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KYBERNETIKA — VOLUME 20 (1984), NUMBER 5

ASYMPTOTIC EFFICIENCY
AND ROBUSTNESS OF D-ESTIMATORS

IGOR VAJDA

Asymptotic normality of standard, weak, and directed D-estimators investigated in preceding
two issues of Kybernetika is established and influence curves are derived, all under the assumption
of vector-valued parameter spaces. Asymptotic variance matrices of estimators under consider-
ation are expressed as variances of the corresponding multidimensional influence curves. Condi-
tions of asymptotic efficiency are established as well.

1. PRELIMINARIES

This paper is a direct continuation of [9, 10]. It is assumed that the reader is fami-
liar with notation and basic concepts presented there.

We consider in this paper parameter spaces @ < R™ with non-empty interiors
©° in the R™-topology and with no isolated points. The interior @° is assumed
o-compact with increasing sequence of subsets ©; = @° compact in R” and tending
to @° in the set-theoretic sense (cf. (1.2) in [9]).

We say that a rate of convergence of a well-defined estimator T': Q(T) - O
to the parameter of a family 2 is n™ ¢ if

(r.1) n'(T(P,) — 0) -2, No(0, V,(T)) forall 0e@°,
where . 22, denotes the weak convergence w.r.t. Qf asn — oo and V,(T) denotes
a finite non-zero asymptotic variance matrix of T at Q, € 2¢.

If for some T and Q there exists &, > 0 such that (1 — &) @ + &l,, € Z(T) for all
O<e<eg,xe,and .

(12) Qyfx) = lim T(1—¢)Q+ely) — T(Q)

£10 &

exists for all x € &, then Qj : & — R™ is called influence curve of T at Q. By (6‘1)
in [9], for every equivariant estimator of location parameter from @ = R and
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every 2, generated by a parent Q € 2, Q,, for 0 € @ exist iff Q exists and
(1.3) Qp,(x) = Q([6]7'(x)) forall (6.x)e@ x & .

The influence curve has originally been introduced by Hampel [5] as a characteris-
tics of robustness of estimators of location. We shall see later that in general Vi(T) =
= EgQj o Qy. Hence the influence curves {Q,,:6 €O} represent an operative
characteristics of both asymptotic efficiency and robustness of estimators of arbitrary
parameters. Note that the robustness means in this paper a limited sensitivity of
asymptotic estimates* T(Qg) =  to replacements of the “‘assumed” generating
probabilities Q, by generating probabilities from e-neighborhoods U(Q,) = {(1 — ).
- Qg+ £P* : P* ¢ 2} of the former ones. We shall see later that in general [T((1 — ¢) .
. Qo + &P*) — T(Q,)}fe — Ep.Qp, as €] 0 for all P* = 2.

If & = R* then, following Hampel [5], the triple

(14) 26u(T) = 0P |20, (8)] -+ 1(T) = sup ]d-——‘?;v<X>
(1.9) o(T) = inf {flxl: sup 190D} = ¢}

will be considered as a simple intensional descriptor of robustness of T at Q € 2
(here and in the sequel |- {,, denotes the usual Euclidean "-norm). The components
o6i(T), 0.5(T), ¢(T) are called correspondingly gross-error sensitivity, local-shift
sensitivity, and radius of e-negligibility (radius of rejection).

Now we clarify a non-asymptotic meaning of influence curves under consideration.
Following Tukey [7] we call Qp_ a sensitivity curve of Tat P, e #,. If Z = R and
P denotes an empirical probability given by (1.1) in [9] for a sample vector x'¥ =
= (EgyX (13> - > EgpuX(my) € " of expectations of order statistics of a r.v. X =
= (X,, ..., X,) with sample space (2", #", 0j), then the sensitivity curves {Qp, o :
:0 € @} are suitable sample-size-n altcrnatives to {Qg, : 8 € ©}. Obviously, under
certain regularity conditions, one of these systems of curves approximates the other.
Note that for location

(1.6) Qp ox) = Qpo([0]'(x)) forall (A.x)e@ x ',
where e = 0e R and EpX(y = G™'(i/(n + 1)) where G is the d.f. of a parent Q of
9. Thus by (1.1) in [9]

(L.7) P:”(E):ij Jz(a—l( " )) for Ees

=1 n+1

and the curves {Q, «, : 0 € R} can explicitly be evaluated by (1.6), (1.7).
This paper is essentially based on elementary results of mathematical analysis

* If T is Fisher consistent for 24 then 7(Qg) = 6 on @ and if T is moreover consistent
for 2 then T(P,) & T(Qg) = 0 on @ (cf. Sec. 1 in [10)).
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formulated in detail below. Let g = g(x, y): & x # — R*(# is a topological space)
be J-measurable for all y e ¢ and let 1 be a o-finite measure on (%, #). The g is
said locally uniformly A-integrable at y € # if there exists an open neighborhood
U(y) and a function § : 2 — R* such that E;[|§], < oo and |g(x, 7)|« = [|4(x)]«
forallxe &, § e U(y).

We say that g is A-regular if it is continuous on ¢ for every x € Z, and locally
uniformly A-integrable at each ye .

Lemma 1.1. The expectation E; g(+, ¥) of any A-regular function g is continuous
on ¢ in the sense E,||g(-, ¥) — g(*, §)|s = 0 for § — ».
Proof. Clear from the Lebesque dominated convergence theorem. O

Lemma 1.2. (A mean value theorem.) Let # be an open subset of B" and g : £ —
— R* be differentiable. Then for all y, y' € # with sufficiently small norm Hy - y'“,,.
there exists y* = {y',..., »*} = # such that g(y) — g(y') = (v — »") o g'(y*) where
g'(y*) is the m x k matrix g’ = (d/dy)" o g with an argument y = y* in the s-th
column and

Iy = 2w = max |y = ¥ < [y = ¥'[lu-

If g' is continuous at y € # then (in the R*"-norm) g'(y*) —» g'(y) as y' — y.

