
Kybernetika

Jiří Demel
Fast algorithms for finding a subdirect decomposition and interesting congruences of
finite algebras

Kybernetika, Vol. 18 (1982), No. 2, 121--130

Persistent URL: http://dml.cz/dmlcz/124456

Terms of use:
© Institute of Information Theory and Automation AS CR, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124456
http://project.dml.cz

K Y B E R N E T I K A - V O L U M E 18 (1982), N U M B E R 2

FAST ALGORITHMS FOR FINDING A SUBDIRECT
DECOMPOSITION AND INTERESTING
CONGRUENCES OF FINITE ALGEBRAS

JIRI DEMEL

A fast algorithm is suggested for finding a subdirect decomposition of a given finite algebra
into subdirectly irreducible ones. This algorithm is an essential improvement of that given in [4].
As a by-product, fast algorithms are presented for finding some interesting congruences of the
given algebra.

All algebras are supposed to be finite and given by tables of their operations.

A fast algorithm is suggested for finding a subdirect decomposition of a given
finite algebra into subdirectly irreducible ones. This algorithm is an essential improve
ment of that given in [4]. As a by-product, fast algorithms are presented for finding
some interesting congruences of the given algebra.

All algebras are supposed to be finite and given by tables of their operations.
Subdirect product is a useful construction of "complicated" algebras from

"simpler" ones. Also, the parallel composition of automata [7] can be regarded as
a subdirect product. In [3] a fast algorithm is presented deciding whether a given
automaton (Mealy, Moore or Medvedev) is subdirectly irreducible.

Since subdirect products and subdirect irreducibility are closely related to con-
gruneces, this result is based on an algorithm finding minimal non-identical con
gruences. In [5] this method is generalized to algebras and the algorithm is asympto
tically improved. Also, Hopcroft's and Karp's algorithms [8] and [9], originally
designed for automata, can be modified to search for interesting congruences of an
algebra. The present paper can be viewed as a free continuation of the papers [3]
and [5].

By an algebra we mean a pair 91 = (A, F) where A is a finite set and F is a finite
set of operations. An operation f is a mapping / : As -> A (As is the s-th power of A);
the number s is the arity o f /and we shall denote it by ar(/).

Throughout the paper n denotes card(A) and 7* is the maximal arity of operations.
All the running times of algorithms will be given for classes of algebras with the same
number of operations that have arity at most r.

121

A congruence on an algebra 21 = (A, F) is an equivalence e on A satisfying the
substitution property:
(SP) for every operation / e F with ar(j) = s > 0 whenever we have an s-tuple

(x1; ..., xs) e As and an element y e A such that (xh y) e s for some ;', 1 = i S s,
then (j(xl5..., X|_!, y, x ; + 1 , . . . , xa),f(xu ..., x,,))ee.

On every algebra we have at least two congruences — the identical congruence,
denoted by A, i.e. (x, y) e A iff x = y, and the trivial congruence denoted by V,
i.e. V = A2. Congruences as equivalences are partially ordered by inclusion.

If e, 5 are equivalences, we denote by s A 8 the meet of e, 5, i.e. their intersection,
and by e v <5 the join of e, 8, i.e. the smallest equivalence containing both e and 5.
It is well-known that if s, <5 are congruences, so are e A 8 and e v <5.

Let 21 = (A, F), 2t; = (Ah E;) for i = 1, . . . , m, be algebras with the same arities
of operations. Then 21 is a subdirect product of the algebras 2f„ i = 1, . . . , m, if 21
is a subalgebra of their direct product and for any i and any v e A; there is an element
(x1; ..., v,..., x m) e A .

The algebra 2t is called subdirectly irreducible if, whenever 21 is a subdirect
product of 2T;, i = 1, . . . , m, then there is / such that the canonical projection itj : 21 -+
-> 21, is an isomorphism.

For more details see e.g. [6].

Theorem 1. ([2]) Every algebra is isomorphic to a subdirect product of subdirectly
irreducible algebras.

Theorem 2. ([2]) If an algebra 21 is a subdirect product of algebras 2f;, i = 1, ..., m,
then there exist congruences e;, i = 1, ..., m, on 21 such that 2I; £ 2t/s; for all i =
= 1, . . . , m and {e; | i = 1, ..., m} is a separative system of congruences, i.e.

