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K Y B E R N E T I K A - V O L U M E 18 (1982), N U M B E R 2 

FAST ALGORITHMS FOR FINDING A SUBDIRECT 
DECOMPOSITION AND INTERESTING 
CONGRUENCES OF FINITE ALGEBRAS 

JIRI DEMEL 

A fast algorithm is suggested for finding a subdirect decomposition of a given finite algebra 
into subdirectly irreducible ones. This algorithm is an essential improvement of that given in [4]. 
As a by-product, fast algorithms are presented for finding some interesting congruences of the 
given algebra. 

All algebras are supposed to be finite and given by tables of their operations. 

A fast algorithm is suggested for finding a subdirect decomposition of a given 
finite algebra into subdirectly irreducible ones. This algorithm is an essential improve
ment of that given in [4]. As a by-product, fast algorithms are presented for finding 
some interesting congruences of the given algebra. 

All algebras are supposed to be finite and given by tables of their operations. 
Subdirect product is a useful construction of "complicated" algebras from 

"simpler" ones. Also, the parallel composition of automata [7] can be regarded as 
a subdirect product. In [3] a fast algorithm is presented deciding whether a given 
automaton (Mealy, Moore or Medvedev) is subdirectly irreducible. 

Since subdirect products and subdirect irreducibility are closely related to con-
gruneces, this result is based on an algorithm finding minimal non-identical con
gruences. In [5] this method is generalized to algebras and the algorithm is asympto
tically improved. Also, Hopcroft's and Karp's algorithms [8] and [9], originally 
designed for automata, can be modified to search for interesting congruences of an 
algebra. The present paper can be viewed as a free continuation of the papers [3] 
and [5]. 

By an algebra we mean a pair 91 = (A, F) where A is a finite set and F is a finite 
set of operations. An operation f is a mapping / : As -> A (As is the s-th power of A); 
the number s is the arity o f /and we shall denote it by ar(/). 

Throughout the paper n denotes card(A) and 7* is the maximal arity of operations. 
All the running times of algorithms will be given for classes of algebras with the same 
number of operations that have arity at most r. 
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A congruence on an algebra 21 = (A, F) is an equivalence e on A satisfying the 
substitution property: 
(SP) for every operation / e F with ar(j) = s > 0 whenever we have an s-tuple 

(x1; ..., xs) e As and an element y e A such that (xh y) e s for some ;', 1 = i S s, 
then (j(xl5..., X|_!, y, x ; + 1 , . . . , xa),f(xu ..., x,,))ee. 

On every algebra we have at least two congruences — the identical congruence, 
denoted by A, i.e. (x, y) e A iff x = y, and the trivial congruence denoted by V, 
i.e. V = A2. Congruences as equivalences are partially ordered by inclusion. 

If e, 5 are equivalences, we denote by s A 8 the meet of e, 5, i.e. their intersection, 
and by e v <5 the join of e, 8, i.e. the smallest equivalence containing both e and 5. 
It is well-known that if s, <5 are congruences, so are e A 8 and e v <5. 

Let 21 = (A, F), 2t; = (Ah E;) for i = 1, . . . , m, be algebras with the same arities 
of operations. Then 21 is a subdirect product of the algebras 2f„ i = 1, . . . , m, if 21 
is a subalgebra of their direct product and for any i and any v e A; there is an element 
(x1; ..., v,..., x m ) e A . 

The algebra 2t is called subdirectly irreducible if, whenever 21 is a subdirect 
product of 2T;, i = 1, . . . , m, then there is / such that the canonical projection itj : 21 -+ 
-> 21, is an isomorphism. 

For more details see e.g. [6]. 

Theorem 1. ([2]) Every algebra is isomorphic to a subdirect product of subdirectly 
irreducible algebras. 

Theorem 2. ([2]) If an algebra 21 is a subdirect product of algebras 2f;, i = 1, ..., m, 
then there exist congruences e;, i = 1, ..., m, on 21 such that 2I; £ 2t/s; for all i = 
= 1, . . . , m and {e; | i = 1, ..., m} is a separative system of congruences, i.e. 

