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K Y B E R N E T I K A - V O L U M E 20 (1984), N U M B E R 5 

ASYMPTOTIC EFFICIENCY 
AND ROBUSTNESS OF D-ESTIMATORS 

IGOR VAJDA 

Asymptotic normality of standard, weak, and directed £>-estimators investigated in preceding 
two issues of Kybernetika is established and influence curves are derived, all under the assumption 
of vector-valued parameter spaces. Asymptotic variance matrices of estimators under consider­
ation are expressed as variances of the corresponding multidimensional influence curves. Condi­
tions of asymptotic efficiency are established as well. 

1. PRELIMINARIES 

This paper is a direct continuation of [9, 10]. It is assumed that the reader is fami­
liar with notation and basic concepts presented there. 

We consider in this paper parameter spaces 0 c Rm with non-empty interiors 
0 ° in the R"'-topology and with no isolated points. The interior 0 ° is assumed 
cr-compact with increasing sequence of subsets 0j <=. 0° compact in Hm and tending 
to 0 ° in the set-theoretic sense (cf. (1.2) in [9]). 

We say that a rate of convergence of a well-defined estimator T: £?(T) -* © 
to the parameter of a family 20 is n~" if 

(1.1) n"(T(P„) - 6) J^UNo(0, Vg(T)) for all 0 e 0 ° , 

where {Qo} > denotes the weak convergence w.r.t. Q^ as n -> oo and Ve(T) denotes 
a finite non-zero asymptotic variance matrix of Tat Qe e J 0 . 

If for some Tand Q there exists ê  > 0 such that (1 - e) Q + el{;c} e SPiT) for all 
0 < e < ex, x eW, and 

(1.2) Q(2(x) = h m ^ 1 - £ ) e + £ l^-T(e) 
elO e 

exists for all x eSE, then QQ : 3C -• Rm is called influence curve of Tat Q. By (6.1) 
in [9], for every equivariant estimator of location parameter from 0 = W and 
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every J e generated by a parent QeSP, QQe for 9 e 0 exist iff QQ exists and 

(1.3) QQe(x) = QQ([ey\x)) for all (9. x)e0 x X . 

The influence curve has originally been introduced by Hampel [5] as a characteris­
tics of robustness of estimators of location. We shall see later that in general V9(T) = 
= EQQQ - QQ. Hence the influence curves {QQe : 9 e 0 } represent an operative 
characteristics of both asymptotic efficiency and robustness of estimators of arbitrary 
parameters. Note that the robustness means in this paper a limited sensitivity of 
asymptotic estimates* T(<29) = 9 to replacements of the "assumed" generating 
probabilities Qe by generating probabilities from s-neighborhoods UE(<2e) = {(1 — e). 
. Qg + sP* : P* e 3P{ of the former ones. We shall see later that in general [T((l - g). 
. Qe + eP*) - T(Qe)]js -> EPMQo as e J, 0 for all P* c SP. 

If X c W* then, following Hampel [5], the triple 

(1.4) aQE(T) = sup \QQe(x)\m , <rLS(T) = sup 
x x 

(1.5) gE(T) = M{\\x\\k : sup \\QQe(x)\\m š *} 

dflg.(*) 
dx 

will be considered as a simple intensional descriptor of robustness of T at Qe SP 
(here and in the sequel || • ||„, denotes the usual Euclidean ff'"-norm). The components 
°GE(T)> aLs(T), QK(X) a r e called correspondingly gross-error sensitivity, local-shift 
sensitivity, and radius of e-negligibility (radius of rejection). 

Now we clarify a non-asymptotic meaning of influence curves under consideration. 
Following Tukey [7] we call QPn a sensitivity curve of T at Pn e SPe. If X = U and 
P(P denotes an empirical probability given by (1.1) in [9] for a sample vector xi0> = 
= (EQ0„X(1), ...,BQo„XM)e X" of expectations of order statistics of a r. v. X = 
= (Xx, ...,X„) with sample space (Xn, S3", Qg), then the sensitivity curves {QPn<<» : 
: 9 e 0} are suitable sample-size-n alternatives to {QQo : 9 e 0). Obviously, under 
certain regularity conditions, one of these systems of curves approximates the other. 
Note that for location 

(1.6) QPnm(x) = QiViCffl 'H*)) for all (9, x) e 0 x X , 

where e = 0 e R and EQ„X(0 = G~1(ij(n + 1)) where G is the d.f. of a parent Q of 
Me. Thus by (1.1) in [9] 

d.7) W";,?,1'^'^)) for £ e a 

and the curves {QPnm : 9 e R] can explicitly be evaluated by (1.6), (1.7). 
This paper is essentially based on elementary results of mathematical analysis 

* If T is Fisher consistent for 2l& then T(Qe) = 0 on & and if T is moreover consistent 
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formulated in detail below. Let g = g(x, y): 3C x / -»• Rk ( / is a topological space) 
be ^-measurable for all y e / and let X be a er-finite measure on (9C, 0&). The g is 
said locally uniformly A-integrable at y e / if there exists an open neighborhood 
U(y) and a function g : 1 -> Rk such that EA||f \\k < oo and \\g(x, y)\\k ^ \\§(x)\\k 

for all x eSC, y e U(y). 

We say that g is X-regular if it is continuous on / for every x e .f, and locally 
uniformly A-integrable at each y e / . 

Lemma 1.1. The expectation E; o(-, y) of any /-regular function g is continuous 
on / in the sense Ex\\g(-,y) - g(-, y)\\k ->• 0 for y -> y. 

Proof. Clear from the Lebesque dominated convergence theorem. • 

Lemma 1.2. (A mean value theorem.) Let / be an open subset of Rm and g : / -* 
-> Rk be differentiable. Then for all y, y' e / with sufficiently small norm \\y - y'\\m 

there exists y* = {y1, ..., yk} <= / such that g(y) — g(y') = (y — y') ° g'(y*) where 
g'(y*) is the m x k matrix g' = (djdy)T o g with an argument y = ys in the s-th 
column and 

||y - y*\\m = max ||y - /||m s \\y ~ y'\\m • 

If g' is continuous at y e / then (in the W^-noim) g'(y*) -> g'(y) as y' -+ y. 