(Sep) A ef = A .
•=i

Theorem 3. ([2]) A finite algebra is subdirectly irreducible iff either it has exactly
one minimal non-identical congruence or it has only one element.

Corollary 4. An algebra 2I/e is subdirectly irreducible iff

(Max) there exists a pair of distinct elements (x, y) of 21 such that s is a maximal
congruence on 21 with (x, y) $ e, i.e. (x, y)$s and whenever s! => e, s' 4= e then
(x, y) e e' for any congruence e'.

The above Theorems and Corollary 4 offer a strategy for construction of algebras
2I;, i = 1, . . . , m, of which the given algebra 21 is a subdirect product: Having con
structed a system of congruences {e; | i = 1, . . . , m} satisfying (Sep) and (Max),
one can simply construct 2l; as 2t/£;. The construction of each quotient-algebra 2t/sf

can be carried out in time 0(f) where p is the number of all congruence classes of £;.
Note that if m ^ n, then at least one congruence can be deleted from the system

without violating (Sep) and (Max).

122

So the original problem has been reduced to the problem
(Pi) Given an algebra 91 = (A, F), find a system of congruences S = {e, | i =

= 1, ..., m) fulfilling (Sep), (Max) and m < n.
The problem (PI) will be solved by the algorithm SUBDECOMP and Theorem 9

using a procedure MAXNOTTWO which solves the following problem (P2):
(P2) Given an algebra '21 = (A, F) and a pair (v, w) e A2 \ A, find a congruence e

such that (i) (v, w) $ e;

(ii) e is maximal with respect to (i), i.e. if y => e, y # e then (v, w) e y
for any congruence y.

The main part of the procedure MAXNOTTWO is formed by the procedure
SAFEPARTITION. In addition, two procedures MAXINEQUIV and MINCONG
are used to solve the following problems (P3) and (P4) concerning congruences:
(P3) Given an algebra 31 and an equivalence <5 4= V, find the greatest congruence

e c 8.
This problem can be solved by a slight modification of Hopcroft's algorithm [8]

for minimization of finite automata.

(P4) Given an algebra 21, a congruence <5 on 91 and a pair (x, y) <£ S, find the minimal
congruence e with <5 £ e and (x, y) e s.

This problem can be solved by a modification of Hopcroft's and Karp's algorithm
[9] originally designed for testing equivalence of automata.

There is a natural generalization of both (P2) and (P3):
(P5) Given an algebra 91 = (A, F) and a relation R c A2 \ A, find a congruence e

with (i) £ n R = 0;

(ii) e is maximal with respect to (i).
Although this is not going to be used for the problem of subdirect decomposition,

it represents an interesting problem in its own right. Its solution is discussed at the
end of the paper.

To simplify the description of the algorithms given below, the problems stated
above can be, without loss of generality, restricted to unary algebras only. Indeed,
this follows from the following observation: As far as the substitution property is
considered, the following procedures have no effect:
(i) each nullary operation is omitted,

(ii) each s-ary operation / is replaced by s . ns~l unary operations obtained by
fixing s - 1 entries in /

Hence each algebra can be converted to a unary algebra with the same congruences
(considered as equivalences on the same set) in time proportional to the size of all
tables of operations. In most cases, this does not influence asymptotically the total
time. However the need of the conversion can be avoided by modifying the algo
rithms to deal with arbitrary algebras.

Thus the descriptions of algorithms will be given for unary algebras only although
time bounds will be given for arbitrary algebras.

123

The conversion of an arbitrary algebra to unary algebra with the same congruences
enables us to modify some algorithms, originally designed for automata, to be used
for algebras. Names of unary operations correspond to input symbols, the elements
of the underlying set of the algebra correspond to states of the automaton. Con
gruences of the algebra coincide with congruences on the states of the automaton.

Lemma 5 ([8]). There exists a procedure MAXINEQUIV(<5) that replaces a given
equivalence <5 by the greatest congruence contained in <5 and that needs time at most
0(nr. log n).

Lemma 6 f[9]). There exists a procedure MINCONGl(<5) that replaces a given
equivalence <5 by the smallest congruence s 3 <5 and that needs time at most 0(nr)
for j- > 1 and 0(n . G(n)) for r = 1, where G(n) — min {/ e A/| log log ... log n £ l} .

