
Kybernetika

Stanislav Žák
A Turing machine space hierarchy

Kybernetika, Vol. 15 (1979), No. 2, (100)--121

Persistent URL: http://dml.cz/dmlcz/124477

Terms of use:
© Institute of Information Theory and Automation AS CR, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124477
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 15 (1979), N U M B E R 2

A Turing Machine Space Hierarchy

STANISLAV Ž Á K

This paper introduces a new, finer space complexity measure of computations on Turing
machines. The complexity of a computation on a Turing machine now takes into account also
the capacity of the finite control. It is proved that a slight enlarging (by an additive constant)
of the complexity bound increases the computing power. The proofs are based on a new principle
of diagonalization. The results are similar for deterministic and nondeterministic off-line Turing
machines, auxiliary pushdown automata, auxiliary counter automata and also for their versions
with an oracle.

INTRODUCTION

A classical problem of the theory of computational complexity is the question
to find the slightest enlarging of the complexity bound which increases the computing
power. This paper continues the relatively long tradition of investigation of this
question for the case of space complexity of computations on Turing machines
(TM).

The earlier results in this area can be found, for example, in [1]. They are of the
form: For a function t on natural numbers, let SPACE(t) be the class of languages
accepted by Turing machines such that, working on an input word of the length n,
the machine never uses more than t(n) tape squares. Then if t2, tx are functions, f2

is constructable in a certain sense and if lim inf (ti(n)Jt2(n)) = 0, then SPACE(t2) -
- SPACE(tx) ± 0.

A progress has been made in [3]. Here the complexity of a computation of a TM
is given not only by the number of tape squares used during the computation but also
by the tape alphabet size of the TM and by the number of its heads. This allows the
author to prove new results of the following form: For t a function on natural
numbers, for natural numbers m, /, m 2: 2, J 2: 1, let SPACE(t, m, I) be the class
of languages accepted by nondeterministic Turing machines with m tape symbols

and I heads such that for each accepted word of the length n there is an accepting
computation which doesn't require more than t(n) tape squares. If t2 is a (fully)
constructable function, then

SPACE(t2, m, I + 1) - \j{SPACE(tu m, I) \ t2(n) - tt(n + 1) -> 00} * 0 .

In this paper, a new type of space complexity of computations on TM's is defined
and investigated. It is based not only on the number of tape squares visited during
the computation, on the tape alphabet size of a TM and on the number of its heads,
but also on the capacity of its finite control. (A similar idea can be found in [6] and
[7]). Thus from a possible list of basic structural features of a TM also the last item
is taken into account in our approach. The complexity of a computation of a TM
with m tape symbols and / heads is defined as the sum of the number of tape squares
visited during the computation and of the length of the program of the machine.

This approach gives the possibility to prove separation results such as: There is
a constant a such that

SPACE(t2 + a, m, I) - \j{SPACE(tu m, I) | lim inf (t2(n) - tx(n + l)) ^ 0} 4= 0 ,

and to obtain a new complexity hierarchy which refines earlier hierarchies. The results
are formulated for off-line TM's, TM's with auxiliary pushdown stores (= AuxPDA)
as in [5] and also for TM's and AuxPDA's with oracles. Their proofs are based
on a certain principle of diagonalization.

For the first time this principle was used by the author in [8] for proving that
linear bounded automata (Iba) with k + 1 symbols, k ^ 2, accept some languages
that cannot be accepted by lba's with k symbols. We defined the space complexity
taking into account also the capacity of finite control for the first time in [9]. In that
paper, the first theorem concerning this complexity was proved by application of the
principle of diagonalization mentioned above.

This paper extends ideas from [9]. It consists of three chapters. The first chapter
is concerned with diagonalization, the second contains all complexity results and
in the third a comparison with some earlier results is made.

CHAPTER 1

The aim of this chapter is to introduce a new principle of diagonalization. The first
part of the chapter, consisting in a great deal of the basic definition of a mapping
called the result of testing process (rtp) and of a theorem, exhibits the logical structure
of that principle without any care of existence and complexity aspects. The second
part of the chapter is formed by a lemma which ensures the existence of the rtp-map-
pings, introduces first complexity aspects and in its proof provides a construction of
such mappings. For gaining an intuitive insight into the principle of diagonalization

102 it is advisable to follow simultaneously the proof of the theorem and the construction
of rtp-mappings.

Let us first recall some usual definitions and conventions. An alphabet is a non
empty finite set of symbols, all alphabets are subsets of a fixed infinite set containing,
among others, the symbols b,0, 1, 2, 0, # , *, S. A string or a word over an alphabet
is a finite sequence of its symbols, A denotes the empty word, \u\ is the length of the
word u. A language over an alphabet is a set of strings over this alphabet. If X is an
alphabet then X* (X+,X") is the language of all words (of positive length, of the
length n, respectively) over X. Two words may be concatenated which yields a similar
operation for languages. Jf denotes the set of natural numbers. If a is a symbol
and i e Jf then a' is a string of a's of the length i. By a function or by a bound we
always mean a mapping of Jf into itself. The identity function will be denoted id,
id(n) = n. For two functions / , g we shall write / <; g iff (Vn e Jf) (f(n) = g(n)).
For two sets A, B, by the expression A <= B we shall mean that A is a proper subset
of B. From time to time in the following text we shall use the if . . . then . . . else
construction, well-known from the programming languages.

We shall call two languages Lu L2 equivalent (L1 ~ L2) iff they differ only in a finite
number of strings. If Jaf is a class of languages then &-S? will be the class of all languages
for which there are equivalent languages in SS'.

By a program system we mean a pair (P, F) where P is a language and F is a map
ping of P into a set of languages over an alphabet. In this context, P is called the set
of programs and its elements are called programs. In what follows, if we use the
phrase "Let P be a set of programs", we implicitly understand that P is the first
item of a program system. Its second item will have the general denotation L and Lp

will mean the language which corresponds to the program p e P. The set of all such
Lp for all p e P will be denoted by Sf(P).

For a program p and a word u, we say that p accepts u (p\ u) iff M e Lp.

Definition. Let p be a program and Q a set of programs. We say that p diagonalizes
Q iff there is a finite set F such that (Vo e Q - F) (p\ q <-• 1 q\ q).

Lemma 1. Let p be a program and Q a set of programs. If there are infinitely
many programs from Q with the same language as the program p then p does not
diagonalize Q.

Proof. There are infinitely many q e Q such that p\ q <-> q\ q.

Definition. Let Q, R be sets of programs, e a function and RTP a mapping of Jf
without some initial segment {0, 1, . . . , k} into the set Q. If for all q e Q the sets

Rq = {r 6 R | RTP(e(|r|)) = q A ~\(q\ r ~ l r ! r)}

are infinite then RTP is called the result of a testing process with the function e on the

sets Q, R (in short, rtp with e on Q, R).

The existence of such a mapping will be proved later in Lemma 2.

