfy D(n„ || /.*) -* 0. Then, going to the limit in the equation 

h = <TC*, p„> = H(/.„) + D(nn I M*) , 

we realize that H(n„) -* h. Thus Hmax(C) = h. From Theorem 1, n„ -> /*c follows. 
As /*„ -• /i* too, /** = /xc follows. • 

We end this section with some results of a combined information-theoretical and 
topological nature giving details about sets with Hmax(C) < oo, We assume that / 
is infinite. For topological details, the reader is referred to [5], 

Put 

M0 = {n e M | H(n) < oo} , 

Mx = {n e M | H(n) = oo} . 

M 0 and Mro are both convex dense subsets of M. Furthermore, Mx is a Ga-set, 
indeed, it is a countable intersection of open and convex sets: 

M x = H {H(fi) > n} . 
I 

In particular, Mx is Polish (separable and metrizable with a complete metric). The set 
M 0 is not Polish, it is not even a Baire space; to see this notice that the sets 

M0 n {H(ji) > n} 

are open and dense subsets of M0 with empty intersection. 

The position of M 0 and Mm as subsets of M resembles that of the rationals and the 
irrationals as subsets of the reals. 

For a subset C s M, we denote by C, co(C) and by co(C) the closure, the con
vex hull and the closed convex hull of C, respectively. 

Theorem 6. (i) If C S M0 and if co(C) is a Baire space, then Hmax(C) < oo. 

(ii) Let o : M -» ] —oo, oo] be an affine lower semicontinuous function, let x 

be real and put 

C = {iieM\(g,ny =x}. 

If C S M0 , then Hmax(C) < oo. 

(iii) If C S M is convex, then Hmax(C) < oo if and only if C S M0 . 

Proof, (i): Let us prove a slightly more general result and assume that there exists 
a Baire space A such that 

(3) co(C) £ A s co(C) n M0 . 



As A is a Baire space which is covered by the closed sets {#(/*) ;§ B), we may apply 
the Baire category argument to conclude that there exist B < oo, n0 e A and e > 0 
such that, for any /. e A with |ju — p0|| < e, we have # ( / J ) J£ B. 

Now consider any ,u e co(C) and put 

Then |f/ — ju0| < e. As /x0 eco(C) and as co(C) £ A, there exists a sequence (>/„) 
of distributions in A such that n„ -+ ?7 and such that ||»7n — /*0|| < e for all n. Then 
H(n„) ^ B for all n and #(??) ^ J3 follows. Since 

H(r,)^(l-^H(n0)+
e~H(»)^£-H(n), 

we can now conclude that #(//) g SBe""1. 

(ii): Clearly, C = {<g, p} = x} is convex. From 

C = {<<?, ^ I x j n n |<fl, /.> > x - -H , 

we see that C is a G^-subset of M, hence Polish, in particular a Baire space. The result 
now follows from (i). 

(iii): Even without an assumption of convexity, #max(C) < co implies C c M0 . 
Now assume that C is convex and that C £ M0. Then A = C is a Baire space and 
satisfies (3) hence, from the result proved above, #max(C) < co follows. • 

Naturally, the conclusion of (i) may be strengthened to #max(co(C)) < co. We note 
that #max(C) < oo does not imply #max(co(C)) < oo in general; to see this, consider 
the set of one-point masses.This example also illustrates the role of convexity in (iii) 
since it shows that #max(C) < oo does not imply co(C) £ M 0 even though both 
co(C) and C are subsets of M0 ; actually, we have the extreme situation that #max(C) = 
= 0 but co(C) = M. Of course, for a general set C, we have #max(C) < co if co(C) £ 
= M0 . 

To illustrate the role of convexity in (i), we mention that there exist compact sets 
(hence also Baire sets) C, with C £ M 0 and #max(C) = oo; to see this, construct 
a sequence of distributions with finite support and with "large" entropies converging 
to a unit mass. 

Then follow some observations related to compactness properties. 

Theorem 7. (i) If C is convex and if #max(C) < co, then C is relatively compact. 

(ii) A convex and closed subset of M0 is compact, 

(iii) A convex Baire subset of M0 is relatively compact. 