Proof. For the s-th coordinate of g the desired equality together with the inequality 
||y — ys\m lis ||y — .V'|m follow from the Lagrange mean value theorem for real-
valued function of real variable. It suffices to suppose that the segment connecting 
y and y' lies in / and to parametrize this segment by t e [0, 1]. • 

We say that g : 3C x / -> Rk is strongly X-regular i f / is an open subset of Rm 

and the derivative g'(x, y) = (d/dy) g(x, y) is A-regular. 

Lemma 1.3. The expectation D(y) = EAo(-, y) of a strongly /.-regular function g 
is differentiable, D'(y) = (d/dy) D(y) = E^g'(-,y), and D'(y) is continuous on / . 

Proof. Cf. Lemmas 1.1, 1.2, and the Lebesgue dominated convergence theorem. • 

Lemmas 1.1 — 1.3 will be applied mainly to / = 0 ° c Rm. The elements of Rm 

will be considered as row vectors (1 x m matrices), including the differential element 
(d/d0) = (djdOu ..., djdO,,,). Through the paper we write 

d „ / d' " 
P° = MP°> P9 = fe 

At several places we consider divergences for non-probabilistic measures — they 
are defined by the respective formulas of Sec. 2 of [9] with probabilistic measures 
replaced by the non-probabilistic ones. 

In order to keep the extent of this paper limited we illustrate the main results by 
simple examples only. More complex applications are presented in separate papers. 
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2. EFFICIENCY AND ROBUSTNESS OF STANDARD D-ESTIMATORS 

This section is a continuation of Section 2 of [10]: we consider well-defined 
standard D-estimators T = 3Pe\Df with projection families 0e and (not necessarily 
identical) sample generating families 3.0 c 0 on a discrete 2E. We also consider 
for all Q e 0 the function DQ(6) = Df(Pe, Q) on parameter spaces under considera­
tion. In addition to the assumptions of Section 1 we assume the following: 

(i) 0 can be compactified in the sense that there exists a set Q <= [ - c o , oc]m 

containing 0 and containing a cluster point of each sequence {0,} cz 0 . 
(ii) 9C is finite, k denotes the counting measure on dC. 

(iii) 0e <g X, pB = dPg/dX are twice continuously differentiable on 0 ° for every 
x e 9C. 

(iv) J e = X. 
(v) / i s twice continuously differentiable on (0, oo),/"(l) 4= 0. 

(vi) If j2e # ^ 0 then D r is a metric on 0. 
(vii) There exists 09 containing probabilities Pe e 00 for 0 e 0 and probabilities 

or measures PB for 0 e 0 - 0 such that p0(x) -* pg(x) as 0 -» 0 e 0 — 0 , 
0 6 0 , for all x e l 

(viii) It holds DQe(0) < DQe(0) for all 0 e 0 , 0 e 0 , 0 4= 0. 

Lemma 2.1. (viii) with 0 replaced by 0 is equivaent with the Fisher consistency 
of T for SL0. (i) (ii), (vii), (viii) imply Incompatibility of J e with 0e and (i). (ii), 
(vi) —(viii) imply strong consistency of Tfor J 0 . 

Proof. The first assertion is clear from (1.1) in [10]. If l e is not ^-compatible 
with 0@ then there exists 0 6 0 and a sequence {0;} c 0 such that 0 is not among 
cluster points of {0^} and DQo(Q}) -> DQo(8). Since by (i) there exists a cluster point 
0 e 0 of {0j} and, by (ii) and (vii) and by the continuity of/, DQg(0j) -* DQg(8~), 
we get a contradiction with (viii). The third assertion of Lemma 2.1 follows from the 
second one and from Corollaries 2.1, 2.2 in [10]. Q 

Corollary 2.1. For all 0 6 0 ° it holds lim Qg(E„(T)) = 1 where E„(T) = {x e 3£" : 

: T ( T „ ) e 0 0 } . 

Lemma 2.2. For every Q = X and 0 6 0 ° (ii) —(v) imply 

+ /' 

Ч ) -= үñЧ )=^»IQ, Ч ) 
ÜÍ7 •(ś)-

where 

Фв/Q "•($*• *-.-^(î) 
• (P f ° PÍ 

and DQ( ) , D'Q( ) , DQ(0) are continuous on 0 ° . 

Proof. Clear. D 
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Lemma 2.3. (ii)-(v) imply that, in the product topology | • | | x j 1 on 0 x 0, 

f„ (Pe\ PePe 

is continuous on the interior 0 ° x 0>° for every x e %' and Q = X. u, 

Proof. Clear. D 

If in (ii) the finiteness of $£ is replaced by countability then the equivalence 10 = X 
in (iv) has to be replaced by a locally uniform summability (A-integrability) of func­
tions {\liejQ, ^'eiQ : Q e £e0] at each 0 6 0 ° and of the function ^9 /Q at each (0, Q) e 
6 ( 0 ° , &>0). Modifying (ii) —(v) in this manner Lemma 2.2 still holds (cf. Lemmas 
1.1, 1.3) and Lemma 2.3 can be replaced by an analogue of Lemma 3.3 in the next 
section. 

Theorem 2.1. If D'Qe(0) is positive definite on 0 ° then influence curves QQo of T 
at .2,3,0 exist, 

(2.1) QQe = (c - EQe£) o D-Q0(e)-' , where £ = - ^ / < ? , , 

and for every P* e 3P 

(2.2) i imZfcj!ie±^-nQ.).E^ on *.. 
£|o e 

If moreover qg = dQejdX is differentiable on 0 ° then 

(2-3) -^(?)---0.^)-(«--0.0. 