Theorem 1. Let Q, R be sets of programs, RTP an rtp with e on Q, R, N a program
and 2 a mapping from R into the set of natural numbers. If for all q e Q there are
infinitely many r e Rq such that

(1) iV!rOz(r)«-> - l r ! r ,

(2) (V/, OS) < z(r)) (N\ rOJ ~ RTP(e(lr|))! r0J+1),

then LN $ $&(Q).

Proof. Suppose LN ~ Lq for some q e Q. Take r, r e Rq, satisfying conditions (l),
(2) of the theorem and larger than all the words which belong to one of the languages
LN, Lq only. Since reRq, the conditions (a) RTP(e(|r|)) = q and (b) l(q\r*-+~}r\ r)
hold.

Now, we are going to prove q\ r «-> ~lr! r. This will be a contradiction with (b).
First, we shall prove q\ r «-> q\ rOz(r). If z(r) = 0, this is trivial. If z(r) > 0 then, for

all i, 0 g i < z(r), the following statements are equivalent:

(i) q\r0',

(ii) N\r0',

(iii) RTP(e(|r|))!rOi+1,

(iv) q\ r0i+1 .

(i) «-»(ii) follows from the fact that r has been chosen sufficiently large.

(ii) *-> (iii) is ensured by the condition (2) of the theorem.

(iii) «-> (iv) follows from the condition (a).

We have q\ r «-> q\ r0z(r). However, since r is sufficiently large, o!r0z(r)«->
«->iV! r0z(r) and N\ r0z{r) «-> ~lr! r according to the condition (1) of the theorem.
We have q\r «-> q\ r0z(r) «-> ~lr! r. This is a contradiction with (b). Q.E.D.

The next lemma and its proof concern Turing machines and Turing machines
with oracles. We will deal with various types of deterministic and nondeterministic
TM's, considered as accepting devices.

We say that a TM T accepts a word u if there is a computation of T on u which
stops in a final accepting state. If T is a deterministic single-tape TM and accepts
a word u, then T(u) denotes the word written on the tape after the computation
of Ton u has been finished.

A Turing machine with oracle A(A £ Jf) is a Turing machine which, among its
tape, has a fixed one, on which a special symbol S may be written. The set of states
of the machine includes three special states q, YES, NO. If it enters the state q, then

in the next step if the number of occurrences of S on its fixed tape belongs to A,
it must enter the state YES, otherwise the state JVo.

In this chapter we shall use only deterministic single-tape Turing machines with
oracles. — A function e will be called (A-) recursive if there is a deterministic Turing
machine (with oracle A) such that for all n e Jf T(l") = l6(n).

A language over an alphabet X is called recursively enumerable (A-recursively
enumerable) if it is accepted by a Turing machine (Turing machine with oracle A)
and it is called (A-) recursive if moreover its complement in X* is also (A-) recursively
enumerable.

If P is a set of programs then !P is the binary relation {(p, u)\ pe P, ue Lp}. —
The graph of a binary relation H on a set of strings is the set {u2v | (u, v) e H}.

Lemma 2. (rtp-lemma). (a) Let Q, R be nonempty sets of programs and e a function.
If no program from Q diagonalizes R and if e g id and lim e = oo then there is
an rtp with e on Q, R. n~*°°

(b) Let A be an oracle. If, in addition, the sets Q, R, Q S {b, 1}*, are (A-)recur-
sively enumerable languages and the graphs of the relations !G, !R are (A-)recursive
and also the function e is (A-)recursive then there is a deterministic Turing machine
T(with oracle A) with one tape and with one head such that

(1) During the computation on the input word lk, Tuses only the input cell and two
adjacent cells;

(2) Twrites only the symbols l,b(l, b, S);

(3) There is a constant c such that the mapping RTP = {(k, T(lk)) | k e Jf, k = c}
is an rtp with e on Q, R.

In fact, we have two lemmas — the version without an oracle and the relativized
version. The same is true for the proof.

P roo f of (a). Since no q e Q diagonalizes R, R is infinite. Let {r,-} be a sequence
of all programs from R and {qt} a sequence of all programs from Q with infinitely
many occurrences of each of them.

We construct a sequence {vn} of words: Let {mn} be a sequence of natural numbers.
Let v0 = A. For n > 0, the words v„ are of the form

». = »--il> °M ° <Z.„+1 o ll» o rJn o V" o xn o bm" o o]

where [] is a homomorphic binary coding in the alphabet {b, 1}, x„ e {0,1}, iy = 1,
j t = 1 and the numbers i„+i, j.+i and also xn depend on the truth value of the
following expression

(A) i f o j rjn ~ nr,„! r j A 8(|rJ) > |[*] ^ [#] | .

Here k„ is defined as follows. Let K„ = {k | k < n A ik * Q. If K„ = 0, then
/c„ = 0, otherwise k„ is the maximal member of K„.

We define: If (A) holds then x„ = 1 and i„+ 1 = i„ + l,7„+i = 1, else x„ = 0 and

i„+i = «„.j»+1 = ; ' „ + l .

Then we define a mapping RTP. For (t e / , RTP(k) = <jin+i where n =
= max {m | | [*] y m [#] | < k}. Later, we shall prove that RTP is an rtp with eon Q, R.

Remark. The words v„ are rather complicated. But the elements V", I1", qin+1, x„,
bm" are contained in v„ and symbols *, # occur in the formulation of (A) and in the
definition of RTP for purposes of part (b) of proof only. For purposes of part (a)
it is sufficient to define v0 = A, v„ = v„_1qinrJn and to write, in (A) . . . e(|r,-J) >
> \vkn\ and in the definition of RTP, ... n = max {m | \vm\ < k).

The sequence {v„} may be called the testing process. Let us observe the suffixes
[o o qin o . . . o bm" o o] (qinrJn) in the words v„. We see that each member of the
sequence {qt} is tested whether it diagonalizes R. The testing of each q{ starts with
the program rt. Let r ; be the program with which the testing of qt finishes. According
to (A), r ; is so large that e(|r,|) is greater than the length of the shortest word [*] t>„[#]
(v„) containing the whole testing of t j / _ 1 . However, since e is majorized by the
identity, £(|r",|) is smaller than the length of any word v„ containing the whole testing
of qb because rf is a part of each such word. Let vk be the word of maximal length
which is smaller than e(|r;|) - |[* #] | (e(|r,j)). We know that vk contains the whole
testing of ^ i_ 1 but it does not contain the whole testing od q. So, ik+1 = i. We have
RTP«|fi|)) = q,

For proving that RTP is an rtp with e on Q, R, it suffices to show that the sets Rq

from the definition of rtp are infinite. We define, for all q e Q, R'q = {r; | qt = q}.
We have proved R, £ Rq. Each R^ is infinite, since each qe Q occurs infinitely many
times in {qt} and it is not possible to find infinitely many qt (qt = q) which are rejected
during the testing on the same program r = rf.

P roo f of (b). We say that a sequence {at} of words over an alphabet is (A)-effective
iff there is a deterministic Turing machine (with oracle A) rewriting the unary code
of any natural number i to the word a,.