Proof. For the s-th coordinate of g the desired equality together with the inequality
Hy — y’Hm = Hy — y']m follow from the Lagrange mean value theorem for real-
valued function of real variable. It suffices to suppose that the segment connecting
y and y’ lies in # and to parametrize this segment by 7 € [0, 1]. 0

We say that g : & x ¢ — R* is strongly A-regular if # is an open subset of R"
and the derivative g'(x, y) = (d/dy) g(x, y) is A-regular.

Lemma 1.3. The expectation D(y) = E;g(-, y) of a strongly A-regular function g
is differentiable, D'(y) = (d/dy) D(y) = E,g'(+, ), and D'(y) is continuous on #.

Proof. Cf. Lemmas 1.1, 1.2, and the Lebesgue dominated convergence theorem. [

Lemmas 1.1—1.3 will be applied mainly to ¢ = ©° = R™. The elements of R™
will be considered as row vectors (1 x m matrices), including the differential element
(d/do) = (o/e0,, ..., 6/26,,). Through the paper we write

. d I
Do dgpe, Py a0 Do -

At several places we consider divergences for non-probabilistic measures — they
are defined by the respective formulas of Sec. 2 of [9] with probabilistic measures
replaced by the non-probabilistic ones.

In order to keep the extent of this paper limited we illustrate the main results by
simple examples only. More complex applications are presented in separate papers.

360



2. EFFICIENCY AND ROBUSTNESS OF STANDARD D-ESTIMATORS

This section js a continuation of Section 2 of [10]: we consider well-defined
standard D-estimators T = 24/D, with projection families 2 and (not necessarily
identical) sample generating families 2o = 2 on a discrete 4. We also consider
for all Q € 2 the function Dy(f) = D (P, Q) on parameter spaces under considera-
tion. In addition to the assumptions of Section 1 we assume the following:

(i) © can be compactified in the sense that there exists a set & < [—x, ]

containing @ and containing a cluster point of each sequence {6;} = ©.

(ii) & is finite, A denotes the counting measure on %.

(ii) Po < A, py = dP,[dA are twice continuously differentiable on @° for every
xeZ.

(iv) 2 = 4.

{v) / is twice continuously differentiable on (0, ), f(1) * 0.

(vi) Iif 26 + P then D, is a metric on 2.

(vii) There exists 25 containing probabilities Py e P for § € @ and probabilities
or measures P, for € & — @ such that py(x) - py(x) as 0 > Ged — O,
0eB, forallxeX.

(viii) It holds Dy (6) < Dy (f) forallfe O, 0,0 % 4.

Lemma 2.1. (viii) with @ replaced by © is equivaent with the Fisher consistency
of T for 2. (i) (ii), (vii), (viii) imply D -compatibility of 2 with 24 and (i). (ii),
(vi)—(viii) imply strong consistency of T for 2.

Proof. The first assertion is clear from (1.1) in [10]. If 2 is not D -compatible
with 2, then there exists 0 € @ and a sequence {0;} = @ such that 6 is not among
cluster points of {8} and Dy,(6;) » Dy,(6). Since by (i) there exists a cluster point
8e® of {6} and, by (ii) and (vii) and by the continuity of f, Dg,(0;) —» Dg,(8),
we get a contradiction with (viii). The third assertion of Lemma 2.1 follows from the
second one and from Corollaries 2.1, 2.2 in [10]. ]

Corollary 2.1. For all 8¢ ©° it holds lim Qg(E,(T))=1 where E(T)={xe 2" :
: T{P,)e ©°}. e

Lemma 2.2. For every Q = 2 and 0 € ©° (ii)—(v) imply

’ d " d g ’ 7
DQ(e) = @ DQ(O) = Ewyo- DQ(O) = (@) ° DQ(G) = E;.'\bg/g

where
. A P\ B e L (Pe\
l/’e/Q =f <&> Dy 5 I//e,’Q =f (4,,) ( : ¢ +f (J) 1 2]
q q q q
and Dy(0), Dy(0), Dy(0) are continuous on @°.
Proof. Clear. O
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Lemma 2.3. (if)—(v) imply that, in the product topology ||| x x* on & x 2,

; « (Do PoPé
a1 (3)

is continuous on the interior @° x Z#° for every xe Z and Q = A. i

Proof. Clear. O

If in (ii) the finiteness of & is replaced by countability then the cquivalence 24 = 4
in (iv) has to be replaced by a locally uniform summability (A-integrability) of func-
tions {0, Vayo : Q € 260} at each € @° and of the function iy, at each (6, Q) e
e(0°, #°). Modifying (i)—(v) in this manner Lemma 2.2 still holds (cf. Lemmas
1.1, 1.3) and Lemma 2.3 can be replaced by an analogue of Lemma 3.3 in the next
section.