Proof. (I) Suppose X = Qe0>(T), T(Q) = (T(g)} c 0 ° , DQ(0) < DQ(T(Q)) 
for 0 e 0 , 0 4= T(Q), and DQ(T(g)) positive definite. Let P* e ̂ , 0 e 0 be arbitrary 
fixed and define for all e e [0,1), (0, P) e 0 x 0», Q£ = (l - e) Qg + eP*, ge/P = 
= f(Pejp) ~ f'(Pelp) Po\P- By t n e Lagrange mean value theorem it holds \DQe(0) — 
- DQ(0)| ^ e EA|a0/Qe»| where %\Q, Q*) S l\Q, Qe) S e. Since for every x e 
e S£\gejP(x)\ is continuous on 0>° (cf. Lemma 2.3) and Q e 0*°, there exists an open 
neighborhood U(Q) a 0>° of Q such that \ge/P\ is bounded on U(Q) x 9£. Therefore 
DQe(0) -> -DQ(0) as e i 0 for all 6 e 0 . 

(II) Since T(Q) e 0 ° , there exists i such that T(Q) is an interior point of the com­
pact subset 0,- cz 0 ° . Since DQe(9) is continuous on 0 ° (cf. Lemma 2.2), the set 
Ti(QE) of parameters minimizing DQ(9) on 0 ; is non-empty compact. Further, 
by (I), 0£ -•>• T(Q) as e | 0 for all 0E 6 T,(Q,). 

(III) Now we prove Tt(Qe) = ^(Q.) for all sufficiently small e > 0. If the contrary 
holds, there exist sequences {0,-} c 0 and e(j) J. 0 such that T(Q) is not a cluster 
point of {0,} and DQcU)(dj) ^ % ( J , (T (Q ) ) . Therefore 

lim inf DQejOj) S lim DQcjT(Q)) = DQ(T(Q)) . 

362 



On the other hand, by (i) there exists a cluster point 0 e 0 of {0,-} for which the last 
inequality implies DQ(B) g £>G(T(e)), which contradicts the assumptions of (I) 
and the desired result holds. This result and (II) yield Qz e 0>(T), T(Qe) e 0 ° for all 
sufficiently small s > 0 and T(QS) -• T(e) as e | 0. 

(IV) For all sufficiently small £ > 0 the Lagrange mean value theorem yields 
DQ(T(e£)) - D'Qe(T(Qs)) = e E^nQe)/Qe,(q - p*), where x

l(Q, Qt) ^ x\Q, QE) g e. 
This together with obvious identities DQc(T(e£)) = D'Q(T(Q)) = 0 implies the 
identity 

DQ(T(QS)) - D'Q(T(Q)) = £ E^T(Qe)/Qe,(q - p*). 

The last inequality, Lemma 2.3, and (III) yield 

(2.4) lim EA<j/T(Qe)/Qe,(q - p*) = EjjnQ)/Q - EP4inQ)/Q . 
£ |0 

On the other hand, applying Lemma 1.2 to the left side of the identity above we get 

(T(QE) - T(Q)) o D"Q(0*) = £ E^T(Qe)/Qs,(q - p*) 

where (cf. Lemma 2.2 and (III) D'^(0*) -* D'Q(T(Q)) as e j 0. This together with 
(2.4) and the assumptions of (I) yields 

, i m T(Qe) - T(Q) = _{Ep4nQyQ _ E ^ r ( G ) / e ) o DQ(T(Q))-i . 
£iO £ 

(V) The assumptions of (I) hold for every Q = Q0 e %0, and T(ee) = 0 on 0 ° 
(cf. Lemma 2.1). Therefore (2.2) for QQe given by (2.1) follows from (IV). Further, 
(2.1) follows from (2.2) with P* = \{x], xeSC. Applying the operator (d/d0)T to 
the identity D'Qe(T(Qe)) = E^0/Qe = 0 on 0 ° we get 

ZxUe(^J°Z + fem 

From here and from the obvious identity Ekq'B = 0 on 0 ° it follows (2.3). • 

Corollary 2.2. If the Fisher information 

(2.5) K*\*.)-*J^4& 

= 0 on 0 ° • 

is positive definite on 0 ° then influence curves of T at 0>GO are given by Qpg — 

= ~(p'elPe)°I(Q\&eYl-

Proof. By the definition of \j/g/Q, it holds £ = -iie/Pe ~ f"Q) p'ejpe in (2T) with 

Q9 = P$ and the rest follows from (2.3) and from the identity Exp'B = 0 on 0 ° . • 

Lemma 2.4. If Q e&> and £ : X -> Rm then the r.v. Y„ = nuz E^(Pn - q) defined 
on (if", e") satisfies the relation Y„ <2U]Vo(0, DQ£), where DQ£ = EQ(£ - EC^)T ° 
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Proof. By (1.1) in [9], p„ = dP„/dA is a function of r.v. X = (Xx, ...,X„) with 
sample probability space (3Cn, Q"). The function is defined by p„(x) = n~l . 
. (l{Xl)(x)| + . . . + llXn)(x)) for all x e l Therefore Y„ = / i"1 / 2(Z, + .. . + Z„) 
where Z, = EA£(1{X.) — o) are i.i.d. with expectations 

EQ„Z, = ~£ -Q„(llXl) -q)= -£(q -q)=~, 

and variance matrices 

EQ„(Z, - EQ„Z,)To(Z t - EQ„Z.) = EQ„(EA£ t,x,})Tc E ^ l{Xi) -

- (E^qf o EAca = EQcT o { - EQi;Y „ EQ£ = DQ£ . 

The rest follows from the multidimensional central limit theorem. D 

Theorem 2.2. If D'Qg(6) is positive definite on 0 ° then the rate of convergence of T 
to the parameter of 2.e is n" 1 / 2 or, more precisely, (1+) holds with Ve(T) = EQgQQg ° 
o QQv where QQe is given by (2.1). Moreover, if J 0 satisfies the condition of Theorem 
2.1 and the Fisher information 1(6 | 30) is positive definite on 0°, then Ve(T) — 
— 1(6 | £@)~l is positive definite unless there exist constants c; e R such that QQa = 
= "Mel's) + c2 on 0° in which case Ve(T) = 1(6 | J e ) _ 1 on 0 ° . 

Proof. Let Qe e J 8 o be arbitrary fixed. By Lemma 2.1 

(2.6) T(P„) K-U T(Qe) = 6 . 