In the above algorithms MAXINEQUIV and MINCONG1 equivalence <5 should
be stored and maintained in different data structures. In MAXINEQUIV, classes
of equivalence <5 are represented by doubly linked lists and by an array that assignes
to each element the name of the class in which it is contained. In this data structure
operations Delete and Insert can be performed in a constant time.

In MINCONG1, the system of disjoint sets (i.e. classes of the equivalence) is re
presented by the tree data structure ([10], [11], [1]) for quick operations Union
and Find. In this data structure k _ n operations Find and n — 1 Unions can be
performed in time 0(k . G(n)), where G(n) = {/e/V| log log ... log n :£ 1} but if

i - t imes

(kin) growths sufficiently (e.g. if k\n = log2 !og2 n) then the time needed for k Finds
and n — 1 Unions is 0(k).

Suppose that for a given element x and a given equivalence <5 the procedure
FIND(x, <5) yields the name of the equivalence class c in <5 such that x e c. Further,
suppose that for given two names of classes a, b in <5, the procedure UNION(c7, b, c, <5)
replaces the classes a, b by their union and call the resulting class c.

Both the data structures mentioned above (i.e. the data structures used in
MAXINEQUIV and M1NCONG1) cannot be maintained simultaneously, but they
can be easily converted each to the other in time 0(n).

We shall denote by e the set of names of congruence classes of equivalence E.

Lemma 7. There exists a procedure MINCONG(<5, x, y, LIST) that replaces
a congruence <5 by the smallest congruence e containing both <5 and (x, y), and in
LIST returns a sequence of all triples (a, b, c) of names of congruence classes such
that during the execution of MINCONG, classes a, b were replaced by a u b and the
resulting class was called c. The time needed by the procedure MINCONG is
0(pr) for r > 1 and 0(p . G(p)) for r = 1, where p is the number of congruence
classes of <5 and the function G is as given in Lemma 6.

124

Proof. One can either apply procedure MINCONG1 to the quotient-algebra 2I/<5
or (which is, in fact, the same) make a further modification of the algorithm to deal
with representants of congruence classes only.

Lemma 8. There exist procedures JOIN(a, /?) and MEET(a, /?) that produce equi
valences a v ft and a A P in time 0(n).

Now, we can describe the procedure SUBDECOMP using the procedure MEET
and MAXNOTTWO. The latter will be described below.

Procedure SUBDECOMP:

begin S : = 0; <5 : = V;

while 8 4= A do

begin

choose ce8~ with card(c) 3; 2;

choose distinct elements v, w e c;

E := MAXNOTTWO(i;, w);

8 := MEET(e, 8);

insert £ into S

end;

return S

end;

Theorem 9. The procedure SUBDECOMP solves (Pi) in time 0(n . t + n2),
where t is time needed for one execution of procedure MAXNOTTWO which solves
problem (P2).

Proof. The proof of correctness is easy. The proof of time bound is based on the
fact that during repetition of the w/?r'/e-loop the number of classes of <5 is increased.

The procedure MAXNOTTWO solving (P2) is based on the following lemma:

Lemma 10. Let 91 = (A, F) be an algebra, let v, w e A, v #= w. Let p be a con
gruence and <5 an equivalence such that
(i) (v, w)$S and P ^ 8;

(ii) every congruence y 3 P containing (x, >•) $ <5 contains (v, w).

Then the greatest congruence £ contained in <5 (i.e. the solution of (P3)) is also
a greatest congruence not containing (v, w) (i.e. the solution of (P2)).

Proof. The statement follows from the fact that (ii) is equivalent to
(ii') every congruence y 2 P not containing (v, w) is contained in 8.

The congruence £ is the greatest one fulfilling both p £ £ and (v, w) $ e, so it is
one of maximal congruences not containing (v, w).

125

An equivalence 5 from Lemma 10 can be constructed by a procedure

SAFEPARTITION(i), w) described below.

