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KYBERNETIKA- VOLUME 24 (1988), NUMBER 1 

NONDETERMINISM IS ESSENTIAL 
FOR REVERSAL-BOUNDED TWO-WAY MULTIHEAD 
FINITE AUTOMATA 

ANDREJ BEBJÁK, IVANA ŠTEFÁNEKOVÁ 

It is proved for some "nice" function / that/(fl)-reversal-bounded two-way nondeterministic 
finite automata are more powerful than /(n)-reversal-bounded two-way deterministic ones. 
This solves a simplified extension of the well-known DLOG ? NLOG problem. 

1. INTRODUCTION 

The question whether nondeterminism is more powerful than determinism is one 
of the most investigated questions in complexity theory. The well-known extensions 
of this question are P? NP, DLOG? NLOG. We shall study the latter one in this 
paper. 

We shall consider two-way fe-heads deterministic (nondeterministic) automata, 
2dfa(k) (2nfa(k)), because they characterize logarithmic space in the following way 

DLOG = U 2DFA(fe), NLOG = U 2NFA(/<), 
keN SEN 

where 2DFA(fc) (2NFA(/t)) is the family of languages recognized by 2dfa(k) (2nfa(k)) 
automata. 

It was proved in [4] that a specific language can be recognized by no 2nfa(k) 
automaton (for any k e N) with n" bound on the number of head reversals in the 
accepting computations, for 0 < a < i. Using this fact we prove that for some "nice" 
functions / the class of languages recognized by /(n)-reversal-bounded 2nfa(k) 
automata is not closed under complement, and the class of languages recognized 
by /(n)-reversal-bounded 2dfa(k) automata is closed under complement. This 
separates nondeterminism from determinism for reversal-bounded multihead finite 
automata. The immediate consequence of this fact is that if deterministic multihead 
finite automata are as powerful as nondeterministic ones then the deterministic 
automata have to use a substantially larger number of reversals than the nondeter­
ministic automata. 
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This paper is divided as follows. Section 2 involves some basic definitions and Sec­
tion 3 contains the basic results concerning "/(«) reversal computability" for multi-
head finite automata introduced in Section 2. The main results are formulated 
in Section 4. 

2. DEFINITIONS 

The formal definition of two-way multihead finite automata as a 5-tuple (l, K, F, 
5, q) can be found in [6], and it was soon thereafter extensively studied by Sud-
borough [7], Yao and Rivest [8] and Hromkovic [3]. 

A bound on the number of reversals as a measure of complexity was introduced 
by Hartmanis [2]. He considered two-tape Turing machines with one-way read-only 
input-tape. Reversal-bounded one-tape Turing machines were considered in [1] 
and reversal-bounded multi-tape Turing machines in [5]. 

Let / be a function from natural numbers to positive real numbers, and let M 
denote a family of languages recognized by multihead finite automata from an auto­
maton class S. Then M — R(f) is the class of languages accepted by automata in S 
which use in their accepting computations at most c.f(n) head reversals (c is 
constant, c e N) for input words of the length n. 

Definition 2.1. Let us ca l l / : N - > N a reversal computable function if there exists 
a 2dfa(k) - R(f) automaton A such that after finishing computation on the input 
word of length n the positions of the heads on the input tape represent the value/(«). 

In what follows we shall only consider functions for which f(n) g n. For the 
representation of the value f(n) we shall use head H1; whose position on the ith 
symbol represents the value i. When proving qualities of the operation O fo r / t , . . .,/,„, 
the result of which is fm+1, we suppose that fu •••,fm,fm+1 .S n. 

3. REVERSAL COMPUTABLE FUNCTIONS 

In this section we shall prove that the sum and integer-valued power of reversal 
computable functions are reversal computable functions. We will also prove that 
for some reversal computable functions their integer-valued root is reversal comput­
able. 

Lemma 3.1. I f / i , / 2 are reversal computable functions then ft + f2 is a reversal 
computable function, too. 

Proof. According to the assumption of the lemma there is a 2dfa(k1) - # ( / . ) 
automaton At = (Xu Ku Fu §x, qt) which constructs the function fu and a 
2dfa(k2) - R(f2) automaton A2 = (l2,F2,K2,52,q2) which constructs the func­
t ion / , , where K, n K2 = 0. Let A, use heads Hj, ..., Hj, and A2 heads H j , . . . , H2

kr 
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Let us create a 2dfa(kx + fc2 + 3) - K(ji + ft) automaton A = {Z, KtuK2u 
VJK,F,5, qt) which uses heads H{, . . . . H*,, H\ ..., H^, H, F, G. The automaton A 
works in the following three phases: 

1) A simulates work of the automaton Ax, at the end of computation the position 
of head H} represents the value ji(rc) = x. 

2) A moves to the initial state of the automaton A2 and simulates it, resulting 
in head H\ representing the value f2{n) = y. 