Theorem 2.1. If D (0) is positive definite on @° then influence curves Q4, of T
at g0 exist,

(2.1) Qg, = (¢ — Eg,&)e Dp,(6) ", where &= —ypq,,
and for every P*e 2

T((1 — *
(2_2) Hm (( E) Q:fw) = EthQf) on ©O°

£]0 &

If moreover g, = dQ,/d), is differentiable on @° then
23 340) = ~Ea, (%)’ ¢ - Fag).
]

Proof. (I) Suppose A= Qe2(T), T(Q)= [{T(Q)} = 0°, Dy(0) < Do(T(Q))

for § e @, § + T(Q), and D(T(Q)) positive definite. Let P* € 2, 0 € @ be arbitrary
fixed and define for all e [0,1), (0,P)e® x 2, Q, = (1 — €) Q, + eP*, gop =
= f(pe/P) — f'(po/p) Po/p- By the Lagrange mean value theorem it holds |DQ 0 —
- DL(G)I < e B9, ¥) < 710, Q) £ & Since for every xe
€ [|g,,/,, x)| is continuous on :ﬂ’” (cl Lemma 2.3) and Q e 2°, there exists an open
neighborhood U(Q) = #° of Q such that Igg/p! is bounded on U(Q) x . Therefore
Dy (0) = Dy(6)ase | Oforal §e0O.

(11) Since T(Q) € ©°, there exists i such that T(Q) is an interior point of the com-
pact subset @; = @°. Since Dy (6) is continuous on ©° (cf. Lemma 2.2), the set
YT(Q) of parameters minimizing D (9) on ©; is non-empty compact Further,
by (1),6, —~ T(Q)ase | Oforall 0, & T(Q)

(ITT) Now we prove T(Q,) = T(Q,) for all sufficiently small & > 0. If the contrary
holds, there exist sequences {6;} = @ and &(j) | 0 such that T(Q) is not a cluster
point of {0,} and Dy, (6;) < Dy, (T(Q)). Therefore

lim inf DQs( )(9 ) = hm DQn(l)(T(Q)) = DQ(T(Q))

Jj=o
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On the other hand, by (i) there exists a cluster point & € & of {0,} for which the last
inequality implies Dy(0) < Dg(T(Q)), which contradicts the assumptions of (I)
and the desired result holds. This result and (IT) yield Q, € #(T), T(Q.) € ©@° for all
sufficiently small ¢ > 0 and T(Q,) > T(@) as ¢ | 0.

(IV) For all sufficiently small & > 0 the Lagrange mean value theorem yields
DY(T(Q.)) — Do (T(Q:)) = ¢ Edbrgnyjo{d — p*), where (0, OF) £ £(2, Q) < =
This together with obvious identities Dj(T(Q,)) = Do(T(Q)) = 0 implies the
identity

Dy(T(Q.)) — D(T(Q)) =& Eraedd — P*)-
The last inequality, Lemma 2.3, and (IU) yield
(2.4) lim Erg,y0(a — P¥) = Eg¥rane — Epdirone -
£l0

On the other hand, applying Lemma 1.2 to the left side of the identity above we get
(T(Q) — T(2)) > DEF) = ¢ Exbreguyo{a — P*)

where (cf. Lemma 2.2 and (1) DY) - Dy(T(Q)) as & | 0. This together with
(2.4) and the assumptions of (T) yields

. ) — T ; ; " _
tim ’T(Q*L)f(—Q) = ~(Ep¥rcoe — Eo¥rone) © Dy(T(@))~* .

&0 €

(V) The assumptions of (I) hold for every Q = Qg € 2¢,, and T(Qy) = 8 on o°
(cf. Lemma 2.1). Therefore (2.2) for Qg given by (2.1) follows from (IV). Further,
(2.1) follows from (2.2) with P* =1, xe%. Applying the operator (d/do)" to
the identity Dy, (T(Q,)) = Ete,0, = 0 on @° we get

N
E, I}Io (_a) o & + 'J’é/gn:l =0 on 0°.
dg
From here and from the obvious identity E,q; = 0 on ©° it follows (2.3). ]

Corollary 2.2, If the Fisher information
pl T pl
(2.5 (0| 26) = Ep, (J) o <.")
Ps, Do
is positive definite on @° then influence curves of T at P4, are given by Qp, =
= —(polpo) o 1(0 | 26)".
Proof. By the definition of ¥, it holds & = —ig/p, = f"(1) Py/ps in (2.1) with
Qp = Pg and the rest follows from (2.3) and from the identity E;Ps = 0 on @°. O
Lemma 2.4. If Q € # and & : & — R™ then the r.v. ¥, = n'/> E;((p, — ¢) defined
on (2", Q") satisfies the relation ¥, 2> No(0, Dy¢), where Do¢ = Eg(¢ — Egé)T °
o (& — Egf).
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Proof. By (1.1) in [9], p, = dP,[d2 is a function of r.v. X = (X, ..., X,) with
sample probability space (2", Q). The function is defined by p(x)=n""'.
Ly, £x) + oo+ Lgy(x)) for all xed. Therefore Y, =n""*Z, + ...+ Z,)
where Z; = E;&(Ly, — q) are i.i.d. with expectations

EpZi = Bl Egflixy — @) = Ex(g — 9) = 0,
and variance matrices
EglZy — EguZ )" o (Z, — EgnZy) = Egu(Es 1y, )T < B8 1y, —
— (E:£q)" o Exlq = EgET o £ — Egd)T o gl = Dot .

The rest follows from the multidimensional central limit theorem. [}

Theorem 2.2. If Dj,(6) is positive definite on @° then the rate of convergence of T
to the parameter of 2 is n~!/? or, more precisely, (1.1) holds with ¥y(T) = Eg, 2, ©
° Q,, where Q,, is given by (2.1). Moreover, if 2, satisfies the condition of Theorem
2.1 and the Fisher information (0 ] 9g) is positive definite on @°, then V,(T) —
— 1(0] 24)7" is positive definite unless there exist constants ¢, € ® such that Q,, =
= ¢,{qs/qs) + ¢, on @° in which case V,(T) = I(0 | 2¢)™* on ©°.