Since Q = Qe satisfies all assumptions of (I) in the proof of Theorem 2.1, it can be 
proved analogically as in part (IV) of that proof 

(T(P„) - 6) c D'Q(6*„) = ExfT(Pn)/Pn,(qe - p„) 
or 

(2.7) «1/2(T(P„) - 6) = n^(Ek£(qe - p„)) c D'Q(0*H)-i + n^Xn c ^ K ) " * 

for all x e E„(T) (cf. Corollary 2.1), where Xn = E;(^r(i>n)//>n — \J/e/Qo). (qe — p„) and 
X'(Qo. P*) ^ "~{{Qe> IV)- By Corollary 21 and the Cramer-Slutskij theorem (Theo­
rem 10, Chap. 10 of Andel [ l ] ) we can assume that (2.7) holds for all x e Xn. More­
over, by (2.6) and Lemmas 1.2, 2.2, D'Qe(6*) -2*-* D'Qg(9), i.e. D"Qe(6*nY

1 - & - Z)Q8(0Y '. 
By Lemma 2.1 in [10], ^(Q* ' I"") —~* ° w n i c n together with (2.6) and Lemmas 
2.2, 2.4 implies nmX„ -&-> 0. Therefore by (2.1), (2.7), Lemma 2.4, and the Cramer-
Slutskij theorem [ l ] , (1.1) with Vg(T) = Eflef3

T
e o QQg holds. The rest obviously 

follows from this result and from (2.1) and (2.3). Q 

Corollary 2.3. If 1(6 | 0>0) is positive definite on 0° then (1.1) holds with 3.0 == 
= &0, Vg(T) = 1(9 | ^ 0 ) _ 1 on 0°, i.e. all standard D-estimators T= 0>ejDf under 
consideration are BAN (best asymptotically normal) for 10 = ^ V 

Example 2.1. Let 0 = [0, 1] <=. R, SC = {0, 1, ..., fc}, fc > 0, and let .^ [ ( M ]
 suPPort-
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for л- = 0 

ed by S = [0, k) c 3C be composed of probabilities Pg with densities 

, v 1 - p(9) for x = 0 , ,n. [0/(1 - 0)T , a m n 

* « " ' * ) for , = <c, *"> " ! Vr> ; (1 - „)]. f° r » 6 t°' '3 ' 

Finally let g e e J [ 0 ,-, be the binomial probability 5/(0, k) and Tthe Hellinger-distance 

estimator T= 5% u/X>1/2 yield by a convex function/(M) = (1 - « 1 / 2 )/ | (cf. (2.4) 

in [9]). 

Since /"(«) = u3 / 2/2 and Z>e(0) = 1 - [(1 - p(0))#)]1/2 - {p(0)q(k)]m for 

all 0 e [0, l ] , Qe&>, all assumptions considered in this section hold with 0 = 0 = 

= [0, 1]. Obviously 0>(T) = 0> and 

m = [#)/#)r_ f o r a l l „_*.. 
w i + [g(%(o)r 

By (2.1) c(x) = 0 for x 6 3C - S and 

_ i ri______r'2 Kgy 
/ 2L(l-0) k J 1-P(0) 

2 L 0 f c J K-O 

This result together with (2A) permits to evaluate the influence curves QQe of Tat the 

binomial family -?(0>i) and asymptotic variance V9(T) for all 0 e(0, 1). Asymptotic 

behaviour of T when 0 takes on the extreme values 0 or 1 are clear as well since 

T(P„) = 0 a.s. [Qe] there. 

3. EFFICIENCY AND ROBUSTNESS OF WEAK D-ESTIMATORS 

This section is a continuation of Section 3 of [10]: we consider a sample space 

(3C, 38) with a sufficient class S = {Ex: xeSC}, well-defined weak /^-estimators 

T = 0>

gjif
r

0Df with projection families 0>0 c 0 and families of weights We, 

and sample-generating families 2.e c 3P. We also consider for all Q e 0 the functions 

DQ(6) = EWe<P(Fe, G)(Fe(x) = P„(EX), G(x) = Q(EX),... are d.f'.s of P9, Q,... 

(cf. Sec. 1 in [9])) and, for reason clarified in Remark 3.1 below, we write in this 

section <P(u, v) instead of df(u, v) (cf. Corollary 2.1 in [9]). In addition to what 

has been supposed in Section 1, we suppose the following: 

(i) ife is absolutely continuous w.r.t. a tr-finite measure X on (3C, 3$) (Lebesgue 

measure if 3C = Rk), w9 = d We\dX, and WJ(SC) e R is constant on 0. 

(ii) The function <P and its derivatives $'u, 4>'v, <P"m, $"IV are continuous on [0, l ] 2 

and/"( l) 4= 0. 

(iii) The functions weF'e, we, we(F'e)
T o F'g, (w'e)

T o F'g, weF'9, and w'e' are /-regular 
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o n f x 0°, where 

F; = d ^ ' w; = d T " F° = (£)oF°' *-($•"" 
(iv) If M0 4= ^ e , then the weak divergence EW<P(F, G) is a metric on 0. 
(v) J e is WDrcompatible with 0g (cf. Sec. 3 of [10]). 

Lemma 3.1. Tis strongly consistent as well as Fisher consistent for H@. 

P r o o f (ii) implies | / | | < oo so that, by part (a) of Lemma 3.1 in [10], J e is 

strongly M^-regular. The rest follows from Theorems 3.1, 3.2 in [10], Q 

Corollary 3.1. For all 9 e 6>° it holds lim Qg(E„(T)) = 1 where £„(T) = {x e T' : 
: T ( P „ ) £ 0 0 } . 

Define for each 9 e 0 ° , Q e 0 the following functions on 2E 

(3-1) «Ae/G = — (4>(F0, G) wg) = we 4>'u(Fe, G) F'„ + <P(Eg, G) w'g , 

at) 

(3.2) p t / e = (~j o <A9/G = w9 #>JF„ G) (F'g)
T „ F'e + 

+ $'u(Fe, G) [(w9)T o F'g + (F'g)
T o w9] + wg &>u(Fg, G) F'g + <P(Fg, G) w'g , 

(3.3) - <A9/G = A - ^ / c = w9 tf£.(Ffl, G) Fe + &£Fe, G) w'g. 
dG 

Lemma 3.2. For any Q e 0, DQ(9) is twice differentiate, 

DQ{6) = ^ DQ{9) = E > e / r " Z)e(0) = ( ^ ) T ° D ^ ) = E A ^ / G on 0 ° 

and De(0), £>Q(0), D'Q(0) are continuous on 0 ° . 