Fact. There are a sequence {m„}, words v„ and a deterministic single-tape Turing
machine T' (with oracle A) such that T has one head which writes the symbols
l,b(l,b, S) only, its tape is infinite to the right only and limited from the left by the
symbol *, and T' is such that
(i) during the computation on the empty input word, T writes the words v„ on its

tape (it rewrites vx to v2, v2 to v3, ...);

(ii) for writing the word v„, V uses \v„\ tape squares only;

(iii) if there is the symbol # in a cell of its tape then the head of T moves between
the symbols *, # only. First it writes the longest v„ that is possible to write

between *, # , and then it writes the program g,n+1 as the result of the computa
tion (precisely: T(bl #) = qin+i where n = max {m | |um| < /}.)

Proof sketch. Since the sets Q, R are (A-)recursively enumerable we can choose
the sequences {<?,}, {r,} (A-)effective. Moreover, the function e and the graphs of the
relations !Q, \R are (A-)recursive. Therefore it is possible to construct the words v„+1

from the words v„ (A-)recursively. The condition (iii) is ensured by the possibility
to choose the numbers m„ sufficiently large. The condition (ii) is clear since the
program <jln+1 is a P a r t of the word v„ and its value (qin or qin+1) is given by x„.

We choose the machine T so that T rewrites the input word lk to the word
[*] b*-l[**]l[#], then it computes between the words [*], [#] , simulating the
work of T between the symbols *, # , and then it leaves only the resulting program
(<7.„+]) on its tape.

We see that T satisfies the requirements (1), (2) of the lemma and also that T(lk) =
= 1in+1 where n = max {m | |[*] i>m[#]| < &}• Therefore the mapping RTP defined
in the formulation of the lemma is an rtp with e on Q, R since it is the same as the RTP
introduced in the proof of (a). Q.E.D.

CHAPTER 2

In this chapter, we introduce various models of Turing machines and define a new
type of space complexity measure. We shall formulate some lemmas concerning
minimal constructable functions and prove two general separation results for lan
guages over two- and one-letter alphabets by application of the Theorem 1 and
of the rtp-lemma. We will conclude the chapter with some corollaries and remarks.

We shall use a special Turing machine model that has a read-only input tape and
a single read-write worktape. The input strings are words over the alphabet {0,1}. They
are placed between two special markers %, § on the input tape and are read by a single
read-only input head which is allowed to move freely between the markers. The
worktape is limited from the left by the symbol * and is infinite to the right. We allow
any fixed finite number of freely moving, but initially left adjusted, read-write heads
on the worktape. The worktape heads can detect each other and they are never
required to write conflicting symbols on a single tape square in the same step or to
shift to the left from the left end (marked by *) of the worktape. The worktape alpha
bet contains a special symbol # which will be called endmarker. At least one and at
most two cells contain the endmarker in each configuration during each computation.
Such two cells must be adjacent. All cells to the right of the endmarker (end markers)
are blank and the initial part of the worktape including the first blank past the end-
marker contains all heads. The endmarker (endmarkers) are shifted by rewriting
during the computation. The initial configuration contains the endmarker in the first
worktape cell.

Such a Turing machine works as an acceptor and may be deterministic or nondeter- 107
ministic. It is called Turing machine with endmarker and if it has / worktape heads
and m worktape symbols it is called (m, /)-Turing machine with endmarker (only
the symbols different from *, # are counted including the blank symbol b).

Remark. The definition is the same as in [3] except for the endmarker. A similar
definition without endmarker is possible: (m, /)-Turing machine such that in each
configuration in any computation all nonblanks are to the left from all blanks on the
worktape, all worktape heads are scanning the initial part of the worktape including
the leftmost blank. The leftmost blank here is our endmarker.

We shall also use (m, Z)-Turing machines with oracles — see the definition in
Chapter 1. The third computational device we will use is the (m, /)-auxiliary pushdown
automaton (AuxPDA) with endmarker. It is the (m, Z)-Turing machine with end-
marker and with an additional pushdown store. The organization of the pushdown
store is the same as in [1]. An AuxPDA whose pushdown store is a counter only is
called an auxiliary counter automaton (AuxCA) - see [1]. Since the AuxPDA is
a special type of TM, we already know what is an AuxPDA with an oracle.

Let us fix the numbers Z (/ 2: 1), m (m S: 2, or, for the case of TM's with oracles,
m 5: 3), the pushdown alphabet size and an oracle A. We have defined twelve types
of accepting devices: (m, Z)-Turing machine with endmarker, (m, Z)-AuxPDA and
(m, Z)-AuxCA with endmarker, each of them either deterministic or nondeterministic,
and either with oracle or without oracle. However, the definitions, theorems and their
proofs in what follows are very similar in all the twelve cases; that is why, as a rule,
we will use only the word "machine" in the following text. If we replace all occurren
ces of the word "machine" in all definitions, theorems and proofs for example by
the phrase "deterministic (m, Z)-AuxPDA with endmarker and with oracle A" then
we will get definitions, theorems and proofs correct for this case.

55""""
Definition. Let a, c be words and M a machine. Then we put tapeMc(a) = oo iff M

cannot reach any accepting state from the configuration where the word a is written
on the input tape, c # forms the maximal nonblank initial segment of the worktape,
all heads are left adjusted, M is in the initial state (and its auxiliary pushdown store
contains only the start symbol). Otherwise tapeMc(a) = the minimal number of
distinct worktape squares visited during an accepting computation of M.

Lemma 3. (Universa l mach ine) There is a recursive set £f, £f £ [b, 1}*, in
one-one correspondence with the set of all machines, and a machine U such that for
each s e Sf and for each input word u the equality tapeMs A(u) + \s\ = tapevJu)
holds (where Ms stands for the machine corresponding to s).

Observe that in fact we have twelve lemmas.

Proof. There is a recursive set 9", £/" £ {0, l}+, in one-one correspondence with
the set of all machines, and an (m + 1, Z)-machine U' such that the equality

108 tapeMsA(u) + \s\ = tapev>s(u) holds for all set/". (9" is the usual set of codes
of machines.)

Consider the work of the machine U'. It simulates the computation of Ms on the
input word u. U' has the code s written on its worktape and, to the right of this code,
U' writes the words that Ms writes on its worktape during the computation on u.
The first worktape head of U' has two tasks: to simulate the first head of Ms, and
to work within the code s. U' uses its additional m + 1-st symbol in two cases:
It marks the cell, where the first head of U' must come back to simulate the first head
of Ms, and it is used within the code s. We will eliminate the first case.

There is an (m + 1, /)-machine U" working as the machine U' with the only ex
ception that it shifts the given code s in such a way that the cell where the first head
of U" must come back to simulate the first head of Ms is the first cell to the right
(left) of the code s. This is possible as we can choose 9" £ 1100{00,01}+ I100,
for example. Then U" uses its m + 1-st worktape symbol within the code s only.

Let [] be a coding of the alphabet {0, l,o} in the alphabet {l,b}, e.g. [0] =
= lblbbbl, [2] = Ibblbbl, [o] = Ibbblbl. Let us put 9 = {[s] | s e 9"}. There
is an (m, Z)-machine U which works like the (m + 1, /)-machine U" with the only
exception that it treats a block consisting of seven symbols as one within the given
code s. U is our machine from the lemma.