Proof. Let Q, € 24, be arbitrary fixed. By Lemma 2.1

(2.6) T(P,) 1 T(Q,) = 6.

Since Q = Q, satisfies all assumptions of (I) in the proof of Theorem 2.1. it can be
proved analogically as in part (IV) of that proof

(T(Pn> - 0) ° Dé( .T) = EA‘/’r(P,,)/P,.*(‘io = P)
or

(27) WT(P,) = 0) = nV(Ecay — p)) - Da(E]) + IR, - D (03)"

for all x € E(T) (cf. Corollary 2.1), where X, = E;(Yzp.y 1, — Vor0,) - (40 — Pu) and
7'(Qs. PJ) £ %'((Qe» P.)- By Corollary 2.1 and the Cramér-Slutskij theorem (Theo-
rem 10, Chap. 10 of Andé&l [1]) we can assume that (2.7) holds for all x € 2". More-
over, by (2.6)and Lemmas 1.2,2.2, Dy, (05) 2~ D} (0), i.e. Dy (6%) ! 22 Dy, (6) 1.
By Lemma 2.1 in [10], %'(Qy, P,)'%)> 0 which together with (2.6) and Lemmas

2.2,2.4 implies n'/2X, 22~ 0. Therefore by (2.1), (2.7), Lemma 2.4, and the Cramér-
Slutskij theorem [1], (1.1) with V)(T) = Eg,Qp, o Q, holds. The rest obviously
follows from this result and from (2.1) and (2.3). 0O

Corollary 2.3. If 1(0 | #4) is positive definite on ©° then (i.1) holds with 2, =
= Po. VY(T) = 10| 24)”" on @°, i.c. all standard D-estimators T = #4/D; under
consideration are BAN (best asymptotically noImal) for 94 = .

Example 2.1. Let © = [0, 1] < B, % = {0, 1, ..., k}, k > 0, and let 2, ,; support-
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ed by S = {0, k} < Z be composed of probabilities P, with densities

‘1= p(0) for x=0,

Po(x) = < 2(0) for x=k. p(0) = Lo = o for 0ef0,1].

L+ [0/(1 — 0))F
Finally let Qy € 2, ,; be the binomial probability Bi(6, k) and T'the Hellinger-distance
estimator T = 24 ,,/D*/? yield by a convex function f(u) = (1 — u'/2)/3 (cf. (2.4)
in [9]).

Since f(u) = u>?[2 and Dy(0) = 1 — [(1 — p(8)) 4(0)]*/* — [p(6) q(k)]"* for
all @ €[0, 1], Q € 2, all assumptions considered in this section hold with & = @ =
= [0, 1]. Obviously 2(T) = & and

_ La0fa(0]
70 = O

By (2.1){(x) = Oforxe Z — S and

forall Ne®.

_lﬁgj@y”,ﬂﬂ; for x=0

dﬂz//z (1—-0F] 1-p0)

TN ARO)T ey or x =k
2[0*] p(9) or Xk

This result together with (2.1) permits to evaluate the influence curves Q,, of Tat the
binomial family 2, ,y and asymptotic variance Vy(T) for all § (0, 1). Asymptotic
behaviour of T when 0 takes on the extreme values 0 or 1 are clear as well since
T(P,) = 0 a.s. [Q,] there.

3. EFFICIENCY AND ROBUSTNESS OF WEAK D-ESTIMATORS

This section is a continuation of Section 3 of [10]: we consider a sample space
(%, #) with a sufficient class & = {E, : x € Z}, well-defined weak D-estimators
T = Po/W eD,; with projection families #o = # and families of weights #,
and sample-generating families 2, = 2. We also consider for all Q € £ the functions
Dy(0) = By, P(Fy, G) (F(x) = Py(E.), G(x) = Q(E,),... are d.f's of Py, Q,...
(cf. Sec. 1 in [9])) and, for reason clarified in Remark 3.1 below, we write in this
section ®(u, v) instead of d (u, v) (cf. Corollary 2.1 in [9]). In addition to what
has been supposed in Section 1, we suppose the following:

(i) # ¢ is absolutely continuous w.r.t. a o-finite measure 2 on (2, ) (Lebesgue
measure if & = B*), w, = dW,/d2, and W,(%) € R is constant on &.
(i) The function @ and its derivatives @, &, &, ,, are continuous on [0, 1]
andf(1) + 0.
(iii) The functions w,Fg, wy, we(Fy)T o Fo, (wy)T o Fy, woFy, and wj are Z-regular
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on & x O° where
d d d\T" d\T
Fo=—F,, wy=—wy, Fg=[—) oFy, wyg={—) owy.
T T e (dO) o <d6> ’

(iv) If 26 #+ Po, then the weak divergence E, &(F, G) is a metric on 2,
(v) 2¢ is WD -compatible with 2, (cf. Sec. 3 of [10]).

Lemma 3.1. T is strongly consistent as well as Fisher consistent for 2,.

Proof (i) implies |[f]| < co so that, by part (a) of Lemma 3.1 in [10], 2¢ is
strongly WD -regular. The rest follows from Theorems 3.1, 3.2 in [10]. O

Corollary 3.1. For all 0 € @° it holds lim Q,(E(T)) = 1 where E(T) = {x e %" :
1 T(P,) ¢ 0%}, e

Define for each 6 € ©°, Q e 2 the following functions on 2

(3.1 Yoo = % (&(Fo. G) ws) = wo B(Fy, G) F) + B(Ey, G) w}.,
d T
(32) Vire = (aa) e = o Bl Fo, G) (F) o Fy +
+ @Fy, G) [(94)7 o Fy + (Fa)! = wi] + wy @)(Fo, G) Fy + 9(F,, G) wi .
(3) o= 5o = g OLFu §) Fy -+ {Fr. ) ;.