Proof. By (ii), all functions cited in (ii) and (3.1)-(3.3) are bounded on the 
compact [0, l ] 2 . Hence, by the continuity in (ii), (iii), i^9/G, i]/'e/G are 2-regular on 
J" x 0 ° for every Qe0. Applying Lemmas 1.1, 1.3 to the latter two functions 
we get the desired results. • 

Lemma 3.3. Ex\j/e/G is continuous on a topological space 0 ° x 0 with the product 
topology [I • |j,„ x KS (where KS denotes the Kolmogorov-Smirnov distance) in the 
sense E a | ^ - - fa/G\\m ^ 0 as (9, Q) -> (0, Q) e 0 ° x 0. 

Proof. Analogically as in the preceding proof we get from (3.3), (ii) and (iii) 
that g(x, (9, Q)) = \jie/G(x) is 1-regular on X x ( 0 ° x 0) so that the desired result 
follows from Lemma 1.1. • 
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Theorem 3.1. If D'Qg(k) is positive definite on 0 ° then influence curves QQg of T 
at Ago exist, 

(3-4) QQe = (^-E^Ge)aD'Qg(e)-1 

where 

(3.5) £ = - ^ e / G g , Z(x) = E ; i 1EM , E(x) = {xeX:xeEs} on X, 

and for every P* e SP 

(3.6) 

lim m^AQe + sF*)-T(Qj = , A _ - ^ _ ^ Q D „ e ( 0 ) - 1 on 0O 

e.O E 

If moreover ws(G;)T
 0 Fg, (G^)T

 0 w'e are A-regular on ^ x 0 ° , where G'g are defined 
analogically as F'e in (iii), then 

(3-7), D'Qe(6) = E;.(G;)T o c: . 

Proof. (I) Suppose g e ^ T ) , F(Q) = (T(Q)} c 0 ° , £>Q(T(0)) positive definite, 
and inf DQ(9) < DQ(T(Q)) for all open neighborhoods U(T(Q)) of T(Q). Let 

<9~tf(r«2)) 

P* e 0>, 0 e 0 ° be arbitrary fixed and define g£ = (l - e) Q + eP* for £ e [0, 1). 
Since T(Q) e 0 ° there exists i such that T(Q) is an interior point of the compact 
subset 0 ; <= 0 ° . Since DQc(6) is continuous on 0 ° (cf. Lemma 2.2), the set Tt(Qc) of 
parameters minimizing DQe(6) on 0 ; is non-empty compact for all e e [0, 1). 

(II) By the Lagrange mean value theorem 

\DQ,(0) - DQ(Q)\ = I - A W - 7 . , G*) W9£(F* - G))| = eKW^ar) 

where i;S(G, G*) S KS(F*, G) ^ £ and K = max \<P'V\ is finite by (i), (ii). Hence, 
by (I), 0£ --» T(_) as £ | 0 for all 0, e Tt(Qe).

 c° '1 ] 2 

(III) Now we prove Tt(QE) = T(Qe) for all sufficiently small £ > 0. If the contrary 
hdlds, there exist U(T(Q)) <= 0,. and sequences 6j $ 0,-, fi(;') J, 0 such that DQcu)(6j) g 
_ £>'Qc(J)(F(_)). In view of the inequality (II) this implies 

inf fJQ(0) _ lim inf Da(9j) = lim % 0 , ( T ( 2 ) ) = DQ(T(Q)) 
0iV(T(Q)) j-KB y -oo 

which contradicts the assumptions of (I). Thus we have proved QE e 3P(T), T(Qe) e 0 ° 
for all sufficiently small £ > 0 and T(Qt) -* T(Q) as £ | 0. 

(IV) For all sufficiently small s > 0 the Lagrange mean value theorem yields 
D'Q(T(Qt)) - D'Qc(T(Qt)) = IXKQ.MGAG - G£), where KS(G, C*) = XS(G, G£) = 

_ 8. This together with obvious identities D'Q(T(Qe)) = D'Q(T(Q)) = 0 implies the 
identity 

DQ(T(Qe)) - £)Q(T(Q)) = £ E> r (Qe) /CE ,(G - F*) . 

The last inequality, Lemma 3.3, and (III) yield 

0 = lim ||EA h(Q,voAG ~ F*) - EA ^ r ( Q ) / c (G - F*)\\m = 
no 
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< lim E„|^г(в_/c.. ~ ФПQWL = 0 
«io 

i.e. 

(3.8) lim ZAnQrVcA0 ~ F*) = E ^ T ( Q ) / C ( G - F*). 
no 

On the other hand, applying Lemma 1.2 to the left side of the last identity, we get 

(T(QE) ~ T(Q)) o De(0*) = eE^T(Qc)/Gc,(G - F*) 

where (cf. Lemma 3.2 and (III)) D'Q(9*) -> D'Q(T(Q)) as e J. 0. These results together 
with (3.8) yield 

U m _]__________) = E > r ( e - / C ( G - F * ) . Z)Q(T(e))-i. 
no £ 

(V) The assumptions of (I) hold for every Q e £0O and T(Qe) = 0 on 6>° (cf. 
Lemma 3.1). Therefore (3.6) for QQe given by (3.1) holds. Further, (3.4) follows 
from (3.6) with P* = l{x],x e 9£, if we take into account the obvious identity F*(x) = 
= lE(x> valid for these P*. The expression (3.7) follows from the relation 

^ J o ^ / c . = 0 on 0° . 

This relation follows from the identity D'Qe(9) = E^i/-fl/Ce = 0 on 0° and from the 
fact that, for le0 satisfying assumptions of Theorem 3.1, the expectation E; and the 
differential operator (d/d0)T are exchangeable in this identity (compare Lemma 3.2). • 

If 9C — Rk then we denote by (— oo, x) the product of semi-bounded intervals 
upper-bounded by the respective coordinates of x e ff*. 