Procedure SAFEPARTITION(i;, w):

begin p := A; B := 0\{FIND(i>, /?)};

while B =t= 0 do

begin

choose e e -B;

choose xee;

copy /? into a;

MINCONG(a, t>, x, LIST);

if FIND(y, a) = FIND(vv, a)

then B := B\{e}

else

for all (a, b, c) e LIST do

begin

UNION(a, b, c, p);

if aeB&beB then B : = (B \ {a, b}) u {c}

if aeB&b^B then J3 := J B \ { « } ;

if a^B&beB then B := £ \ { b } ;

end

end;

copy p into <5;

a := FIND(>,<5);

all classes from 5 \ {a} replace by their union;

return <5

end;

Theorem 11. The procedure SAFEPARTITION produces the equivalence 3
fulfilling the assumptions of Lemma 10 in time 0(n2 . G(n)) if r = 1 and 0(n r+1)
if r ^ 2.

Proof. The proof of the time bound is easy since card(B) decreases in each repeti
tion of the while-loop. To prove the correctness, it suffices to prove that after each
repetition of the while-loop, the following hold:
(a) p is a congruence;
(b) B is a subset of p.
(c) Denoting a = FIND(y, p) and D = p\(B u {a}) we have:

if x e a and y e\J{d\de D} then
(cl) every congruence y 3 p containing (x, y) contains (v, w).

126

The proof of (a) and (b) is easy, let us prove (c). We proceed by induction.
At the beginning we have D = 0, hence (c) holds. Assume (c) was true at the end

of the previous repetition of the while-loop and let B 4= 0. Then x e e e B is chosen
and MINCONG(a, v, x, LIST) is executed. If (v, w) e a, then (cl) holds for all
(z, y) with z e a and y e e; (c) holds. If (v, w) £ a, then all unions just formed in a
are now repeated in fi and, at the same time, B is maintained either by replacing a, b
by c, which does not change []{d | d e D}, or by deleting a or b from B. In the latter
case no new elements are inserted into D and \J{d\de D} can increase only by
increasing some classes that have already been in D. Also the class a can increase.
But exactly those classes are now in /? = a. Hence condition (c) holds after every
repetition of the while-loop.

After finishing the while-loop, an equivalence 3 is produced with exactly two
classes a and [j{d | d e D}. From (c) it follows that after the last repetition of the.
while-loop o fulfils the assumptions of Lemma 10, which concludes the proof.

The procedure MAXNOTTWO can be described as follows:

Procedure MAXNOTTWO(t>, w):
begin

8 := SAFEPARTITION(u, w);
MAXINEQUIV(<5);
return 5

end;

Theorem 12. The procedure MAXNOTTWO solves (P2) in time 0(n2 . G(n)) if
r = l a n d 0(n r + 1) if r ^ 2.

Proof follows immediately from Theorem 11 and Lemma 10.

Corollary 13. The procedure SUBDECOMP solves (PI) in time 0(n3 . G(n))
if r = 1 and 0(nr+2) if r ^ 2.

Finally, let us discuss the solution of (P5). If R is a complement of an equivalence <5,
then (P5) coincides with (P3) and is solved by the procedure MAXINEQU1V.
If R = {(«, v)} then (P5) coincides with (P2) and it is reduced to (P3) using the pro
cedure SAFEPARTITION.

If 0 < card(R) ^ k for some fixed k then the reduction of (P5) to (P3) can be
carried out by a similar method and with the same time bound as in SAFEPARTI
TION. For this purpose Lemma 10 should be slightly generalized:

Lemma 14. Let W = (A, F) be an algebra, let R £ A2 \ A, R 4 0. Let j8 be a con
gruence and 8 an equivalence such that
(i) R n 3 = 0 and /5 £ s,

(ii) for every congruence y 2 | 5 containing (x, y) £ 6 we have y n R 4= 0.
Then the greatest congruence e contained in 3 (i.e. the solution of (P3)) is also
a greatest congruence disjoint with R (i.e. the solution of (P5)).