Proof, (i): For the purpose of an indirect proof assume that C is not relatively 
compact. Then there exists e > 0 such that, for every finite subset J £ /, there exists 
fj.eC with fi(l \ J) > e. This implies that there exists a sequence (/„) of finite and pair-
wise disjoint subsets of I and a sequence (n„) of distributions in C such that fi„(l„) sE e 
for all n — 1. For each m ^ 1 put 

1 S 
1m ~ - 2- •»- • 

m I 

By convexity, //m e C. 
Let a : / -r {1, 2, . . . } b e a map which assumes the value n on I„. Denote by £m 

the image distribution of nm under tr. Since there are at most 2 points where <̂m 

assumes a value exceeding e""1, since the function cp(x) = - x l o g x is increasing 
in [0, e"1] and since £,m(n) > e/m for n = 1,2, . . . , m, we find (for m ^ 2): 

H ^ J fc tf(£m) = £ (p(^m(n)) > £ <p(£m(n)) fc (m - 2) <p(e/m) ^ 
I I 

^ e(l - 2/m) log m . 

Letting m -» co, we see that H(nm) -» oo contradicting the assumption Hmax(C) < oo. 

Thus C must be relatively compact. 

(ii) and (iii) follow from (i) and from Theorem 6. • 

THE RELATIVE GAME 

We proceed along lines very much parallel to those given for the discrete game. 
For this reason we only give indications of a few proofs. The state space (/, J) is 
now arbitrary. We fix a reference measure n and the corresponding reference code K. 

Lemma 5. Let /.* e M, and let A* eKn be the codeimprovement adapted to p.*. 
Then, for any fi e M^, 

(A*,}x} = D(ix\\n)- D(n\\fi*) 

in the sense that if the right hand side exists as a well defined extended real number, 
then so does the left hand side and equality holds. 

This is a restatement of [4], equation (2.6). The two next results are easy corollaries. 

Lemma 6. For any n e M,, 

max {A, ii) = D(n | n) 
AeK„ 



and the maximum is achieved for the codeimprovement adapted to p. If D(p || tj) < oo, -1 
the maximum is not achieved for any other codeimprovement. 

Let C ^ Mn and put 

Dmm(C\\r,)=MD(p\\r]). 

Lemma 6 shows that an optimal strategy for nature in the relative game C \\ tj is the 
same as a distribution p with pe C and D(p || rj) = Dmm(C || t]). We are thus led 
to the so called "minimum discrimination information principle". For a discussion 
of this principle with many results besides those we shall give, see [10], [3], [4] and 
[1], esp. Section 9.1. 

Lemma 7. Let p1, ..., pn be distributions in M„ and let (p1, . . . , p„) be a probability 
vector. Then 

£pv D(py I tj) = D(J>v/iv || tj) + £pv D(pv || Zpjpj). 

This identity was perhaps first considered by the author in 1967. We refer to 
[13]. 

As a further consequence of Lemma 5, we prove that (13) holds provided D(p \\ tj) 
and D(p* \\ tj) are not both infinite where p* is the distribution in M„ corre
sponding to A. This follows easily from the formula 

(16) sup D(p || n)n = D(p || rj) 
jiei7o 

where D(p || tj)K stands for D(p \n\t]\n). It is easy to establish (16) with U0 replaced 
by 77 (cf. also Lemma 1), and the reduction from IJ to IJ0 then only needs a few 
extra comments. The equation (16) one also finds in [9] and in [11]. 

We need two topologies on M. In the weak topology, pn —> p means that p„(A) -> 
-» p(A) for all A e J and in the strong topology, pn -> p means that \\in — p\ -> 0. 

The map (p, rj) -* D(p || tj) of M x M into [0, co] is jointly lower semi-continuous 
in the weak topology (employ (16)). For fixed t] e M and a < co, the set of p e M 
with D(p I) rj) S a is a weakly compact and convex subset of M. As I. Csiszar pointed 
out to the author, this set need not be strongly compact. 

Theorem 8. Let C ^ M„ be convex and assume that Dmm(C | rj) < oo. Then there 
exists a unique distribution pcn„ e M„ such that pn -+ pc^„, strongly for every se
quence (/<„) e C such that D(p„ || rj) -> Dmin(C || ?/). Furthermore, for every p e C, 
we have 

(17) D(p || rj) Z Dm]n(C 1 >?) + D(p \\ pc{]„) . 

The proof is analogous to the proofs of Theorems 1 and 2. The result is a slight 
improvement over [4] and the proof hinted at is partly a simplification. 



The distribution nc^n of Theorem 8, we call the relative center of attraction. 
Equation (17) can also be used to characterize /*CMl) (compare with Proposition 1). 
Below, z.C|(l( denotes the codeimprovement in Kn adapted to fc^. 