Theorem 3.2. If D'Qe(0) is positive definite on 0°, SC = R, and M0 « ) , , then 
functions | primitive to Q (cf. (3.5)) in the sense | (x) = Ê c; 1(__>X) on R exist and 
the influence curves (3.4) are given by 

(3-9) nQ9=-(i--Qel)oVQe(0)->. 

Proof. The sets E(x), x e R, defined in (3.5) are equal to ( - oo, x). By Lemma 3.3, 
I is absolutely integrable in the sense EAJ^|_ < oo on 0° and | ( - oo) = 0, f(oo) e Rm. 
This implies for all P <§ X or for all P e ^ 

(3A0) ~£F = f(oo) - E„|. 

Applying this result to (3.4) with F = Gg and taking into account that £(_:) = Ex£, — 

- E__ -<-•,_) = K 0 0 ) - !(*) o n w"' w e - e t (3-9)- D 

For J e = _*>e it follows from (3.2), (3.5) that c = j"(l) weF'el[F'g(l - F0)] and 
that 2.0 satisfies the conditions of Theorem 3.1. Thus the following corollary holds. 
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Corollary 3.1. Let # e « X be arbitrary such that 1Ve = <p1Vg for 0(u, v) = 
= «(1 - «), let J 0 = ^ 0 satisfy ( i)-(v), and let E;(F^)T

 0 ^ be positive definite 
on 0°. Then influence curves of T& S?e\~1VeD{ at 3PQ0 are given by (3.9) with 
' = wef'e and £>Qe(tf) = EA(F;)T

 0 C. 

Example 3.1. Let 0 = R be the location parameter space and P, W be arbitrary 
such that the generated families* ^R,1VR satisfy assumptions of Corollary 3.1. 
If Expw e (0, oo), p° = pwl~xpw, F° is the d.f. of p°, and Epp° > 0, then influ­
ence curves of T = P\q>1VDf art given by (1.3) with 0 = R, Q = P, and it holds 

F° - EpF° F° - EPF° 
I2p — 

E ' p ° EP(F° - EPF°) t 
P 

This statement follows from Corollary 3.1, from the fact that F'e — — p([&]~1) 
here, and the identity E ;p'F° = -E;pp° (cf. (3.10). Notice that if E?pw = 0 or oo 
then the influence curves are zero or unbounded respectively. Further, for any W, f 
under consideration these curves are monotone on R (thus never "redescending") 
and symmetric about 0 provided pw is symmetric (in this case EPF° = ~). 

Remark 3.1. All results of this section apply to estimators T = SP0\<pycp21V'0Ds 

with <P = ds<pt satisfying (ii), (iv) and with <p2(
u, (1) = "(1 — u). This conclusion 

has already been used in formulations of Corollary 3.1 and Example 3.1 (with 
(Pi = 1, cp2 = <~). Another examples are provided by the function f(u) = (1 - u)2 

yielding the weak #2-divergence. Here df(u, v) = (u — v)2\v(l — v) is not satisfying 
(ii) and (iv) while 4>(u, v) = df(u, v) v(l — v) is. The results of Example 3.1 for the 
particular weak ^-estimators of location T= P\q>x(p2WDs, q>x(u, v) = v(\ - v), 
have formerly been obtained by Boos [3]. 

In the rest of this section we assume, in addition to (i) —(v), the following condition 
(vi): X = Rk and J2 0 <C X. 

Lemma 3.4. If Q s @, Q « X, and c : Rk -> »'" is absolutely f2"integrable with 
finite variance matrix D Q | = EQ(| — EQc)T o ( | — EG|) of the respective primitive 
function c(x) = Ex~ 1 , . ^ , , , x e Rk, then the r.v. Y„ = nlf2E^(G - F„) defined 
on (»", 0S", Qn) satisfies the relation Y„ {SU No(0, DQ£). 

Proof. By (3.10) it holds for each x e I 

Yn = ,.'/2(EP„i - EQ|) = „-->- l ('(xj) - EQ|) (cf. (1.1) in [9]) 
i= 1 

and the rest is clear. • 

* Hereafter, from typographical reasons, we use R instead of R in subscripts. 
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Theorem 3.3. If D'Qe(0) is positive definite and EQef2jo 0 QQe finite on 0 ° then 
the rate convergence of Tto the parameter of l e is n _ 1 / 2 or, more precisely, (1.1) 
holds with Vg(T)=EQeQl0QQg. 

Proof. Let Qeel@a be arbitrary fixed. Analogically as in (2.7), we can assume 
for all x e (iff the identity 

n1/2(T(P„) - 0) = n1'2 E,^(G - F„) o D'^O*)-1 + nlf2X„ „ D'Q(e*)~' , 

where 

H1/2|Z„||ra = n^\\E^T(Pn)/Fn,(Gg - Fn) - IAIGSP, - F„)\\m ^ 

SE^nPn)/Fn*-te/Ge\\mn^KS(Ge,Fn), 

t is given by (3.5), KS(F*, G„) = KS(Fn, Gg)
[^- 0 (cf. Glivenko theorem), 

T(Pn)E2sU T(Q$) = 0 cf. Lemma 3.1), and DQg(0*) l-^~*D'Qg(0) (cf. Lemmas 3.1, 
3.2, and T(P„) [-^-> 0). By the Glivenko theorem, the above stated inequality, and 
Lemma 3.3, it holds nl/2X„ -&-+Q. Therefore the identity above, together with the 
Gramer-Slutskij theorem and Lemma 3.4, imply (1.1) with 

Ve(T) = EQe[(e - EQ;0 o D'Qg(B)-^ „ [(£ - E Q s | ) . D'Qs(B)-'] . 

The rest follows from (3.9). • 

Example 3.2. If Tis as in Example 3.1 and EPQP < oo then the asymptotic variances 
V9(T) of T at Pe e 0>R are equal to EPQ2 and EPQ2

P ̂  l//(P) = l /EP ( / /p) 2 with 
equality iff there exist ct e R such that F° = c^p'jp + c2. 