(Sep) A ef = A . 
•=i 

Theorem 3. ([2]) A finite algebra is subdirectly irreducible iff either it has exactly 
one minimal non-identical congruence or it has only one element. 

Corollary 4. An algebra 2I/e is subdirectly irreducible iff 

(Max) there exists a pair of distinct elements (x, y) of 21 such that s is a maximal 
congruence on 21 with (x, y) $ e, i.e. (x, y)$s and whenever s! => e, s' 4= e then 
(x, y) e e' for any congruence e'. 

The above Theorems and Corollary 4 offer a strategy for construction of algebras 
2I;, i = 1, . . . , m, of which the given algebra 21 is a subdirect product: Having con
structed a system of congruences {e; | i = 1, . . . , m} satisfying (Sep) and (Max), 
one can simply construct 2l; as 2t/£;. The construction of each quotient-algebra 2t/sf 

can be carried out in time 0(f) where p is the number of all congruence classes of £;. 
Note that if m ^ n, then at least one congruence can be deleted from the system 

without violating (Sep) and (Max). 
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So the original problem has been reduced to the problem 
(Pi) Given an algebra 91 = (A, F), find a system of congruences S = {e, | i = 

= 1, ..., m) fulfilling (Sep), (Max) and m < n. 
The problem (PI) will be solved by the algorithm SUBDECOMP and Theorem 9 

using a procedure MAXNOTTWO which solves the following problem (P2): 
(P2) Given an algebra '21 = (A, F) and a pair (v, w) e A2 \ A, find a congruence e 

such that (i) (v, w) $ e; 

(ii) e is maximal with respect to (i), i.e. if y => e, y # e then (v, w) e y 
for any congruence y. 

The main part of the procedure MAXNOTTWO is formed by the procedure 
SAFEPARTITION. In addition, two procedures MAXINEQUIV and MINCONG 
are used to solve the following problems (P3) and (P4) concerning congruences: 
(P3) Given an algebra 31 and an equivalence <5 4= V, find the greatest congruence 

e c 8. 
This problem can be solved by a slight modification of Hopcroft's algorithm [8] 

for minimization of finite automata. 

(P4) Given an algebra 21, a congruence <5 on 91 and a pair (x, y) <£ S, find the minimal 
congruence e with <5 £ e and (x, y) e s. 

This problem can be solved by a modification of Hopcroft's and Karp's algorithm 
[9] originally designed for testing equivalence of automata. 

There is a natural generalization of both (P2) and (P3): 
(P5) Given an algebra 91 = (A, F) and a relation R c A2 \ A, find a congruence e 

with (i) £ n R = 0; 

(ii) e is maximal with respect to (i). 
Although this is not going to be used for the problem of subdirect decomposition, 

it represents an interesting problem in its own right. Its solution is discussed at the 
end of the paper. 

To simplify the description of the algorithms given below, the problems stated 
above can be, without loss of generality, restricted to unary algebras only. Indeed, 
this follows from the following observation: As far as the substitution property is 
considered, the following procedures have no effect: 
(i) each nullary operation is omitted, 

(ii) each s-ary operation / is replaced by s . ns~l unary operations obtained by 
fixing s - 1 entries in / 

Hence each algebra can be converted to a unary algebra with the same congruences 
(considered as equivalences on the same set) in time proportional to the size of all 
tables of operations. In most cases, this does not influence asymptotically the total 
time. However the need of the conversion can be avoided by modifying the algo
rithms to deal with arbitrary algebras. 

Thus the descriptions of algorithms will be given for unary algebras only although 
time bounds will be given for arbitrary algebras. 
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The conversion of an arbitrary algebra to unary algebra with the same congruences 
enables us to modify some algorithms, originally designed for automata, to be used 
for algebras. Names of unary operations correspond to input symbols, the elements 
of the underlying set of the algebra correspond to states of the automaton. Con
gruences of the algebra coincide with congruences on the states of the automaton. 