127

Procedure SAFEPARTITIONl(R):
begin

/ J : - - . ;
R : = {x | (x, y) e R or (y, x)e R for some y e A};
for all (x, y) e R2 \ R do

begin
copy /? into a;
MINCONG(a, x, y, LIST);
if R n a = 0 then copy a into fi

else insert (x, j») to R
end;

B : = { a £ ^ | a n R = 0 } ;
C := {aep\ a n R * 0};

while J5 + 0 do
begin

choose e e B and xee;
for all a e C do

begin
choose yea;
copy /? into a;
MINCONG(a, x, j , LIST);
if a n R = 0 then

begin

for all (a, b, c) e LIST do
begin

UNIONfa, b, c, p);
if a e B and b e B

then B:= (B\{a, b}) u {c}
else B := B \ { a , 6};

if a £ C or fr £ C
then C := (C \ { a , 6})u {c}

end;
go to S2

end;
end;

S2: B:=B\{e}
end;

copy ft into 5;

all classes from 5 \ C replace by their union;
return 5

end;

128

Theorem 15. The procedure SAFEPARTITION1 produces the equivalence 5
fulfilling the assumptions of Lemma 14. If card(R) _ k for some fixed It then it
requires time 0(n2 . G(n)) for r - 1 and 0(nr+1) for r ^ 2.

Proof is similar to that of Theorem 11. After each repetition of the while-loop

the following hold:

(a) /? is a congruence;
(b) B, C are disjoint subsets of ft;
(c) denoting D = p \ (J5 u C) we have:

if x e (J { c | c e C } and y e \j{d | d e D) then for every congruence y = fi if

(x, y)ey then y n R =t= 0.

Details of the proof are left to the reader.

Having a congruence e such that e n R = 0 the problem (P5) can be solved directly
by the following simple procedure. Note that as e we can always use congruence A.

Procedure MAXNOT(R, e)
begin

SET:= {{a, b) | a, b e e, a + b, (a x b) n R = 0};
<5:=e;
for all {a, b] e SET do

begin
choose xe a and >' e b;
copy c5 into a;
MINCONG(a, x, y, LIST);
if a n R = 0 then copy a into <5

end;
e : = <5

end;

Theorem 16. Let e be a congruence such that e n R = 0. Denote s = card(SET),
p = card(R) and q = card(e). Then procedure MAXNOT(R, e) will produce a solu
tion of (P5) in time 0(q2p + s(qr + n + p)) if r ^ 2 and 0(a2o + s(g . G(g) +
+ n + p)) if r = 1.

If we have no previous information concerning congruence e such that s n R = 0,
we may use e = zd. In this case time bound will be 0(n4 + nr+2).

(Received August 28, 1981.)

R E F E R E N C E S

[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman: The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Massachusetts 1974.

[2] G. Birkhoff: Subdirect unions in universal algebra. Bull. Amer. Math. Soc. 50 (1944),
764-768.

129

[3] M. Demlova, J. Demel, V. Koubek: On subdirectly irreducible automata. RAIRO Inform.
Theor. 15 (1981), 2 3 - 4 6 .

[4] M. Demlova, J. Demel, V. Koubek: Several algorithms for finite algebras. In: Fundamentals
of Computation Theory 1979 (L. Budach, ed.), Akademie-Verlag, Berlin 1979, 99—104.

[5] M. Demlova, J. Demel, V. Koubek: Algorithms constructing minimal objects in algebras
(to appear).

[6] G. Gratzer: Universal Algebra. D. Van Nostrand Company, Princeton, N.J. 1968.
[7] J. Hartmanis, R. E. Stearns: Algebraic Structure Theory of Sequential Machines. Prentice-

Hall Inc., Englewood Cliffs, N.J. 1966.
[8] J. E. Hopcroft: An n log n algorithm for minimizing states in a finite automaton. In: Theory

of Machines and Computations (Z. Kohavi, A. Paz, eds.), Academic Press, New York 1971,
189-196.

[9] J. E. Hopcroft, R. M. Karp: An Algorithm for Testing the Equivalence of Finite Automata.
TR-71-114. Dept. of Computer Science, Cornell University, Ithaca, N.Y. 1971.

[10] R. E. Tarjan: Efficiency of a good but not linear disjoint set union algorithm. J. Assoc.
Comput. Mach. 22 (1975), 215-225.

[11] R. E. Tarjan: Reference machines require non-linear time to maintain disjoint sets. Proc.
9th Annual ACM Symposium on Theory of Computing, Boulder, Colorado 1977, 18—29.

RNDr. Jifi Demel, Stavebni fakulta CVUT (Faculty of Civil Engineering — Czech Technical
University), Thdkurova 7, 166 29 Praha 6. Czechoslovakia.

130

		webmaster@dml.cz
	2012-06-05T09:51:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