3) In the last phase of its computation A codes by the position of head H} the 
value x + y in the following way: Let heads F and G move by one symbol to the 
right for every move of Hj to the left until H{ reads left endmarker %. F and G 
then represent the value x. Now, let A move head Hj to the right for every move 
of G to the left, until G reads %. Finally, let A move H^ to the left and simultaneously 
G, Hj to the right until H\ reads %. Head H{ codes by its position on the input 
tape the value x + y. Obviously the whole computation can be done in a more 
simple way (move H\ to the right for every move H] to the left until Hj reads %), 
but our goal was to preserve the values x, y that we shall make use of in the following 
constructions. In the introduced construction of the automaton A its heads execute 
0{x) + O(y) + 5 = 0{x + y) reversals. • 

Consequence 3.2. If / is a reversal computable function, then c.f (c e N) is 
a reversal computable function as well. 

Lemma 3.3. I f / i s a reversal computable function, then/ ' , where i e N, is a reversal 
computable function. 

Proof. By induction on the exponent r. For i = 1 the statement is obvious. Let 
the statement hold for i = j . We shall prove that it holds for i = j + 1 as well. 
According to the induction assumption there is a 2dfa{k{) — R{fJ) automaton 
Au which constructs the function fJ, and according to the assumption of Lemma 3.3. 
there is a 2dfa{k2) — R{f) automaton A2, which constructs the function / . Coming 
up from equation 

/ J + 1(«) = /;'(„) ./(„) = fJ(n)+r\n) + ...+r(n) 

/(«)-times 

we create an automaton A, which will represent, for the input of length n, at the end 
of computation by position of its head the value fJ+ l{n). The automaton A gradually 
simulates the work of the automaton At (during simulation it executes 0{fJ{n)) 
reversals) and the work of the automaton A2 (during simulation it executes 0{f{n)) 
reversals). In the last phase the automaton A/(n)-times adds/J'(n). Addition of two 
numbers (regardless of their size) requires a constant number of reversals. The 
number of reversals executed during /(rc)-times repeated addition will be therefore 
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0(f(n)). The whole number of additions executed by the automaton A is 0(fJ(n)) + 
+ 0(f(n)) + 0(f(n)) = 0(fJ(n)). Q 

Consequence 3.4. For a reversal computable function / it holds, that there is 
a 2dfa(k) — R(f) automaton, which constructs a function/'(«), for i e H. 

Lemma 3.5. The function [n1/ lJ is reversal computable. 

Proof. We construct a 2dfa(k) — R([«1/!J) automaton A, which will gradually 
verify whether V = nl,2l = «?, etc. If it holds for number j t h a t / ^ «and( ; + 1)''> 
> n, then obviously j = [« 1 / ; j . Let us describe the operation of the automaton A 
in a nonformal way. The automaton A uses heads G, H1; H 2 , . . . , H ; , . . . , Hfc. Head 
G will gradually represent by its position on the input word the values V, 2', 3 ' , . . . 
until it reads the right endmarker $. Head H t moves one symbol to the right after 
each successful cycle (i.e. transition from configuration in which head G represents 
the value x' to the configuration in which head G represents the value (x + 1)'). 
At the end of computation of the automaton A head H1 represents the value [w1/;J. 
On transition from configuration in which head G represents the value x' to configura­
tion in which G represents (x + 1)' heads H 2 , . . . , H; always represent the following 
information 

H2 represents the value 

H3 represents the value 

H; represents the value I . 1. x . 

According to the binomial theorem it holds: 

(* + iy = x* + ( ; ) . * ' - + ... + (. i j ) . x + i . 

Thus, it is sufficient to move gradually head G to the right by the values represented 
by heads H 2 , . . . , H; and to move it by one more symbol (each move is done only 
if the right endmarker is not being read). Each of the heads H 2 , . . . , H; has its own 
substitute which in the case of value addition keeps information represented by the 
head. The number of heads is constant and every addition requires a constant number 
of head reversals. If all addition were done, then head G represents the value (x + I)' 
and head H : moves by one symbol to the right. The automaton must then adapt 

information carried by heads H2, ..., H; to the values ( , ) • ( * + l) i -1> ( - ) • 

. (x + 1)'~2, ..., f ) . (x + 1), which are necessary to realize the following 

cycle. 



For above given values the following relations hold: 

( í ) ^ 1 ^ 

(x + 1)'"- = 

3 x H4 

'тV- ìГг 
З x H , 6 x H , 

The whole adaptation of information at every cycle from x' to (x + 1)' always 
requires constant number of reversals. 

Since the maximum number of successful cycles is \nll% ], the number of reversals 
done by the automaton heads is c . \n1,l\ + d = o([n1/lJ)i where d is constant 
number of reversals in case that \nlli\ < nlfi and automaton tries to complete 
one more cycle. • 

Example 3.6. The function [log2 n\ is reversal computable. A 2dfa(4) — 
— R([log2 n ]) automaton A representing at the end of computation the value log2 n 
by head Hx works as follows: head H2 represents the number 2X, heads H 3 and H 4 re­
present alternatively 2X and the initial position. Transition from configuration in which 
H2 represents the value 2X to the configuration in which H2 represents 2-2* runs like 
this: Let H 2 , H3 represent 2X and head H4 reads %v then in each step H 3 moves by 
one symbol to the left, H2 by one symbol to the right and H4 by two symbols to the 
right. If H 2 reads $ in none of the steps, then it represents 2X+1, H 4 represents 2x+i 

as well and H3 reads %. 