Let 9 be as in Lemma 3. Let s e 9 be a code and u a word. We define tapes(u) =
= tapeMaA(u) and spaces(u) = tapes(u) + |s|. Our definition of space differs from
the definition in [3], Space of Seiferas is our tape. — Further, L(MS) will denote
the language accepted by the machine Ms.

If t is a bound and se9 then by f-tape-cut-off of the language L(s) = L(MS)
we mean the set l!(s) = {u | tapes(u) ^ t(|«|)}. We say that machine M, accepts
its language within tape bound t if L(s) = L'(s). — If t is a bound we put

TAPE(t, m, l) = {L\ (3S e9)(L= L(s) = L(s))}
and

CTAPE(t, m, l) = {L\ (3s e9)(L= L'(s))} .

If S is a bound then by S-space-cut-off of the language L(s) = L(MS) we mean
the set Ls(s) = {u \ spaces(u) ^ S(|M|)}. We say that the machine Ms accepts its
language within space bound S if L(s) = Ls(s). — If S is a bound we put

SPACE(S, m, 1) = {L\ (3s e9)(L= Ls(s) = L(s))}
and

CSPACE(S, m, 1) = {L\ (3s e 9) (L -= Ls(s))}.

Let S be a bound and Gs the graph of the relation {(s, u) \ s e 9, ue Ls(s)}. We
know that for the case of machines without oracle, if S is recursive then Gs is also
recursive, and, for the case of machines with oracle A, if S is A-recursive then Gs

is also A-recursive.

We say that a bound t is (m, Z)-fully constructable, in short (m, i)-constructable,
if there is a deterministic machine such that it accepts the language 1+ within tape
bound t and, for all n e Jf, it terminates its work on the input word V by printing
the symbol # into the t(n)-th worktape cell and by erasing symbols in all other work-
tape cells.

Theorem 2. If t is an (m, !)-constructable bound and lim t = oo then there is
a language L such that n~"°

(1) LsO+l+0*,

(2) Le TAPE(t, m, I),

(3) L$ SCSPACE(S, m, I), where 5(0) = 0, S(n + l) = t(n).

Proof. First, we shall choose a set Q of programs such that

J*f (<2) = CSPACE (S, m, I)

and a set R of programs, both satisfying the conditions of the rtp-lemma. Secondly,
we shall construct a machine N such that At accepts its language within tape
bound t and this language has the properties (1), (2) from Theorem 1. By application
of this theorem we will get L(N) $ S£e(Q).

Let us write Q = Sf and for q e Q, Lq = Ls(q). Q is a recursive set and the graph
of the relation ! e is also (A-)resursive.

Let us put e(n) = min {n, t(n)} for all n e Jf. e is (A-) recursive, lim e = oo and
e = id.

Let {SJ} be an effective sequence of programs from £f such that each set? occurs
infinitely many times in it.

Let h be a homomorphism with h(0) = b, h(l) = 1. There is a deterministic
Turing machine M (with oracle A) with one tape infinite only to the right, with one
head writing the symbols 1, b (1, b, S) only, and such that for all s e Sf, u e {0,1}*,
during the computation on the input words s h(u), M decides whether the word u
belongs to Ls(s). Existence of such a machine M is ensured by the construction of the
sets Sf, 9" in the proof of Lemma 3. — We define tapeM(sv) = the number of tape
squares either originally occupied by symbols of the word sv or visited during the
computation of M on this word.

Let bin (/), j e Jf, be a binary representation of the number; in {b, 1}. If u = bin (j)
then let us put val (u) = j . For se£f, jeJf, we define z(0val(s)P) =
= min {z | i(val (s,) + j + z) = tapeM(sb™]l-s)lJ)}. For all i eJf, we also define

j(= min {j > 0 | (Vfc) (0 = k < z(0™Ksi)lj) -> ((val (»,) + j) = <val (sr) + j + k))}.

Existence of such numbers; is ensured by the assumption that lim t = oo.

Finally, let us define R = {rt | i eJf}, where r, = 0mHSi)lj' and Lri = Ls(s).

Let us observe that (a) a portion of tape of the length f(jr.| + z(r^)) is sufficient
for deciding whether rt e Lr. (r ; ! r,-), and

(b) (V i) (V / c) (0 < f c < z (r , .) - e (i r 1 . |) ^ < | r ^ |)) .

No program from Q diagonalizes R because for each program in Q there are infini
tely many programs in R with the same language — see the construction of the se
quence {s;} of the set R, and Lemma 1. R is an (A-) recursive set and the graph of the
relation !R is also an (A-) recursive language. — The sets Q, R and the function e
have the properties required in the rtp-lemma. This lemma gives us the possibility
to define a constructive rtp with e on Q, R. Let RTP be such a mapping.

Now, we are ready to construct the machine N. N starts its computation with
checking whether the input word is of the form 0'lJ0k, i - I, j — l,k = 0. Then it
writes its endmarker into the i(n)-th worktape square, where n = i + j + k. This
is the last endmarker shift during the whole computation. We have L(N) £ 0+l+0*
and L(N) e TAPE(t, m, I).

Then N tries to write the word bin (i) b'lJ on its worktape and to process this
word as M does. For each i, bin (i) e if,

(1) if tapeM(bin (i) b'lJ) < t(n), then

(2) N accepts iff 0'1J $ Ls(bin (i)); else N works as follows:

(3) N tries to put the symbol 1 into its e(i + j)-th worktape square as follows. N
works like the machine constructing t, simulating the endmarker of this machine
by the symbol 1 in the rightmost nonblank cell which does not contain the endmarker.
If e(i + ;') = t(n) then N works on the initial part of its worktape of the length
e(i + j) in a similar manner as the Turing machine T from the rtp-lemma works on
the input word r (H j) . Let RTP(e(i + j)) - se£f(=Q) be the resulting program.
Then N works like the machine U (Lemma 3) does on the input word 0'lJ0k + 1

according to the code s. N accepts iff there is an accepting computation of U that does
not require more than t(n) squares, i.e.
(4)iV accepts iff tapeUtS(0

ilJ0k+1) <. t(n) = t(i + j + k). N simulates the endmarker
of U by the symbol 1 in the rightmost nonblank cell to the left from its own end-
marker.

Now, we must prove that L(N) $ £&(Q) = £CSPACE(S, m, I). We shall apply
Theorem 1. We have the sets Q, R and the mappings RTP, e, z. We prove that the
language L(N) satisfies conditions (1), (2) of this theorem.

We shall demonstrate the equivalence r0z(r) eL(N) <-+ ~]r\ r for all but a finite
number of programs r from R. — If r e R, then r = rt = oyaHs°lJ' for some i e J/~.
N treats the input word as follows: N writes its endmarker in the t(va.\ (s.) + j t +
+ z(0™Hst)lJ'))-th worktape square and accepts iff 0nHs,)lJ' $ Ls(s;)-see the definition
of the function z and (l), (2) and also observation (a) above.