Lemma 5 ([8]). There exists a procedure MAXINEQUIV(<5) that replaces a given 
equivalence <5 by the greatest congruence contained in <5 and that needs time at most 
0(nr. log n). 

Lemma 6 f[9]). There exists a procedure MINCONGl(<5) that replaces a given 
equivalence <5 by the smallest congruence s 3 <5 and that needs time at most 0(nr) 
for j- > 1 and 0(n . G(n)) for r = 1, where G(n) — min {/ e A/| log log ... log n £ l} . 

In the above algorithms MAXINEQUIV and MINCONG1 equivalence <5 should 
be stored and maintained in different data structures. In MAXINEQUIV, classes 
of equivalence <5 are represented by doubly linked lists and by an array that assignes 
to each element the name of the class in which it is contained. In this data structure 
operations Delete and Insert can be performed in a constant time. 

In MINCONG1, the system of disjoint sets (i.e. classes of the equivalence) is re
presented by the tree data structure ([10], [11], [1]) for quick operations Union 
and Find. In this data structure k _ n operations Find and n — 1 Unions can be 
performed in time 0(k . G(n)), where G(n) = {/e/V| log log ... log n :£ 1} but if 

i - t imes 

(kin) growths sufficiently (e.g. if k\n = log2 !og2 n) then the time needed for k Finds 
and n — 1 Unions is 0(k). 

Suppose that for a given element x and a given equivalence <5 the procedure 
FIND(x, <5) yields the name of the equivalence class c in <5 such that x e c. Further, 
suppose that for given two names of classes a, b in <5, the procedure UNION(c7, b, c, <5) 
replaces the classes a, b by their union and call the resulting class c. 

Both the data structures mentioned above (i.e. the data structures used in 
MAXINEQUIV and M1NCONG1) cannot be maintained simultaneously, but they 
can be easily converted each to the other in time 0(n). 

We shall denote by e the set of names of congruence classes of equivalence E. 

Lemma 7. There exists a procedure MINCONG(<5, x, y, LIST) that replaces 
a congruence <5 by the smallest congruence e containing both <5 and (x, y), and in 
LIST returns a sequence of all triples (a, b, c) of names of congruence classes such 
that during the execution of MINCONG, classes a, b were replaced by a u b and the 
resulting class was called c. The time needed by the procedure MINCONG is 
0(pr) for r > 1 and 0(p . G(p)) for r = 1, where p is the number of congruence 
classes of <5 and the function G is as given in Lemma 6. 
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Proof. One can either apply procedure MINCONG1 to the quotient-algebra 2I/<5 
or (which is, in fact, the same) make a further modification of the algorithm to deal 
with representants of congruence classes only. 

Lemma 8. There exist procedures JOIN(a, /?) and MEET(a, /?) that produce equi
valences a v ft and a A P in time 0(n). 

Now, we can describe the procedure SUBDECOMP using the procedure MEET 
and MAXNOTTWO. The latter will be described below. 

Procedure SUBDECOMP: 

begin S : = 0; <5 : = V; 

while 8 4= A do 

begin 

choose ce8~ with card(c) 3; 2; 

choose distinct elements v, w e c; 

E := MAXNOTTWO(i;, w); 

8 := MEET(e, 8); 

insert £ into S 

end; 

return S 

end; 

Theorem 9. The procedure SUBDECOMP solves (Pi) in time 0(n . t + n2), 
where t is time needed for one execution of procedure MAXNOTTWO which solves 
problem (P2). 

Proof. The proof of correctness is easy. The proof of time bound is based on the 
fact that during repetition of the w/?r'/e-loop the number of classes of <5 is increased. 