After this successful cycle H t moves by one symbol to the right. This is repeated 
up to the point, when H2 reads $. Then the position of H2 represents [log2 n\. 

Consequence 3.7. The function [n1/p\q p, q e N, p ^ q is reversal computable. 
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4. DETERMINISM VERSUS NONDETERMINISM FOR REVERSAL-
BOUNDED MULTIHEAD FINITE AUTOMATA 

•Now, proving that nondeterminism is essential for reversal-bounded two-way 
multihead finite automata we give a partial answer to the well-known open problem 
whether two-way nondeterministic multihead finite automata are more powerful 
than deterministic ones. 

Theorem 4.1. Fo every reversal computable function j(n) the class of languages 
U 2DFA(/c) — R(j) is closed under complement. 

JteN 

Proof. It is sufficient to prove that for every language L in U 2DFA(/c) - R(j) 
teN 

recognized by a 2dfa(k) — R(/) automaton A, A = (l, K, F, 8, q0), there is a 
2dfa(k') — R(j) automaton A' = (S, K', F', 8', q'0) recognizing language Lc. 

The automaton A' works on the input word of length n as follows: In the first 
phase the value/(n) is coded by the position of one of its heads. Let us call this head 
G. To code this value at most c; -f(n) reversals are necessary since/(n) is a reversal 
computable function. Then A' moves to the initial state q0 of the automaton A. 
In the second phase of the computation A' simulates computation of the automaton 
A. For every reversal of one of the heads of the automaton A automaton A' moves 
the head G one symbol to the left. During the computation only one of the following 
three cases is possible: 

1) The automaton A would enter the state q e F. Then A' does not accept and 
enters a state p $ F'. 

2) If head G of the automaton A' reads %, then the automaton A would already 
cross bound of reversals and therefore automaton A' enters a state p e F'. 

3) The head G of the automaton A' does not read yet % and for state p, in which 
automaton A would be, ^-function is not defined. In such case automaton A' accepts. 

Since we simulated the work of the automaton A, the number of reversals does 
not (even in this part of computation of A') exceed the value c2 . f(n), where c2 

is a constant. Hence A' is a 2dfa(k') — R(j) automaton and recognizes the language 
Lc. • 

Theorem 4.2. For all a: 0 < a < %, the class of languages U 2NFA(fc) - R(n") 
is not closed under complement. feeN 

Proof. Let us consider the language L, for which it is proved in [4], that L does 
not belong to U 2NFA(fc) - R(na), where 0 < a < $. It is sufficient to prove that 

fceN 

the complement of the language L = [xt # x2 # ... xk # | k ^ 0, xt e LR for i = 
= 1,2,... , k], where LR = U Lr. 

reN 

L r = [wtcw2c ... cwr + wrc ... cWiCW-L | wte{0, 1}* for i = 1, 2 , . . . , r} 

is recognized by a 2nfa(2) - R(2) automaton A. 
Let us analyze in more detail, what is the structure of the words of the language 
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Lc. Since every word in L (besides e) contains the symbol # , we conclude that 
VVj = {0, 1, c, + } + c Lc. The language contains further all words from W2 and 
W3, W2 = {w\ w = #o , oe{0,l ,c , + , # } * } , W3 = {w| w = vx, ve{0, 1, c, + , # } * 
x e { 0 , 1, c, +}}. All other words of the language Lc (i.e. those which do belong 
neither to W1; W2 nor to W3) have the following structure: 

w = xj # x2 # ... # xfc # , where fc £ 1, x ; e {0, 1, c, + } * 

for i — 1,..., fc Xj # s and there is i such that x ; <£LR. 

The automation A nondeterministicly decides at the beginning of the computation 
on word u, which one of the four above mentioned structure is acquired by the 
word u. To verify the first three cases one head is sufficient and this one executes 
not even one reversal. In the fourth case the automaton again nondeterministicly 
decides which one of the subwords xt does not belong to LR. To verify its decision 
it is sufficient, for the automaton, to use two heads that execute two reversals. • 

Theorem 4.3. For any reversal computable function / such that f(n) <. n", where 

° < a < * U 2DFA(/c) - R(f) <- U 2NFA(/c) - R(f) . 
keN keN 

Consequence 4.4. For p, q e N, 0 < pjq < ^ 

U 2DFA(fc) - R(lnl,q\") £~ U 2NFA(/c) - R([n1/9Y). 

keN keN 

Consequence 4.5. For p e N 

U 2DFA(fc) - R([log2 n\") <p (J 2NFA(/c) - R([log2 n\p). 
keN keN 

(Received August 11, 1986.) 
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