Now, we shall demonstrate that for all sufficiently large r e R (Vfc, 0 < k < z(r)).
. (r0k e L(N) <-* RTP(e(\r\))l r0k+1) (condition 2). Let r be a program from R. Then

r = rt = oval(Si)lJ'i for some ieJ/~. N processes the input word oval(s,)l-' iO\ where 111
k < z(Oval(Si)lJi), as follows: N writes its endmarker in the <(val (s.) + j t + k)-th
worktape square. Then it works according to (3) since k < z(Oval<s,)l-'') — see the
definition of the function z and (l). According to the definitions of e and of the numbers
j u we know that e(val (s() +),) £ r(val (s() + ;',) g f(val (st) + j . + fc) - see also
observation (b). Therefore N works as the machine U does on the input word oval(S() .
. lJ'0k+1 according to the program RTP(e(\r\)) = se£f(= Q). The following state
ments are equivalent:

(i) rOk e L(N) ,

(ii) tapeVtS(rOk+1) < t(n), where 5 = RTP(s(\r\)) - see (4),

(iii) tapeMttA(rOk + 1) + \s\ g t(n) = S(n + l) - see Lemma 3,

(iv) spaces(rOk+1) g S(n + 1) - see the definition of space,,

(v) r0*+1 e Ls(s) - since |rOfe+1| = n + 1,

(vi) S ! rO k + 1 - since Ls(s) = L„

(vii) RTP^drl))!^*1 .

The language L(N) satisfies the conditions of Theorem 1 and therefore L(N) $
$ 8<e(Q) = $CSPACE(S, m, I). Q.E.D.

Lemma 4. Let t be a bound and lim t = oo. If r is constructable by a deterministic
n-»oo

(m, Z)-Turing machine with endmarker and with oracle A or without oracle then
there is a constant K, such that

logm n - I. logm logm n - Kt <; t(n) for all neJf, n > 1 .

In [3] the same fact is proved for the case of bounds t fully constructable by (m, /)-
Turing machines without endmarkers and without oracles. Our lemma can be proved
in the same manner.

Lemma 5. There is a nondecreasing (m, Z)-constructable surjection e' : Jf -* Jf
onto Jf such that for a constant K and for all sufficiently large neJf

e'(n) < logm n — I. logm logm n + K .

Proof. Let M be a deterministic machine which accepts the language 1* such
that its input head moves one cell to the right in each step of each its computation;
on its worktape, M writes all words from its worktape alphabet, provided with suffi
xes # , # # . First M writes the words of the length 2, then the words of the length
3, 4 and so on. M proceeds so that the new word is always obtained by rewriting
the previous one. Before writing a new word, its / worktape heads scan all possible
Z-tuples of accessible squares. This process has only n steps, where n is the length of

the input word. After n steps, M writes its endmarker in the rightmost worktape
square so far scanned and it erases symbols in the other squares.

Let e' be the function constructed by M. e' is a nondecreasing surjection.
Now we must prove our inequality. We know that

(1) (8'(n)-4)imE'(">-4<n,

since during the computation on the input word 1", M writes a word of the length
e'(n) — 1, therefore it has already written all the words of the length s'(n) — 2 and
for writing these words it has needed more than (e'(n) - 4)' m £ (") _ 4 steps. Obviously,
there is a constant K such that for all n e Jf, n > 1,

We have

and

m K - 4 (l - (/ . logm logm n)/logm n + (K- 4)/logm n) ' M .

(logm n - l . logm logm n + K-A)1 mK"4 . n/(logm n)' = n

(logm n - I. logm logm n + K-A)1
 mi»»w.-i.i<,«mtogmn+K-4 ^ n

Therefore logm n - I. logm logm n + K > e'(n) - see (l). Q.E.D.

Lemma 6. There is a nondecreasing surjection e' : Jf -> Jf, e' <; id and e' construc-

table by a machine without auxiliary pushdown store such that, for each bound S

constructable by a machine without auxiliary store with lim S = oo, there is a con

stant Ks satisfying the inequality e'(n) — Ks < S(n) for all n -> Jf.

Remark. The function e' — Ks is also (m, Z)-constructable.

Proof. See Lemmas 4 and 5.

Lemma 7. For each nondecreasing and unbounded recursive function h there is
a nondecreasing surjection g such that g is constructable by a (1, l)-AuxCA with
endmarker and g <, h, g <, id.

Proof. Let h be a nondecreasing and unbounded recursive function. For all n e Jf,
let us define f(n) = min {n, h(n)} and F(n) = min {m | / (m) > n}. — There is
a deterministic Turing machine T with one tape infinite in both directions and with
one head such that during the computation on the empty input word T writes the
words 0-.T*WO-<->, 027r(2)0"(2), ...,Ollm(fw, ..., where for all ieJf, n(i) is
so large that each word written on the tape before 0iTF(i)0n(i) is shorter than this
word. T proceeds so that the new word of the type 07F(')0" (') is always obtained
by rewriting the previous one.

There is a deterministic automaton A with finite control and with two counters
which simulates the Turing machine T. Each configuration of Twith the head scanning

the first symbol of the word u written on the tape corresponds to a situation of A
when the first counter is empty and the second counter contains [w] where [] is
a mapping into 1 * which is strictly increasing in the length of argument. A detailed
description of this technique can be found in [l] .

Now, we shall construct a deterministic (1, l)-AuxCA M with endmarker. M has an
input tape, a worktape with one head using only the symbols b, # and an auxiliary
counter. M uses its counter and its input tape in the same way as the automaton A
uses its two counters. The left input marker % of M represents the bottom of the
second counter of A and the position of the input tape of M gives us the content
of this counter of A. The endmarker # of M (on its worktape) is shifted one cell
to the right each moment when the word of type omlF<-m)On<-m'> has been completed —
in such a moment the input tape of M considered as the second counter of A contains
the word [om2F(m)On(m)] (i.e. the input head is in the [Omif(m)0"(m)]-th cell and the
auxiliary counter contains the start symbol only). M stops its computation when its
input head reaches the right input marker § for the first time.

Let g be the function constructed by M. Then g is unbounded and nondecreasing
and is also a surjection — since the sequence {|[0miF(m)0"(m)]|} is strictly increasing.

We will prove g(n) < f(n) for all sufficiently large n e Jf. We have g(n) <.
g max {m | [om2F(m)0"(m)] is the content of the input tape of M considered as
the second counter of A during the computation of M on the input word 1"} <.
< max {m | |[om7F(m)0"(m)]| £ n} <, max {m | F(m) < n} = max {m | min {q \ f(q) >
> m) < n) < f(n) .

If the last inequality does not hold then q0 = min {q \f(q) > /(«)} < « and/(g 0) >
> f(n) — a contradiction, s ince/ is nondecreasing. Q.E.D.

Theorem 3. Let t be an (m, Z)-constructable bound which majorizes a nondecreasing
and unbounded recursive function. Then there is a language L such that

(1) L ^ l \

(2) Le TAPE(t, m, I),

(3) L $ SCSPACE(S, m, I), where 5(0) = 1, 5(n + 1) = t(n) ,nejV.