Theorem 9. Let C S Mn be convex and assume that D(JX | n) < oo for all /ieC. 
Then the value of the relative game C || n exists and is £>min(C || n), and the observer 
has an optimal strategy, viz. the codeimprovement Ac^. Furthermore, this optimal 
strategy is unique, indeed, for any A* eKn with corresponding distribution \i* e Mn, 
we have 

inf (A*, p> < Dmin(C | n) - D(fiC]ln || /i»). 
lieC 

Clearly, fic^n is an optimal strategy for nature if and only if pen, 6 C. 
Probably, Theorem 9 holds with the condition D(fi \\n) < oo for fie C replaced 

by the weaker assumption Dmin(C || n) < oo. What we have to prove is that if /j, e C 
satisfies D(fi || fic^) = oo, hence also D(n || n) = oo, and if (,AC^, p> is a well 
defined extended real number, then <^C[|„, fi} ^ jDrain(C || l) holds. This will follow 
if (13) holds generally. 

The results analogous to Theorems 4 and 5 are left to the reader both to formulate 
and to prove. 

When (I, J) is discrete one may ask for which reference measures n, the relative 
game C [| n leads to the same result as the absolute game in the sense that ncnn = nc. 
A partial answer in a special case is as follows. 

Theorem 10. Let (/, J) be discrete. Assume that C E M is convex and that 
IImax(c) < °0- Consider a distribution n e M and let K e K be the code adapted to n. 
If K is cost-stable for the absolute game C, then ^C||,, = nc. 

Proof. By definition, there exists a finite constant h such that <K, ^> = h for all 
/ieC. By Lemma 2, we then see that 

D(n || r,) - h - H(n) ; txeC. 

Hence, maximizing H(fx) over C and minimizing D(fi \\ n) over C amounts to the 
same thing. The result now follows from Theorems 1 and 8. • 

One may remark that the assumption Hmax(C) < oo was not really necessary. 

A SPECIAL CASE 

We shall study a special discrete system first considered in detail by Ingarden and 
Urbanik in [7]. In essence, all results of this section are due to Ingarden and Urbanik, 
but our general results permit us to simplify the exposition. We mention that detailed 



studies of some continuous systems have occurred in [3], [4] and in [1], There also -3 
exists an interesting set of lecture notes in Swedish from 1970 by Per Martin-L6f. 

We assume that (/, J) is discrete. Given is a function E : J -* [0, co), the energy 
function. The sets of interest to us are the sets of the form 

C(E) - {n e M | <E, n> = E}. 
We put 

Hmax(E) = //max(C(E)). 

The density function Q = Q(E) is the function 

Q(E) = number of i el with E; ^ E . 

We assume that Q(E) < oo for all E (otherwise Hmax(E) could not be finite). 
For our purposes we may and do assume that J = {1, 2, 3, . . . } , that El = E2 ^ 

< . . . and that E; —> oo. We write Emin in place of £ . . 

Define the partition function Z = Z(x) by 

Z(*) = X e - £ " . 
iel 

This series is a Dirichlet series. Let y be the abscissa of convergence (ef. eg. [6]). 
Then 

,. logi ,. logO(E) 
y = hm sup —— = hm sup . 

i->co E; £->oo E 

For all x with Z(x) < oo we define \ix e M by 

III?) = t~E'xIZ(x) ; / e / . 

The family (^x) where x ranges over all values with Z(x) < co is an exponential 
family. The code adapted to \xx is denoted KX. We have 

Kx(i) = log Z(x) + xEj ; i e / . 

The reader should notice that the codes KX, hence also the exponential family and 
the partition function, appears quite naturally in the search for cost-stable codes. 

Define a function <P by 

<P(x) = <E, fix} for all x with Z(x) < oo . 

For x > y we have 

* ( x ) = - Z ' ( x ) / Z ( x ) = - A l o g Z ( x ) . 
dx 

Note that — Z'(x) is a Dirichlet series with the same abscissa of convergence as 
(Zx). 



For n _ l define approximations to Z(x), fix, KX and <P(x): 

Z„(x)=£e-E'*, 
i 

Hnx(i) = e~E'7Z„(x) for i < n (0 otherwise), 

Knx(i) = log Z„(x) + xEt for i < n (co otherwise) 

<2>„(x) = <£, nnx} . 

These definitions make sense for all real x. 
We leave the proof of the following result to the reader. 

Proposition 2. Assume that y < co. Then: 

(a) # , . £ * - . £ . . . , 

(b) <Z>„ is strictly decreasing on R (except if £„ = £min), 

(c) lim $„(x) = £min , lim 4>„(x) = £„ , 

(d) <P is strictly decreasing on (y, co), 

(e) lim 4>(x) = Em i n , 

(f) $(y+) = oo *> -Z'(y) = co , 

(g) — Z'(x0) < co => $„ -> <P , uniformly on [x0, co), 

(h) lim $„(x) = 0 0 for x < y , 

(i) lim<P„(y) = <P(y+) . 