Lemina 3.2. For any Q € 2, Dy(0) is twice differentiable,

, d . ay* ,

Dy0) = - Dy(0) = Exbrgrer Dl0) = () » DY(0) = E, Yiyq on @°
do do

and Dy(6), Dy(8), D(6) are continuous on ©°.

Proof. By (ii), all functions cited in (ii} and (3.1)—(3.3) are bounded on the
compact [0, 1]>. Hence, by the continuity in (ii), (iii), Y, ¥s¢ are A-regular on
Z x O° for every Q e #. Applying Lemmas 1.1, 1.3 to the latter two functions
we get the desired results. [

Lemma 3.3. E,-_l//w(; is continuous on a topological space @° x 2 with the product
topology |*[l» x KS (where KS denotes the Kolmogorov-Smirnov distance) in the
sense E Y6 — Yosclm — 0 2s (6, 0) > (6, 0) e 6° x 2.

Proof. Analogically as in the preceding proof we get from (3.3), (i) and (iii)
that g(x, (6, Q)) = Wog(x) is J-regular on & x (@° x ) so that the desired result
follows from Lemma 1.1. 0
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Theorem 3.1. If Dy
at 2g0 exist,
(34) ‘QQe = (E - ElfGﬁ) © Daa(e)_l
where
(35) &€= —Vops,, &(x)=Eflpy, E(x)={XeZ:xekE} on Z,

(k) is positive definite on ©° then influence curves Q,, of T

and for every P* ¢ 2

(3.6)
tim TUL=2) Q0 4 6PY) = T(Q0) _ g o = E5(G, — F*). Dy, (6)" on 6°.
60 ]

If moreover wy(G;)" o Fy, (Gj)" o w, are A-regular on & x @°, where G, are defined
analogically as F; in (iif), then
(37) Dy(6) = E,(G)T o €. _

Proof. (I) Suppose Q e 2(T), T(Q) = {T(Q)} = @°, DY(T(Q)) positive definite,

and inf Dy(0) < Dy(T(Q)) for all open neighborhoods U(T(Q)) of T(Q). Let

- U(T(Q))
P*e?,0e0° be arbitrary fixed and define Q, = (1 — &) Q + eP* for e [0, 1).
Since T(Q) e ©° there exists i such that T(Q) is an interior point of the compact
subset @; = @°. Since Dy,(0) is continuous on @° (cf. Lemma 2.2), the set T,(Q,) of
pardmeters minimizing Dy (6) on O, is non-empty compact for all ¢ € [0, 1).
(1) By the Lagrange mean value theorem
[Dg(6) = Dg(0)] = [EA(@uFo, G*) wos(F* — G))| < eKWy()

whefe’ KS(G, G*) £ KS(F*,G) £ ¢ and K = max ‘(D,[| is finite by (i), (ii). Hence,
by (I), 0, > T(Q)as e | Oforall 0, e T,(Q,). (0.1

(11T) Now we prove T(Q,) = T(Q,) for all sufficiently small ¢ > 0. If the contrary
holds, there exist U(T(Q)) = ©,; and sequences 0, ¢ @, &j) | 0 such that D, (8)) <
<Dy, ,(T(Q))- In view of the inequality (II) this implies

inf Dy(6) < liminf Dy(8;) < Tim Dy, (T(Q)) = Do(T(Q))
04U(T(Q)) oo jmw
which contradicts the assumptions of (I). Thus we have proved Q, e #(T), T(Q,) € ©°
for all sufficiently small & > 0 and T{(y,) — T(Q) as & | 0.

(IV) For all sufficiently small & > 0 the Lagrange mean value theorem yields
DYT(Q.) — Dy(T(Q) = Exbriauyas(G — G.). where KS(G. G) < KS(G. G) =
< & This together with obvious identities Dy (T(Q,)) = Dy(T(Q)) = 0 implies the
identity

Dy(T(Qy)) = Do(T(Q)) = & Eirig.ya.(G — F¥).

The last inequality, Lemma 3.3, and (111} yield

0= h;r;l [E: ¥rguyian(G — F*¥) — E, Yrgye(G — F¥)|m
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= hg‘ El”‘/”l‘(Qc)/Gc‘ - ‘/’T(Q;/(; m =0
zl
ie.

(3.8) lim Er0,/6.{G = F*) = Erig,o(G — F¥).
£10

On the other hand, applying Lemma 1.2 to the left side of the last identity, we get
(T(Qx) - T(Q)) ° D:z(o:‘) = EEAJ’T(Q,)/G;*(G - F*)

where (cf. Lemma 3.2 and (I11)) Dg(0F) — DY(T(Q)) as & | 0. These results together
with (3.8) yield

lim 7(¢) - 1(9)

- = EA‘/;T(Q_/G(G - F*) ° Dé(T(Q))rl'
£l0 &

(V) The assumptions of (I) hold for every Qe 240 and T(Qg) = 0 on G° (cf.
Lemma 3.1). Therefore (3.6) for Qp, given by (3.1) holds. Further, (3.4) follows
from (3.6) with P* = 1,,,, x € &, if we take into account the obvious identity F*(x) =
=l valid for these P*. The expression (3.7) follows from the relation '

d\T
El(dT)) oo, =0 on O°.

This relation follows from the identity Dg (6) = Eu, = 0 on ©° and from the
fact that, for 24 satisfying assumptions of Theorem 3.1, the expectation E; and the
differential operator (d /dO)T are exchangeable in this identity (compare Lemma 3.2). (]

If # = R* then we denote by (—co, x) the product of semi-bounded intervals
upper-bounded by the respective coordinates of x e R*.