Theorem 3a. (Only for the case of machines without auxiliary pushdown store)
Let t be an (m, Z)-constructable bound with lim t = oo. Then there is a language L

such that (1), (2), (3) from Theorem 3 hold.

P r o o f of T h e o r e m s 3 and 3a. First let us notice that if tis our function from
Theorem 3 or 3a then t majorizes an (m, Z)-constructable nondecreasing surjection.
This follows from Lemmas 6 and 7. The plan of the construction of a machine N
whose language has the properties stated in the theorem is the same as in the proof
of Theorem 2.

114 (1) Let us put Q = Sf and for q e Q, Lq = Ls(q). Such a set g is recursive, the graph
of the relation !Q is (A-) recursive.

Let {s,} be an effective sequence of programs from £f such that each s e $P occurs
infinitely many times in it. Before constructing the set R, we must realize that the
language accepted by N would be a subset of 1+ and therefore N would understand
unambiguously the input word from 1+ as a program from the set R enlarged by an
additional string of Vs.

We begin by the construction of words vt. Let {mj be any sequence of natural
numbers and e' a nondecreasing (m, /)-constructable surjection majorized by t and
by identity. We define i>, = [o s t o 2"' o %. o 1 o 7"" o] where [] is a binary coding
of the alphabet {1, 0, b, o} in {b, l}, n1 is a natural number and

(2) if 2"' e LSi = Ls(st) then x1 = 2, else x. = 0. If we have vt then i>i+1 =

= [o s i + 1 o 2n' + 1 o q i + 1 o i + 1 o lmi + i o], where n i + 1 = min {n | e'(n) > |t>,|}; i + 1

is the binary code of i + 1 and

(2) if 2"' + ' eLS j + 1 = Ls(si+1) then xi+1 = 2, else x i + 1 = 0.
For a eJf, a > \vt\, let us define ia = max {i | \vt\ < a}.

Lemma 8. There are words vt and a deterministic Turing machine M (with oracle A)
such that M has one tape and one head which writes the symbols l,b(l,b, S) only,
its tape is infinite to the right only, and M is such that for all a, a > \vt\, M rewrites,
using the input cells only, each word b"~11 into the word: if \via\ < a then viab"~' " l",'a| 2
else via.

Proof. Let us describe the main features of the action of the machine M. M starts
its computation on the input word b"~1 2 by constructing the elements [s .] , [x . l ,
[2"'] of the word vu then it constructs the word vx choosing m2 so large that all
squares used in the construction of the elements [sx] , [2"'], [x t] now contain symbols
of the word vt. If M has written the word v, it starts to construct the elements [s (+ 1] ,
[2"i + '] , [x i + 1] , [i + 1] of the word vi+1 without erasing the word vt. Then it writes
the word vi+1, choosing mi+1 so large that all squares having contained the word vt

or used during the construction of the elements [s i + 1] , . . . , [i + 1], now contain
symbols of the word vi+1. If the initial segment of the length a is not sufficiently
large to construct the word t>i+1 then via = t;,-. •

(3) We fix the sequence {vt} from this lemma and define R = {l"'\'i <= Jf} and

I-i-i = Lst = Ls(st).

The set R and the graph of the relation !R are (A-) recursive languages and no
program from Q diagonalizes R (see the construction of R and {s;} and Lemma 1).

Let us define, for all m e Jf, km = max {i \ \vt\ ^ e'(m)} an<^ e (m) = K J - Ob
viously, we have

Lemma 9. £ is nondecreasing, unbounded, majorized by the identity and (A-)
recursive.

Now, we see that the sets of program Q, R and the function e satisfy the conditions
of the rtp-lemma and that therefore we are allowed to choose an rtp RTP with e
on Q, R which is constructive in the sense of the rtp-lemma.

We define a function z' by putting z'(n) = min {n | e'(n; + n) = \v,\} for all
ieJf and z'(n) = 0 for all neJf different from the n;'s. The definition is correct
since £'(n;) < |r ; | and e' is a nondecreasing surjection.

Now we are ready to construct the machine N and to prove that its language has
the properties (l), (2) from Theorem 1.

N has / worktape heads, uses m worktape symbols and accepts strings of Vs. It
starts computation on the input word 1" by printing its endmarker into the t(n)-th
worktape square (t is constructable); this is the last endmarker shift during the com
putation. We have L(N) S 1+ and L(N) e TAPE(t, m, I). - Then N puts the symbol 1
into the e'(n)-th square (e' is also constructable) and writes the word vkn on its work-
tape — see Lemma 8 and the definition of k„. If |u4n| = e'(n) then N accepts iff
xkn = 0. If \vkn\ < e'(n) then N writes the program RTP(\vkn\) = RTP(e(nj) on its
worktape (rtp-lemma) and erases all the other symbol except the endmarker. Now N,
has the program RTP(e(n)) on its worktape. According to this program, N continues
to work as the universal machine U on the input i"+ 1 . It simulates the endmarker
of U by the symbol 1 - the rightmost nonblank to the left from the endmarker
which is fixed in the t(n)-th cell. N accepts iff there is an accepting computation
of the universal machine U on the input Z"+1 which does not require more than t(n)
cells.

Now we want to apply Theorem 1. We define the mapping z, z(r) = z'(\r\) for all
r e R. We shall prove that rlz(r) eL(iV)<-» ~\r\ r. Let us choose r = 1"' arbitrarily
and put n = nt + z'(n^). During the computation on the input word 1", N decides
whether \vkn\ < e'(n). We know that e'(n) = £'(n; + z'(n^j) = |u;| = \vkn\. Therefore
N accepts iff xkn = 0 iff x, = 0 iff 1"' $ Llni iff ~\r\ r. Thus we have rl2"(r) e L(N) *-+
<->• ~]rl r.

Further, for all reR sufficiently large and for all j , 0 g j < z(r), we shall prove
rV e L(N) <-> RTP(e(|r|))! rlj+1. Let us choose a program reR,r = 1"', and a natu
ral number j , 0 <. j < z'(n) = z(r), arbitrarily and put n = n ; + j . During the com
putation on the word 1", N decides whether \vkn\ < e'(n). We know that

\v\ = e'(n; + z'(n,)) > e'(n) = £ '(n ; + j) = e'(\r\) =

= £'(n;) > E ' ^ ! + z^n,..!)) = h - i | •

So e'(n) > \vkn\ = \vi-i\- Therefore N continues to work as the universal machine U
on the input word ln+1 according to the program RTP(e(n)) = RTP(fi(|r|)). Let us
write s instead of RTP(£(|r|)). It is clear that the following statements are equivalent.

(i) rV e L(N),

116 (ii) tapeUs(rlJ+1) ^ t(n) — this follows from the construction of N,

(iii) tapeMtA(rlJ+1) + |s| g t(n) — see Lemma 3,

(iv) spaces(rlJ+1) S t(n) = S(n + l) — see the definition of spaces,

(v) rlJ+1 e Ls(s) - since | r i J + 1 | = n + 1 ,

(vi) PvTP(e(|r|))! rlJ+1 - since Ls(s) = Ls.