4. EFFICIENCY AND ROBUSTNESS OF DIRECTED D-ESTIMATORS 

This section is a continuation of Section 4 in [10]: we consider well-defined di­
rected £>*-estimators TJ = &>e\\W, a 6 (0,1] , with projection families 3P0 <4 W 
and sample-generating families 2.e on a sample space (S€, 3S). We also consider the 
functions DQ(d) = EQpg on 0 for all Q e 3? where p„ = dPe/dlV. In addition to what 
has been supposed in Section 1, we suppose the following: 

(i) SC is a pseudo-metric space and the functions pg, 

^e = — Pe = «Ps Ve , "/tá = [ — ) o <Ae = «(« - 1) Pe 2(PeY° Pe + aPl' 
dv \ d 0 / 

Pв 

are bounded and continuous on 3£ uniformly for all 0 e 0 ° and continuous on 0 
for all x e £ 

(ii) Tx is consistent for 3.&. 

(iii) 3-0 is a-compatible with ^ 0 (cf. Sec. 4 and the footnote in Sec. 5 of [10]). 
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Lemma 4.1. For every Q g 0>, DQ(6) is twice differentiate, 

W) = ̂ ->e(0) ==-#.. # ) = ( ^ J ° ^ ) = W on 0° 
and DQ(9), D'Q(B), D"Q(B) are continuous on 0 ° . 

Proof. By (i), p£, \j/e, i//'g are g-regular for all Q e S>. The rest is clear from Lemmas 
1.1, 1.3. • 

Theorem 4.1. If D"Q0(Q) is negative definite on 0 ° then influence curves QQe of T" 
at 3.0 exist, 

(4-0 fiQo= -tye- Efl^.)»->fl.(l)"1-
and for every P* e ^ 

(4.2) h m ^ i ^ ^ ^ £ P ^ t 7 ^ ) = E ^ Q o on 0 ° . 
!'l=l £ | 0 £ 

If moreover J a <g W, qg — dQe/dWis differentiable, Ewq'g = 0, and \j/'gqg + (q'g)
T

 0 ij/9 

is ^-regular cm 3C x 0 ° , then 

(4-3) ->5.(») = - f l . f - Y o ( ^ - - « > . ) • 

Proof. (I) Suppose Q e S^V), J\Q) = (Ta(e)} <= 0 ° , D'^T^Qj) negative definite, 
and 

sup DQ(0) < DQ(T*(Q)) 
•••••••• ee8-U(T*(Q)) 

for all open neighborhoods U(T*(Q)) of T\Q). Let P* £ 0>, 6 e 0 ° be arbitrary 
fixed, and define QE = (1 - e) Q + eP* for e e [0, 1). It holds 

|%(<0 - ^(9)1 = e|~V(0) - D Q( 0 ) | = eKz^P*, Q) 
where K = sup p* < oo (cf. (iii)). Hence DQc(0) -> Z)Q(0) as £ | 0 where DQ E (0) 

a' 
is continuous on 0 ° (cf. Lemma 4.1). Therefore, analogically as in the proofs of 
Theorems 2.1, 3.1, we can employ (iii) to prove by contradiction that Qs e 0>(T*), 
T*(QC) e 0 ° for all sufficiently small e > 0 and T*(Qe) -> T\Q) as e j 0. 

(II) For all sufficiently small e > 0 the Lagrange mean value theorem yields 
D'Qc(T(Q)) - D'Q(T(Q)) = e(D'P,(T(QJ) - D'Q(T(Q)). This and the obvious identities 
Di(T(Qs)) = D'Q(T(Q)) = imply 

DQc(T(Q)) - DQ£T(QE)) = e ^ . ( T ( Q ) ) . 

Thus, by Lemmas 1.2, 4.1, 

(T(QB) - T(Q)) o T / Q K ) = - e D'P,(T(Q)) 

where ||T(Q) - 0e*||m < ||T(g) - T(Qe)\\m. On the other hand 

PM-DQ(T(Q))lmi ^ \\D'Qc(9t) - D'Q(e:)\\m2 + \\D'Q(e:) - DQ(T(e))||ra2 
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where \\D'Qc(OT) ~ DQ(6*)\\mi £ KX
l{Q„ Q) for K = sup | ^ | | m 2 < TO. since it holds. 

x 
\\T(Q) - 0*\\m -* 0 as £ | 0 (cf. (I) and an inequality above) and since D'Q(0) is 
continuous on 0 ° (cf. Lemma 4.1), it holds 

lim r ( Q c ) " T{Q) = -D'P,(T(Q))0 D'Q(T(Q))~i . 
t j O £ 

(111) As all Qele0 satisfy the assumptions of (I), (4.2) with QQo given by (4.1) 
follows from (II) end (4.1) follows from (1.2) and (4.2) with P* = 1 J , x e i Finally 
applying the operator (d/d#)T to the identity D'Qg(T(Qe)) = Ewqgij/e = 0 on 0 ° and 
interchanging the operators (d/d0)T and E^ (cf. assumptions of Theorem 4.1 and 
Lemma 1.3) we get the identity Ew(<ij/'gqg + (q'e)

T o tye) = 0 on 0 ° . This identity 
together with the assumption EQe(q'glqe) = 0 and Lemma 4.1 yields (4.3). Q 

Example 4.1. If a location estimator T* = PjjX and a parent Q of a sample 
generating location family _2R satisfy the assumptions of Theorem 4.1, then influence 
curves of T" at 3.R are given by (1.3) with 

P' V - "QP* V 
p-P---aŕP-

P P 

p') -
q 

EQp 
pq 

Q Q = -

E Q ( p Z _ V ~ EQP* 

If Q is not satisfying the assumptions of Theorem 4.1 then the last expression should 
be replaced by 

Qa= -
ЃP--ІQP-P-

P P 

( l - « ) E G p ^ - E e P ^ 
P P 

These conclusions follow from the fact that in the location case p'e = — p'([^]_1) 
for all Seff. They agree with Huber's formulas for influence curves of M-estimators. 
of location with loss function D(x) = C — p(xf (cf. the well-motivated M-estimators 
of location in Sec. 3 of [8] or Sec. 5 of [9]). Q 