Theorem 3.2. If Dy (0) is positive definite on @°, Z = R, and 2¢ < 4, then
functions & primitive to ¢ (cf. (3.5)) in the sense &(x) = E;¢ 1 _, ., on R exist and
the influence curves (3.4) are given by

(39 Qg, = —(& = Eg,d) o DG,(0)™" -

Proof. The sets E(x), x € R, defined in (3.5) are equal to (— o0, x). By Lemma 3.3,
£is absolutely integrable in the sense E; || £[,, < o0 on ©° and &(—o0) = 0, &(cc) e R™.
This implies forall P < A or forall Pe 2,

(3.10) Ei6F = &) — ExE. )
Applying this result to (3.4) with F = G, and taking into account that &(x) = E,¢ —
— B¢ 1, = &) — &(x) on R™ we get (3.9). [}

For 24 = P it follows from (3.2), (3.5) that ¢ = f"(1) weFy[[Fy(1 — Fy)] and
that 2, satisfies the conditions of Theorem 3.1. Thus the following corollary holds.
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Corollary 3.1. Let %o < 4 be arbitrary such that %o = W for @u, vy =
= u(l — u), let 25 = P, satisfy (1)—(v), and let E,(F;)" - ¢ be positive definite
on ©° Then influence curves of T = Po/@W oD, at Pyo are given by (3.9) with
& = VWeFy and D} (0) = E;(F;)" - ¢.

Example 3.1. Let @ = R be the Jocation parameter space and P, W be arbitrary
such that the generated families* P, "”7}1 satisfy assumptions of Corollary 3.1.
If E;pwe (0, 0), p° = pw/E,pw, FO is the d.f. of p°, and E,p° > 0, then influ-
ence curves of T = P,’(7)1/7Dj are given by (1.3) with @ = R, Q = P, and it holds

F® — E,F° F® — EpF°
P T T T ¢
PP EP(FO _ EPFL)) p
P
This statement follows from Corollary 3.1, from the fact that F; = — p([0]™")

here, and the identity E;p'F® = —E,pp° (cf. (3.10). Notice that if E;pw = 0 or o
then the influence curves are zero or unbounded respectively. Further, for any W, f
under consideration these curves are monotone on R (thus never ‘‘redescending’)
and symmetric about 0 provided pi is symmetric (in this case EpF® = }).

Remark 3.1. All results of this section apply to estimators T = 9’8/(plrpz“1f"6D[
with @ = do, satisfying (ii), (iv) and with @,(u, v) = u(1 — u). This conclusion
has already been used in formulations of Corollary 3.1 and Example 3.1 (with
@, = 1, ¢, = @). Another examples are provided by the function f(u) = (1 — u)?
yielding the weak y*-divergence. Here d (u, v) = (4 — v)*/v(1 — v) is not satisfying
(ii) and (iv) while &(u, v) = d(u, v) (1 — v) is. The results of Example 3.1 for the
particular weak x*-estimators of location T = Plo,@,WD,, ¢,(u,v) = o(l — ©),
have formerly been obtained by Boos [3].

In the rest of this section we assume, in addition to (i)—(v), the following condition
(vi): Z = R*and 2o < A

Lemma34. If Qe2, Q < 4, and & : R* —» B™ is absolutely Q-integrable with
finite variance matrix Dof = Eo(€ — Exé)T o (& — Eod) of the respective primitive
function &(x) = E,;£ 1 _, ., X€R¥, then the r.v. Y, = n'?E;¢(G — F,) defined
on (R", #", Q") satisfies the relation Y, 21 No{0, Dyé).

Proof. By (3.10) it holds for each x e (R*)"
Y, = n'2(Ep ¢ — Egl) = n"'2Y (&(x;) — Epf) (cf. (1.1) in )]
i=1
and the rest is clear. ) [}

* Hereafter, from typographical reasons, we use R instead of R in subscripts.
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Theorem 3.3. If D;, (6) is positive definite and Eg,Qf, - @, finite on ©° then
the rate convergence of T to the parameter of 2, is n~'/? or, more precisely, (1.1)
holds with V(T) = Eg,01 . Q,,.

Proof. Let Qg€ 240 be arbitrary fixed. Analogically as in (2.7), we can assume
for all x € (R)" the identity

n'2(T(P,) — 0) = n'? E,4(G — F,)o DG(07) ™" + n'/?X, o DY) ™",
where
2 & = n 2 E e, (Go = Fi) = Eloja(Go = Fo)|lm <
= E).“'/}T(P,,)/rn* - ‘[fs/Ga“m ”UZKS(GM Fn) >

¢ is given by (3.5), KS(F},G,) < KS(F,, Gy) -0 (cf. Glivenko theorem),
T(P) @1, T(Q,) = 0 cf. Lemma 3.1), and Dip(07) 94D, (6) (. Lemmas 3.1,
3.2, and T(P,) 92 0). By the Glivenko'theorem, the above stated inequality, and
Lemma 3.3, it holds n'/2X, -22. 0. Therefore the identity above, together with the
Gramér-Slutskij theorem and Lemma 3.4, imply (1.1) with .

Vo(T) = Eg,[(§ — Equf) o D5, (0) 711" [(€ — Eq,8) < D,(0) ']
The rest follows from (3.9). O
Example 3.2. If T'is as in Example 3.1 and E,Qp < oo then the asymptotic variances

Vy(T) of T at Pye Py are equal to EpQ} and EpQ; = 1/I(P) = L[E,(p'/p)* with
equality iff there exist ¢, € R such that F® = clp’/p + ¢;.