We have shown that the language L(N) satisfies the conditions (1), (2) of Theorem 1.
Therefore L(N) $ S$€(Q) = SCSPACE(S, m, I). Q.E.D.

Corollaries.

Let i be an (m, Z)-constructable bound as in Theorem 2 (Theorem 3). There is
a language L such that

(1) LzO+l+0* (L<= 1+), and either

C o l : (2) L e TAPE(t, m, I) ,

(3) L£A = S\J {SPACE(S', m, I) | lim inf (t(n) - S'(n + 1)) =: 0},

or

Co 2: (2) L e SPACL(i- + a, m, I) where a is a constant,

(3) L £ ^CSPACE(S, m, 1) where S(0) = 0 and S(n + 1) = f(n), nejV,

and L £ * IJ {SPACL(S', m, Z) | lim inf (t(n) - S'(n + 1)) ^ 0}.

P r o o f of Co 1. Let 5 = CSPACE(S, m, I) where S(n + 1) = f(n). We shall
prove A £ SB and apply Theorem 2 (3). Let us take L e A. There is an x e Sf such
that L ~ L(x) = Ls.(x), where l i m i n f ^ n) - S'(n + 1)) =: 0. There is some n0

such that the inequality S(n + 1) = t(n) =: S'(n + 1) holds for all n > n0. Therefore
L ~ L(x) = Ls.(x) ~ Ls(x) e B. Hence L e ^ 5 .

P r o o f of Co 2. Let a be the length of the program of the machine N
from the proof of Theorem 2 (3). L(N) belongs to TAPE(t, m, I) and also to
SPACE (t + a, m, l). The sets from the condition (3) are the same as the sets from
the third conditions of Theorem 2 (3) and Corollary 1.

Let t be an (m, I)- constructable bound as in Theorem 2 (3). If there is a constant b
such that the inequality t(n + 1) - t(n) g b holds for all n e J/" then there is a lan
guage L satisfying the following conditions:

(1) L<=0+l+0* (LSI*),

(2) L e SPACE(t + a, m, I), where a is a constant, and either

Co 3: L # S (J {SJMC£(S'. m, i) | lim inf (((n) - S'(n)) ^ b} ,

or

Co 4: L £ SSPACE(t - b, m, I).

Proof of Co 3. If lim inf (t(n + 1) - S'(" + 1)) = f> then lim inf (/(?.) -
- S'(n + 1)) = 0 and Co 2.

P r o o f of Co 4. Trivial.

Remarks.

It may seem that all applications of Theorem 1 are rather complicated, but this is
not the truth. The following provides an example.

Theorem 4. Let t be an (m, i)-constructable bound which majorizes a nondecreas-

ing and unbounded recursive function. Then there is a language L such that

(1) L<=0+1*,

(2) Le TAPE(t, m, I),

(3) L$ SCSPACE(S, m, I) where S(n + l) = t(n).

P r o o f (sketch). Let s be an (m, Z)-constructable nondecreasing and unbounded
function which is majorized by the identity and by t. Let us define Q = £f, &(Q) =
= CSPACE(S, m, /), {s;}, R = {0l \ i > 0, ieJT}, L0, = Ls(st). - A machine N is
now constructed in a similar way as the machine N in the previous proofs. JV accepts
only the words from 0*1 *. During the computation on the input word 0'1J, i + j = n,
N puts its endmarker into the f(n)-th worktape square and tries to decide whether
0' e L0i. If the segment of the worktape of the length t(n) is sufficient for the decision
then N decides and accepts iff 0' 4 LQi, else N computes the number e(i) and completes
the test on the tape of length e(i). Afterwards N works according to the program
RTP(s(i)). This completes our sketch of proof.

What happens if we change the type of machines considered? Let us have machines
with read-write input head but let us leave the definition of constructable functions
without any changes, i.e. a function is (m, i)-conetructable iff it is constructable by an
(m, J)-machine with read-only input head. It can easily be shown that Theorems 2, 3
are still valid for the new type of machines.

Let us define, for a word u, a language L, and a family of languages&, Shadow u =
= l | u | , Shadow L = {Shadow u | u e L}, Shadow^ = {Shadow L\ L ej£?}.

For the case of nondeterministic machines we can prove the following

Theorem 5. (For nondeterministic machines with read-write input head) Let t be
an (m, Z)-constructable bound which majorizes a nondecreasing and unbounded
recursive function. Then there is a language L such that

(1) L = l+,

(2) L e TAPE(t, m, I),

(3) L i Shadow $ CSPACE(S, m, I), where S(n) = t(n - 1) for all n > 0.

The proof is the same as in the case of Theorem 3, with slight changes only. First,
in the definition of SC(Q) - (l) in the first part of the proof of Theorem 3 - we put
"Lg = Shadow Ls(q)", then in the definition of the words vt — (2) in the same proof,
before Lemma 8 - we put "if l"1 e Shadow Ls(s.) then xt = 1 else x ; = 0", and
in the definition of^f(R) - (3) after Lemma 8 - wepu t"L i n ; = Shadow L^Si)".

Further, before working as the universal machine U, machine N changes non-
deterministically the input word in any word from {0, 1}* of the same length. Finally,
there will be a change of some last lines in the proof of Theorem 3, as follows: "The
following statements are equivalent.

(i) rP s L(N),

(ii) (3u e {0, j}"+1) (tapeUs(u) g t(n)) - this follows from the construction of N,

(iii) (3« e {0,1}"+1) (tapeMirA(u) + \s\ = t(n)) - by Lemma 3,

(iv) (3u e {0, l}"+i) (spaces(u) = t(n) = S(n + 1)) - by definition of spaces,

(v) (3ue{0,iy+1)(ueLs(s)),

(vi) l"+l = rlJ+1 e Shadow Ls(s),

(vii) RTP(s(\r\))\ rlJ+1 - since s = RTP(e(|r)|)) and Ls = Shadow Ls(s)".

CHAPTER 3

The main aim of this chapter is to show the relation between the results from
Chapter 2 and some results of earlier work of J. I. Seiferas [3] and I. H. Sudborough

[5]-
We repeat the definitions of complexity classes and constructable functions from

these papers, using our notation.
Let M be an (m, /)-machine without endmarker. We define tapeM(u) = minimum

of the distinct worktape squares visited during an accepting computation of M on the
input word w if M accepts, and tapeM(u) = GO otherwise. Now, it is possible to define
the classes TAPE(t, m, I).

A function / is fully (m, /)-constructable if there is a deterministic (m, Z)-machine
M without endmarker such that L(M) = 1* and tapeM(l") = f(n).

We know that each function fully constructable by an (m, /)-machine without
endmarker is also constructable by an (m, Z)-machine with endmarker and that each
function constructable by an (m, Z)-machine with endmarker is also fully construc
table by an (m, I + l)-machine without endmarker (the (/ + l)-st head simulates
the endmarker).