The procedure MAXNOTTWO solving (P2) is based on the following lemma: 

Lemma 10. Let 91 = (A, F) be an algebra, let v, w e A, v #= w. Let p be a con
gruence and <5 an equivalence such that 
(i) (v, w)$S and P ^ 8; 

(ii) every congruence y 3 P containing (x, >•) $ <5 contains (v, w). 

Then the greatest congruence £ contained in <5 (i.e. the solution of (P3)) is also 
a greatest congruence not containing (v, w) (i.e. the solution of (P2)). 

Proof. The statement follows from the fact that (ii) is equivalent to 
(ii') every congruence y 2 P not containing (v, w) is contained in 8. 

The congruence £ is the greatest one fulfilling both p £ £ and (v, w) $ e, so it is 
one of maximal congruences not containing (v, w). 
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An equivalence 5 from Lemma 10 can be constructed by a procedure 

SAFEPARTITION(i), w) described below. 

Procedure SAFEPARTITION(i;, w): 

begin p := A; B := 0\{FIND(i>, /?)}; 

while B =t= 0 do 

begin 

choose e e -B; 

choose xee; 

copy /? into a; 

MINCONG(a, t>, x, LIST); 

if FIND(y, a) = FIND(vv, a) 

then B := B\{e} 

else 

for all (a, b, c) e LIST do 

begin 

UNION(a, b, c, p); 

if aeB&beB then B : = (B \ {a, b}) u {c} 

if aeB&b^B then J3 := J B \ { « } ; 

if a^B&beB then B := £ \ { b } ; 

end 

end; 

copy p into <5; 

a := FIND(>,<5); 

all classes from 5 \ {a} replace by their union; 

return <5 

end; 

Theorem 11. The procedure SAFEPARTITION produces the equivalence 3 
fulfilling the assumptions of Lemma 10 in time 0(n2 . G(n)) if r = 1 and 0(n r+1) 
if r ^ 2. 

Proof. The proof of the time bound is easy since card(B) decreases in each repeti
tion of the while-loop. To prove the correctness, it suffices to prove that after each 
repetition of the while-loop, the following hold: 
(a) p is a congruence; 
(b) B is a subset of p. 
(c) Denoting a = FIND(y, p) and D = p\(B u {a}) we have: 

if x e a and y e\J{d\de D} then 
(cl) every congruence y 3 p containing (x, y) contains (v, w). 
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The proof of (a) and (b) is easy, let us prove (c). We proceed by induction. 
At the beginning we have D = 0, hence (c) holds. Assume (c) was true at the end 

of the previous repetition of the while-loop and let B 4= 0. Then x e e e B is chosen 
and MINCONG(a, v, x, LIST) is executed. If (v, w) e a, then (cl) holds for all 
(z, y) with z e a and y e e; (c) holds. If (v, w) £ a, then all unions just formed in a 
are now repeated in fi and, at the same time, B is maintained either by replacing a, b 
by c, which does not change []{d | d e D}, or by deleting a or b from B. In the latter 
case no new elements are inserted into D and \J{d\de D} can increase only by 
increasing some classes that have already been in D. Also the class a can increase. 
But exactly those classes are now in /? = a. Hence condition (c) holds after every 
repetition of the while-loop. 

After finishing the while-loop, an equivalence 3 is produced with exactly two 
classes a and [j{d | d e D}. From (c) it follows that after the last repetition of the. 
while-loop o fulfils the assumptions of Lemma 10, which concludes the proof. 

The procedure MAXNOTTWO can be described as follows: 

Procedure MAXNOTTWO(t>, w): 
begin 

8 := SAFEPARTITION(u, w); 
MAXINEQUIV(<5); 
return 5 

end; 

Theorem 12. The procedure MAXNOTTWO solves (P2) in time 0(n2 . G(n)) if 
r = l a n d 0(n r + 1) if r ^ 2. 

Proof follows immediately from Theorem 11 and Lemma 10. 

Corollary 13. The procedure SUBDECOMP solves (PI) in time 0(n3 . G(n)) 
if r = 1 and 0(nr+2) if r ^ 2. 