We put 
Ecrit = 4>(y + ) . 

Notice that £ c r i t = oo if Z(y) = co, which will usually be the case in applications 
(in fact, y = 0 will usually hold). 

Theorem 11. Assume that y < oo. Then: 

(a) Wmax(£) < oo for all £min < £ < co , 

(b) For £min < £ < oo, all codes KX (with Z(x) < co) are cost-stable strategies 
for the game C(£), 

(c) If £min < £ S £CrLt>tnen t n e center of attraction for the game C(£) is also the 
canonical distribution and is determined as the only distribution in the exponential 
family (/ix) with mean energy £, 



(d) If £c r i t < £ < co, then fiy is the center of attraction for the game C(£). In 
this case, fiy is not canonical, in fact we both have <£, ,uy> < £ and H(/iy) < Hmax(E). 

Proof. As 
<KX, r<> = log Z(x) + x<£, /i>; Z(x) < oo , 

(b) follows. The existence of cost-stable strategies implies (a). If £min < £c r i t , 
we can find x with Z(x) < co such that \LX E C(£); this follows from Proposition 2. 
Then (c) follows from Theorem 5. 

It only remains to prove (d). So assume that —Z'(y) < co and that £ > £c r i t . 
In order to prove that fiy is the center of attraction for C(£) it suffices to show that 

<Ky, fi) < Hnwx(E) for ft e C(E) , 

i.e., we have to show that 

(18) Hmax(E) > log Z(y) + yE . 

This follows from Theorem 3 (or from Proposition 1). 
Determine n0 so that £„0 > £. For n = n0 determine x„ so that 

<Pn(x„) = £ . 

By Proposition 2, 
xno g x„0+1 < . . . , limx„ = y. 

It follows easily that 

(19) lim sup Z„(x„) > Z(y). 

Put ft„ = fi„ Xn. Then /i„ e C(£) and 

H(fi„) = log Z„(x„) + x„£ . 

From this and from (19), (18) follows. • 
Probably, all cost-stable codes are of the form KX with Z(x) < co. If true, this 

together with (b) of Theorem 11 gives a game-theoretical description of the exponen
tial family. 

We remark that by Theorem 10, we may add to Theorem 11 that if we choose 
a reference measure from the exponential family (//x), then the relative center of 
attraction coincides with the (absolute) center of attraction. 

If we are in the critical case (d) of Theorem 11 and we put C = {/( | <£, ft) <, £} , 
then C is a compact convex set with Hmax(C) < co for which the canonical distribu
tion does not exist. 

That the critical case is theoretically possible may be seen by considering energy 
functions of the form 

£ ; = log (i + 2) + K log log (( + 2) ; i > 1 . 



26 Then, for all K, y = 1. If K g 1, Z(y) = -Z'(y) = oo. If 1 < K g 2, Z(y) < oo 
and -Z'(y) = oo. And if K > 2, Z(y) and -Z'(y) are both finite. E.g. if K = 3 there 
is a finite critical energy ( = 2-99). We refer to the Figure 1. The example is due to 
Ingarden and Urbanik [7]. 
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Theorem 12. A necessary and sufficient condition that every distribution with 
finite mean energy has finite entropy, is that y < oo. 

Proof. Sufficiency has already been noticed. Let us prove necessity. We actually 
prove a stronger statement by only assuming that for some Emin < E < x>,H(fi) < oo 
for all n e C(E). By Theorem 6, Hmax(£) < oo. Determine x„ and fi„ (for n ^ n0) 
precisely as in the proof of (d) of Theorem 11. Since, for n ^ n0, 

Hmn(E) ^ H(n„) = log Z„(x„) + xnE ^ xn(E - Emin), 

lim x_ < oo. Choose x ^ lim xn. Then, for n 2: n0, 

log Z„(x) '< log Z_(x„) < Hm3X(E) - xnoE , 

hence Z(x) < oo and thus y < oo. • 



NOTES 

The present results were first developed without knowledge of some of the basic 

papers mentioned in the references. It seems now that the main novelty lies in the game-

theoretical point of view. It would be interesting if this point of view could be ex

tended to cover the modern needs of statistical thermodynamics. 

I have had helpful discussions with J. P. R. Christensen and with I. Csiszar. 

Especially, my acquaintance with Csiszar's ideas let to substantial simplifications 

of some proofs since they permitted me to substitute a general and rather deep mini-

max inequality by an intrinsicly information theoretical argument. 

(Received August 28, 1978.) 
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