4. EFFICIENCY AND ROBUSTNESS OF DIRECTED D-ESTIMATCRS

This section is a continuation of Section 4 in [10]: we consider well-defined di-
rected D-estimators T7 = Pg/W, ae(0,1], with projection families 2o < W
and sample-generating families 2 on a sample space (%, ). We also consider the
functions Dy(0) = Eppj on @ for all Q € # where p; = dPg[dW. In addition to what
has been supposed in Section 1, we suppose the following:

(i) & is a pseudo-metric space and the functions pj,
d ., am1 . d\" am20 AT a1
'//B=EP9=“P9 DPo> Yo = @ °|/’”=°C(°"‘])Pe (P9)0P9+°‘P9 Dy

are bounded and continuous on Z uniformly for all § € @° and continuous on @
forallxe Z.

(it) T*is consistent for 2.
(iii) 26 is a-compatible with 2, (cf. Sec. 4 and the footnote in Sec. 5 of [10]).
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Lemma 4.1. For every Q e 2, Dy(0) is twice differentiable,
. d " d\" ,
Dy(e) = = Dl) = €Yy, DE) = (@) . Dy0) = Eglly on O

and Dy(6), Dy(0), Dy(8) are continuous on 6°.

Proof. By (i), p;, W, ¥ are Q-regular for all Q & 2. The rest is clear from Lemmas
1.1, 1.3, O

‘Theorem 4.1. I Dj (6) is negative definite on ©° then influence curves Qg, of T*
at 2g exist,

(4:1) Qg, = —(Why — Eg¥ie) o DG,(1)7" .
and for every P*e #
x _ ®) _ Tz
(42) tim D=9 Qo+ eP) = T(Q) _ g o o g0,
' eL0 &

If moreover 2o < W, qo = dQ,/dW is differentiable, E,,q; = 0, and ¥y, + (a5)" o Yo
is W-regular on 2" x @°, then

@3) D3,(6) = Eq, (‘i) o (o — Eque)-
de

Proof. (1) Suppose Q € #(T*), T*(Q) = {T(Q)} = ©°, Dy(T*(Q)) negative definite,
and

sup  Dg(0) < Do(T*(0Q))
0e0—U(T*(Q))

for all open neighborhoods U(T%(Q)) of T%Q). Let P*e 2, 6 € @° be arbitrary
fixed, and define Q, = (1 — &) Q + eP* for ¢ € [0, 1). It holds

[Do(0) = Do(0)] = ¢ Dex(6) = Dol(6)] < eK1'(P*. 0)
where K = sup pj < oo (cf. (iii)). Hence Dy (0) — Dy(0) as &0 where Dy (6)
EX

is continuous on ©° (cf. Lemma 4.1). Therefore, analogically as in the proofs of
Theorems 2.1, 3.1, we can employ (iii) to prove by contradiction that Q, € #(T%),
T%(Q,) € @° for all sufficiently small ¢ > 0 and T%(Q,) - T%(Q) as & | 0.

(H) For all sufficiently small ¢ > 0 the Lagrange mean value theorem yields
Dy (T(Q)) — Dy(T(Q)) = &(DpA T(Q)) — Dp(T(Q)). This and the obvious identities
Dg(T(Q.)) = Do(T(Q)) = imply

; Do (T(2)) = Do (T(2.)) = & DpT(Q)) -
Thus, by Lemmas 1.2, 4.1,
(1(Q.) — T(Q)» Do (07) = —2 Dp(T(Q))
where [T(Q) — 0%, < |T(Q) — T(Q.)|.. On the other hand

e |lm =

196.(07) = DT(@))ws = |106,0F) = DGOz + [ DG(0F) = DYT(Q))]we
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where || Dj (6%) — DY0F)] .2 < Kx'(Q,, Q) for K = sup [Wsllw: < oo. Since it holds

[T(Q) — 07||,, » 0 as e L 0 (cf. (I) and an mequallty above) and since Dy(f) is
continuous on @° (cf. Lemma 4.1), it holds

im =T _ — py (1(0)). D7)

(1) As all Qe 20 satisfy the assumptions of (1), (4.2) with Q,, given by (4.1)
follows from (11) &nd (4.1) follows from (1.2) and (4.2) with P* = 1,,,, x € Z. Finally
applying the operator (d/d8)" to the identity Dg (T(Qy)) = Eyggify = 0 on ©° and
interchanging the operators (d/d6)" and E, (cf. assumptions of Theorem 4.1 and
Lemma 1.3) we get the identity E,(¥oge + (5)" o o) = 0 on ©°. This identity
together with the assumption Eyq(q5/qe) = 0 and Lemma 4.1 yields (4.3). m}

Example 4.1. If a location estimator T* = P//A and a parent Q of a sample
generating location family 25 satisfy the assumptions of Theorem 4.1, then influence
curves of T at 2, are given by (1.3) with

s 2 P
w-1p _ E pa=lp P = Eopt —
Q =-_P P P P =__PVJ,
") s .
EQ(IJ’ Iy —E o 1 :) E o F
p4q

If Q is not satisfying the assumptions of Theorem 4.1 then the last expression should
be replaced by

P g
P P

QQp=-—-Fr 7
(1 -« EQP’; — e L

These conclusions follow from the fact that in the location case p, = —p'([6]7')
for all 6 € R. They agree with Huber’s formulas for influence curves of M-estimators
of location with loss function D(x) = C — p(x)*(cf. the well-motivated M-estimators
of location in Sec. 3 of [8] or Sec. 5 of [9]). [}

Theorem 4.2. If D},(0) is negative definite and Eg,Q], o Qp, finite on @° then
the rate of convergence of T* to the parameter of 2 is n~'/? or, more precisely, (1.1)
holds with Vy(T?) = E,Qp, o Qg,. If moreover 2, satisfies the conditions of Theorem
4.1 and the Fisher information I(0 | 2,) is positive definite on ©°, then V,(T%) ~
—I(6 I 96)~ " is positive definite on ©° unless there exist constants ¢; € R such that
Qp, = ¢,q,/ds + ¢, 5. [Qp] on @°, in which case V,(T%) = I(6 | 2o)~".