Finally, let us discuss the solution of (P5). If R is a complement of an equivalence <5, 
then (P5) coincides with (P3) and is solved by the procedure MAXINEQU1V. 
If R = {(«, v)} then (P5) coincides with (P2) and it is reduced to (P3) using the pro
cedure SAFEPARTITION. 

If 0 < card(R) ^ k for some fixed k then the reduction of (P5) to (P3) can be 
carried out by a similar method and with the same time bound as in SAFEPARTI
TION. For this purpose Lemma 10 should be slightly generalized: 

Lemma 14. Let W = (A, F) be an algebra, let R £ A2 \ A, R 4 0. Let j8 be a con
gruence and 8 an equivalence such that 
(i) R n 3 = 0 and /5 £ s, 

(ii) for every congruence y 2 | 5 containing (x, y) £ 6 we have y n R 4= 0. 
Then the greatest congruence e contained in 3 (i.e. the solution of (P3)) is also 
a greatest congruence disjoint with R (i.e. the solution of (P5)). 
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Procedure SAFEPARTITIONl(R): 
begin 

/ J : - - . ; 
R : = {x | (x, y) e R or (y, x)e R for some y e A}; 
for all (x, y) e R2 \ R do 

begin 
copy /? into a; 
MINCONG(a, x, y, LIST); 
if R n a = 0 then copy a into fi 

else insert (x, j») to R 
end; 

B : = { a £ ^ | a n R = 0 } ; 
C := {aep\ a n R * 0}; 

while J5 + 0 do 
begin 

choose e e B and xee; 
for all a e C do 

begin 
choose yea; 
copy /? into a; 
MINCONG(a, x, j , LIST); 
if a n R = 0 then 

begin 

for all (a, b, c) e LIST do 
begin 

UNIONfa, b, c, p); 
if a e B and b e B 

then B:= (B\{a, b}) u {c} 
else B := B \ { a , 6}; 

if a £ C or fr £ C 
then C := ( C \ { a , 6} )u {c} 

end; 
go to S2 

end; 
end; 

S2: B:=B\{e} 
end; 

copy ft into 5; 

all classes from 5 \ C replace by their union; 
return 5 

end; 
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Theorem 15. The procedure SAFEPARTITION1 produces the equivalence 5 
fulfilling the assumptions of Lemma 14. If card(R) _ k for some fixed It then it 
requires time 0(n2 . G(n)) for r - 1 and 0(nr+1) for r ^ 2. 

Proof is similar to that of Theorem 11. After each repetition of the while-loop 

the following hold: 

(a) /? is a congruence; 
(b) B, C are disjoint subsets of ft; 
(c) denoting D = p \ (J5 u C) we have: 

if x e ( J { c | c e C } and y e \j{d | d e D) then for every congruence y = fi if 

(x, y)ey then y n R =t= 0. 

Details of the proof are left to the reader. 

Having a congruence e such that e n R = 0 the problem (P5) can be solved directly 
by the following simple procedure. Note that as e we can always use congruence A. 

Procedure MAXNOT(R, e) 
begin 

SET:= {{a, b) | a, b e e, a + b, (a x b) n R = 0}; 
<5:=e; 
for all {a, b] e SET do 

begin 
choose xe a and >' e b; 
copy c5 into a; 
MINCONG(a, x, y, LIST); 
if a n R = 0 then copy a into <5 

end; 
e : = <5 

end; 

Theorem 16. Let e be a congruence such that e n R = 0. Denote s = card(SET), 
p = card(R) and q = card(e). Then procedure MAXNOT(R, e) will produce a solu
tion of (P5) in time 0(q2p + s(qr + n + p)) if r ^ 2 and 0(a2o + s(g . G(g) + 
+ n + p)) if r = 1. 

If we have no previous information concerning congruence e such that s n R = 0, 
we may use e = zd. In this case time bound will be 0(n4 + nr+2). 

(Received August 28, 1981.) 
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