Theorem 4.2. If D'Qo(d) is negative definite and EQoQ
y

Qo 0 QQo finite on 0 ° then 
the rate of convergence of T" to the parameter of 2L9 is n ~ 1 / 2 or, more precisely, (1.1) 
holds with Ve(T") = ECef2ee o QQo. If moreover SLe satisfies the conditions of Theorem 
4.1 and the Fisher information 1(0 | 2.0) is positive definite on 0° , then VX(T") -
— 1(6 | Q0)~l is positive definite on 0 ° unless there exist constants cf e R such that 

Q

Qo = ciq'glqe + c2 a.s. [Q 9] on 0 ° , in which case Vj^T) = 1(0 \ j2 eY\ 

Proof. (I) Taking into account (ii) and Lemma 1.2, we can assume analogically 
as in the proofs of Theorems 2.2,3.3 the identity D'Pii(d) - D'Pn(T(P,)) = (0 - T(P„)) c 
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•o D'Pn(9*) for all x e '£", 0 e 0°, where the r. v. ||0 - 9*\m defined on (£", 48", Q") 
satisfies the relation ||0 - 0*|m-2*-*O. 

(II) Now we prove D"Pn(0*n) ~-~> D'Qo(9). It holds 

IKK) - D'QMU = I-*.(£) - ^K)IU + K X ) - -Wl.- • 
By Lemma 4 A and (I) the second right term tends to zero in the Q%'-probability. 
As 1o the first right term, using the uniform boundedness and continuity of \[i'a on 
J" x 0 ° (cf. (ii)) and the method employed in part (II) of the proof of Theorem 
4.1 in [10], we get 

II-W) - DUe*)U = 1-!•>;.. - Ea-^vlU-^O-
(III) By (I), n1/2(T(P„) - 0) = -n1/2Z>^(0) 0 0^(0*), i.e. 

n1/2(T(P„) - 0) = ( -n- 1 / 2 i^ (X, ) )oD' ; n (0*r 1 

i = i 

where X = (Z t , . . . ,X„) is the r. v. with sample probability space (.f", 38", Q"). 
This together with (II), the multidimensional central limit theorem, and the Cramer-
Slutskij theorem [ l ] yields that (1.1) holds with 

UT*) = -Q.[(^ - -fllM ° ^ a W " 1 ] c [(>, - EQ^„) : DQ(0)-'] . 

The first assertion of Theorem 4.2 follows from here and (4.1). The rest is clear irom 
(4.1), (4.3). D 

Example 4.2. Asymptotic variances of a location estimator T7 = Pjj/. considered 
in Example 4.1 at 2LR with EQ£2Q < oo are given by Ve(T

a) = EQflQ on R. If Q satisfies 
the assumptions of Theorem 4.1 then T" is BAN for 1R iff there exist constants c, e R 
such that p"p'lp = c^q'jq + c2 a.s. [Q\. • 

Example 4.3. If P = No(0, l) on SC - R and MR = 0>R, then all assumptions 
of Theorem 4A hold for all location estimators T1 = No(0, 1)///. By Example 4.2, 
influence curves of these estimators at SPR are given by (1.3) with Q = P, and it 
holds 

(4.4) QP(x) = (1 + af/2x e~*x2/2 for all xeR . 

It is easily verified that the influence curve of the MLE T° = No(0, 1) (the sample 
mean) is given by (4.4) with a = 0. The curves (4.4) are the smooth curves shown 
in Fig. 4A (the piecewise linear function of Fig. 4.1 is explained in Remark 4.1 
below). 

By (4.4) and Example 4.2, Ve(T
x) is in this case increasing with increasing a e [0, l ] 

uniformly for 0 E W. Further, by (1.5), (1.6) and (4.4), the gross-error sensitivity 
oGE(T) at P decreases with increasing a e [0,0-5] and slightly increases with in­
creasing a e [0-5, 1]. On the other hand, the local shift sensitivity oLS(T) at P slightly 
increases with increasing a e [0, l ] . The radius of e-negligibility at P decreases 
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for e S 10"2 from eE(T°) = oo to gE(Tl) = 3 with increasing a e [0, 1]. The whole 
descriptor of robustness (o-G£(T

a), <rLS(T
a), e£(T")) together with Vg(T") seem to 

achieve most favourable values for a 6(0-1, 0-3). ; Q 

-»(xl 

Fig. 4.1. 

Remark 4.1. It is interesting that the influence curves (4.4) with a e ( 0 A , 0.3) 
almost coincide with the curves of estimators A 17 — A 25 and AM T which emerged 
as most promising from the Princeton experimental study [2]. Fig. 4A compares 
(4.4) for a = 0-1 (the thick curve) with an A-type estimator with influence-curve 
breakpoints (a; b; c) = (2; 4-5; 9) (cf. A 12 with (a; b; c) = (1-2; 3-5; 8) up to A 25 
with (a; b; c) = (2-5; 4-5; 9-5)). Since none of the regular weak D-estimators of loca­
tion analysed in Section 3 possesses a redescending influence curve at Q = P (cf. 
Example 3A), T0'2 = No(0, 1)1 jX seems to be most promising among all D-estimators 
of location considered in our papers [8 — 10]. An extensive analysis of asymptotic 
performances of estimators T0A — T0-3 of structural as well as nonstructural para­
meters with discrete as well as continuous projection families g?Q carried out so far 
for various sample-generating contaminated families J 0 = (1 — e) 3P& + E0"& 

dislosed that these estimators quite universally combine a negligible inefficiency at 
e = 0 with a reasonably limited bias and inefficiency at e e (0, 0-25). These observa­
tions together with the analyticity of the respective influence curves are' qualifying 
the estimators T01 — T0,3 as most promising practical robust alternatives to maximum 
likelihood estimators T°. Note that numerical algorithms for evaluation of estimates 
T"(P„) and a possibility to use local maxima of functions EPnpg for a simultaneous 
analysis of homogenity of the corresponding data {xu ..., x„} and their clustering 
have been described by Grim [41]. (Received September 19, 1983.) 
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