Proof. (I) Taking into account (i) and Lemma 1.2, we can assume analogically
as in the proofs of Theorems 2.2,3.3 the identity D, (8) — D, (T(P,)) = (0 — T(P,)) -

372



o Dy (07) for all xe 2™, 0 e O°, where the r. v. |0 — 67, defined on (2", 3", 0")
satisfies the relation [|0 — 67, -2 0.

(1) Now we prove D}, (07) 22~ Dy, (6). It holds
125.07) = Do () = [D5,(67) = D7)l + [10Go(07) = Dgy(O)] e -
By Lemma 4.1 and (l) the second right term tends to zero in the Qg -probability.
As to the first right term, using the uniform boundedness and continuity of i, on
4 x @° (cf. (ii)) and the method employed in part (1I) of the proof of Theorem
4.1 in [10], we get
“ Py 9*) D&a(af)nmz = "Ein';u“ - EQslI/l;u"
(i) By (1), n"/*(T(P,) — 6) = —n'/>Dy, (0) « D}, (67) , i.c.

0, ¢

m?

nV(T(P,) — 0) = (—n"”g Vol X)) < D (07)7"

where X = (X, ..., X,) is the r. v. with sample probability space (%", #", Q").
This together with (II), the multidimensional central limit theorem, and the Cramér-
Slutskij theorem [1] yields that (1.1) holds with

Vo(T%) = Eg,[(¥o — EgWo) o Dy(0) ™'« [(Wo — Egiho) - D(M ']
The first assertion of Theorem 4.2 follows from here and (4. 1). The rest is clear trrom
(4.1). (4.3). [

Example 4.2. Asymptotic variances of a location estimator T* = P// considered
in Example 4.1 at 9, with E,Q7 < o0 are given by V,(T*) = E,Q7 on R. If Q satisfies
the assumptions of Theorem 4.1 then T* is BAN for 2, iff there exist constants ¢; € R
such that p"p’[p = ¢1q'lq + ¢, as. [Q]. ]

Example 4.3. If P = No(0,1) on 2 = R and 2; = 2. then all assumptions
of Theorem 4.1 hold for ali location estimators T* = No(0, 1)//.. By Example 4.2,
influence curves of these estimators at 2, are given by (1.3) with Q = P, and it
holds

(4.4) Qp(x) = (1 + 0)*2x ™% forall xeR.

1t is easily verified that the influence curve of the MLE T° = No(0, 1) (the sample
mean) is given by (4.4) with « = 0. The curves (4.4) are the smooth curves shown
in Fig. 4.1 (the piecewise linear function of Fig. 4.1 js explained in Remark 4.1
below).

By (4.4) and Example 4.2, Vy(T?) is in this case increasing with increasing « € [0, 1]
uniformly for 6 e R. Further, by (1.5), (1.6) and (4.4), the gross-error sensitivity
o6(T) at P decreases with increasing « € {0, 0-5] and slightly increases with in-
creasing « € [0-5, 1]. On the other hand, the local shift sensitivity o, (T) at P slightly
increases with increasing « e [0, 1]. The radius of e-negligibility at P decreases
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for ¢ < 1072 from ¢,(T°) = oo to ¢(T") = 3 with increasing o € [0, 1]. The whole
descriptor of robustness (o4(T%), 015(T%), oT*)) together with Vy(T%) seem to
achieve most favourable values for «e(0-1, 0-3). s

25 (x!

Fig. 4.1.

Remark 4.1. It is interesting that the influence curves (4.4) with «e (0.1, 0.3)
almost coincide with the curves of estimators 4 17 — A 25 and AM T which emerged
as most promising from the Princeton experimental study [2]. Fig. 4.1 compares
(4.4) for o = 0-1 (the thick curve) with an A-type estimator with influence-curve
breakpoints (a; b; ¢) = (2; 4:5; 9) (cf. A 12 with (a; b; ¢) = (1-2; 3-5; 8) up to 425
with (u; b;c) = (2'5; 4-5; 9-5)). Since none of the regular weak D-estimators of loca-
tion analysed in Section 3 possesses a redescending influence curve at @ = P (cf.
Example 3.1), T° = No(0, 1)//4 seems to be most promising among all D-estimators
of location considered in our papers [8—10]. An extensive analysis of asymptotic
performances of estimators T°!— T3 of structural as well as nonstructural para-
meters with discrete as well as continuous projection families 2?4 carried out so far
for various sample-generating contaminated families 2o = (1 — &) P + eP¢
dislosed that these estimators quite universally combine a negligible inefficiency at
¢ = 0 with a reasonably limited bias and inefficiency at ¢ € (0, 0-25). These observa-
tions together with the analyticity of the respective influence curves are’ qualifying
the estimators T°! — T°-3 as most promising practical robust alternatives to maximum
likelihood estimators T°. Note that numerical algorithms for evaluation of estimates
T*(P,) and a possibility to use local maxima of functions Ep pg for a simultaneous
analysis of homogenity of the corresponding data {x,,...,x,} and their clustering
have been described by Grim [41]. (Received September 19, 1983.)
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