Let i be a bound which is fully constructable by an (m, /)-machine without end-
marker. Let us suppose lim r = oo or, as in Theorem 3, f majorizes a nondecreasing

and unbounded recursive function. We define

A = \j{TAPE(Slt m, 1) | t(n) - S.(n + l) -> 00}

for the case of machines without endmarker,

B = \J{SPACE(S2, m, I) | t(n) - S2(n + 1) -» 00}

for the case of machines with endmarker,

C = TAPE(t, m, I)

for the case of machines with endmarker,

D m TAPE(t, m, I + 1)

for the case of machines without endmarker.

Theorems in [3], [4], [5] most frequently state — for machines without oracles -
that D — A 4= 0, or that D — A contains a language over the alphabet {2}. We
shall prove here that this is implied by our Theorems 2, 3.

Fact l.AsB.

Proof. Let LeA. Then L is accepted by an (m,/)-machine without endmarker
within tape bound Su where t(n) — Sx(n + 1) -* 00. L is also accepted by an (m, /)-
machine Mx with endmarker within the same tape bound St — this implies that L
is accepted by Mx within space bound S2, where S2(n) = St(n) + \x\. We have

t(n) - S2(n + 1) = t(n) - St(n + l) - |x| -> 00 .

So L e B.

Fact 2. C S D.

Proof. Let L e C. Then L is accepted by an (m, Z)-machine with endmarker within
tape bound t. Then L is also accepted by an (m, I + l)-machine without endmarker
within the same bound t. The (/ + l)-st head simulates the endmarker and its shifts
on the worktape. The other heads detect the new head as in the previous case they
detected the endmarker.

Fact 3. The set C - B contains a language L, L ^ 0+l+0*(L = 1+).

Proof. See Corollary 1.

The fact D — A #= 0 is implied by our Facts 1 — 3.

We shall try to find an infinite chain of complexity classes between the sets B and C.
For the case of machines with endmarker, for all natural numbers fc we define

£(fc) = {L | (3s e y) (L = L(x) ~ Lt+k(x))}.

The following Propositions P1-P5 hold for each keJf.

PI. £(fc) £ C.

Proof. Let Le£(fc). Then L ~ Lt+k(x) £ L'+,c(x). We have L(x) ~ L(+fc(x).
Clearly, there is a machine Mx. such that L(x') = L'+,t(x') = L(x) = L and a ma
chine Mx„ such that L(x") = L'(x") = L'+*(x') = L. So L e C.

P2. £(fc) £ £(fc + 1).

Prdof. Let Le£(fc). Then L= L(x) ~ Lt+k(x) £ L(+t+1(x) £ L(x). So L e
e £(fc + 1).

P3. (3a) (£(a) - B + 0).

Proof. For all a e l , we know that £(a) 2 SPACE(t + a, m, I). Then apply
Corollary 2.

(A) In the following let us suppose that there is a constant b such that for all n e ^T,

K« + i) - t(»)| = 6.

P4. 5 £ £(fc).

Proof. Let Le£ . Then L = L(x) = Ls(x), where t(n) - S(n + 1) -» co, and also
— according to the supposition (A) — t(n + 1) — S(n + 1) -» oo. Therefore there
is some n0 such that t(n) + fc =t S(n) holds for each n = nQ. Hence Lt+k(x) ~ Ls(x) =
= L(x) = L. SoLe£(fc).

P5. There is an infinite sequence of natural numbers {fc(} such that. £(fc;) <=
c £(fci+1), and £(fci+1) - 8 E(kt) + 0.

Proof. Let us fix fc, fc ̂ b. There is a constant ak such that for G = SPACE(t +
+ k + ak, m, I) and

H = 8 (J {SPACE(S, m, I) \ lim inf (t(n) + fc - S(n)) = b}

the set G - H contains a language over the alphabet {0,1} ({l}) - see Corollary 3.
We know that £(fc + ak) 2 G and we shall prove 8 E(k - b)s H. Let L e £(fc - £>).
Then L= L(x) ~ Lt+k_,,(x). Obviously there is S such that (1) L = L(x) = Ls(x),
and (2) S(n) - r(«) + k - b for all sufficiently large n. We have liminf(f(n) +

+ fc - S(n)) ^ b. So LeH and therefore £(fc + ak) - S E(k - b) * 0, and 121

£(fc - f>) c £(fc + a*)-

For the constant a from P3 let us write k0 = a and fci+1 = kt + b + a t i+i, for

z'e./f". Let us verify £(fci) c £(fc i+1). By writting fc = kt + b we have E(kt) =

= £(fc - b), and £(fci+1) = E(kt + b + aki+b) = £(fc + ak). Q.E.D.

Under the assumption (A), the propositions PI — P5 can be summed up in the follow

ing chain of inclusions

A s B c £(fc0) c <? £(fcx) c S E(k2) c . . . c <? £(fcf) c . . . c C c D .

Remark. Evidently, the following inclusions hold.

£(fc) = {L I (3x e#>)(L = L(x) ~ Lt+k(x)} a

2 {L\ (3X e S?) (L = L(x) = L(+Jt(x)} = SPACE(t + fc, m, /) 2

2 SPACER m, /) .

Hence we have also an infinite chain of sets & E(k,) between SPACE(t, m, I) and

C = TAPE(t, m, I).
(Received September 26, 1978.)

REFERENCES

[1] J. H. Hopcroft, J. D. Ullman: Formal Languages and their Relation to Automata. Adison-
Wesley, Reading, Mass. 1969.

[2] H. Rogers Jr.: Theory of Recursive Functions and Effective Computability. McGraw-Hill,
New York 1967.

[3] J. I. Seiferas: Nondeterministic time and space complexity classes. Project MAC, TR-137,
1974.

[4] J. I. Seiferas: Techniques for separating space complexity classes. JCSS 14 (1977) 1, 73 — 99.
[5] I. H. Sudborough: Separating tape bounded auxiliary pushdown automata classes. Pro

ceedings of the Ninth Annual ACM Symposium on Theory of Computing, Boulder, Colorado,
May 2 - 4 , 1977, pp. 208 — 217.

[6] B. A. Trachtenbrot: Optimal computations and the frequency pheuomenon of Jablonskij.
(In Russian.) Algebra i Logika (Seminar) 4/5 (1965), 79 — 83.

[7] B. A. Trachtenbrot: About normed signaling functions of computations on Turing
machines. (In Russian.) Algebra i Logika 5/6 (1966), 61—70.

[8] S. Zdk: Functions realizable on Turing machines with bounded memory. (In Czech.) 1975,
unpublished, Master thesis, Faculty of Mathematics and Physics, Charles University.

[9] S. Zak: A space hierarchy of languages. (In Czech.) 1977, unpublished, RNDr thesis, Faculty
of Mathematics and Physics, Charles University.

RNDr. Stanislav Zak, Matematicky tistav CSA V (Mathematical Institute — Czechoslovak
Academy of Sciences), Zitnd 25, 115 67 Praha 1. Czechoslovakia.

		webmaster@dml.cz
	2012-06-05T05:57:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

