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K Y B E R N E T I K A — V O L U M E 29 ( 1 9 9 3 ) , N U M B E R 5, P A G E S 4 3 9 - 4 5 4 

ROBUST WIENER FILTERING BASED ON 
PROBABILISTIC DESCRIPTIONS OF MODEL ERRORS1 

MlKAEL STERNAD AND ANDERS AHLEN 

A new approach to robust estimation of signals and prediction of time-series is consid­
ered. Possible modelling errors are described by sets of systems, parametrized by random 
variables, with known covariances. A robust design is obtained by minimizing the squared 
estimation error, averaged both with respect to model errors and noise. A polynomial 
solution, based on averaged spectral factorizations and averaged Diophantine equations, is 
derived. The robust estimator is called a cautious Wiener filter. It turns out to be no more 
complicated to design than an ordinary Wiener filter. The methodology can be applied to 
any open loop filtering or control problem. 

1. INTRODUCTION 

In robust filter synthesis, the ever present model uncertainty, and the whole range of 
expected system behaviour, is taken into account. We here propose a novel approach 
to robust design for signal estimation. It is based on a stochastic description of model 
errors, related to the stochastic embedding concept of Goodwin and Salgado [8]. A 
single robust filter, for the whole class of possible models, is obtained by minimizing 
the squared estimation error, averaged both with respect to model errors and the 
noise. 

Most previous suggestions for robust filter design have been based on the minimax 
approach. Minimax design becomes very complex unless there exists a saddle-point 
solution. One may then search for a least favourable pair of signal and noise spectra, 
in prespecified uncertainty classes. The optimal estimator is a filter designed for that 
pair. See [6], [12], [17], [19], [20], [22], [27], and the survey paper by Kassam and 
Poor [13]. Uncertainties can be described in a state space framework. See e.g. [10], 
[18] and [28]. The computational effort involved in minimax-design is considerable. 
Closed-form solutions do mostly not exist. 

'This work been partially supported by the Swedish Board for Technical Developement, under 
contract 8701573 and by the Swedish Institute. It was carried out while Anders Ahlen was on leave 
at The Department of Electrical Engineering and Computer Science, The University of Newcastle, 
Australia. 
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Apart from leading to a much simpler design methodology, the approach proposed 
here avoids two drawbacks of robust minimax design. First, the descriptions of model 
uncertainties may have statistical, "soft" bounds. These are more readily obtainable 
in a noisy environment than the hard bounds required for minimax design. Secondly, 
not only the range of uncertainties, but also their likelihood is taken into account; 
probable model errors will have a greater impact on an estimator design than do 
very rare "worst cases". The conservativeness is thus reduced. 

A polynomial solution, based on averaged spectral factorizations and averaged 
Diophantine equations, will be presented. The design procedure constitutes a gen­
eralization of the polynomial equations approach, which was pioneered by Kucera 
[14]. Mild solvability conditions guarantee the existence of stable optimal filters. 
The robust design turns out to be no more complicated than the design of an ordi­
nary Wiener filter. The methodology is here exemplified on a scalar discrete-time 
deconvolution problem. Robust design for this and other related problems, such as 
state estimation and feedforward control, is discussed in more detail in [26]. 

Remarks on the no ta t ion . For any complex polynomial in the backward shift 
operator q-1, of degree np, 

P(q-1) = Po+Piq-1 + ...+PnPq-nP 

the conjugate polynomial is defined as P*(q) = p„ + p*q + ... + pnpq
np• In the 

frequency domain, z is substituted for q. For convenience, polynomial arguments 
will often be omitted. We call P(q_1) stable if all zeros of P(z~x) are in |z| < 1. 

2. THE ESTIMATION PROBLEM 

A scalar discrete-time deconvolution problem will be considered, to illustrate the 
design principles. It includes e. g. ordinary output filtering and prediction of ARMA-
processes as special cases. It also includes the design of linear recursive equalizers 
for digital communications. Measurements are described as 

y(t)=G(q-1)u(t-k) + w(t). (2.1) 

The linear, causal and possibly uncertain transfer function G(q~x) may e.g. repre­
sent a transducer. If the delay is uncertain, k denotes its minimum value. The input 
ii(t) and the measurement noise w(t) are described by possibly uncertain ARMA-
models 

u(t)=-F(q-l)e(ty, w(t)=n(q-1)v(t) (2.2) 

£ | e (0 | 2 = l ; E\v(i)? = p. 

The time-series e(t) and v(t) are assumed mutually uncorrelated. They are station­
ary white noises or impulse sequences, with zero mean. All transfer functions are 
assumed time-invariant. Signals may be complex-valued; this is the case e.g. in 
digital communications applications. 
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A stable, linear and time-invariant estimator of u(t), given y(t + m), is sought: 

u(t\t + m) = Qy(t + m). (2.3) 

It could be either a predictor (ro < 0), a filter (ro = 0) or a fixed lag smoother 
(m > 0). 

3. PROBABILISTIC ERROR MODELS 

The transfer functions Q, T and % may be uncertain. An error model is a quan­
tification of the model error class. Together with a nominal model, it constitutes 
an extended design model on which a robust design is based. As error models, we 
will utilize additive transfer functions AT, AQ, AH, with stochastic numerators and 
pre-specified denominators. This choice is crucial for obtaining a simple solution to 
the filtering problem. The extended design models are parametrized as 

Co_ CiAC CoDi+DodAC A C 

oo 

* = ? + 
A0 

n -- ^ + 
N0 Ni N0N! N 

(3.1) 

Above, CojDo etc. represent nominal models, with degrees nco,ndo etc. They 
are assumed known and stable. Stable "error denominators" D\,Ai and Ati, of 
degrees nd\,na\ and nn\, as well as numerator factors Ci,Bi,Mi, of degrees nc\,nb\ 
and nroi, may be specified by the designer or obtained from data. Coefficients of 
numerator polynomials 

AP(q~1) = APo + Apxq-1 + ... + ApSpq-Sp (3.2) 

are stochastic variables, with zero means. Let E(-) denote expectation with respect 
to coefficients of stochastic polynomials AP. Parameter covariances are thus denoted 
EApiApj. They are collected in the covariance matrix P A P -

The coefficients of AC, AB and AM are constant in time, so they are independent 
of the time series e(t) and v(t). Except for first and second order moments, their 
distributions need not be known, since they will not affect the design. 

All polynomial degrees are assumed known to (or specified by) the designer2. 
Note also that denominator polynomials are all assumed stable. Uncertainty more 
or less forces us to restrict attention to stable extended design models 3 . 

In the sequel, we utilize two mild assumptions: 

IЛ D0Di D 

BXAB BOAІ + AOBIAB д B 

Ax A0Ai A 

M i Д M MoNi + N0MxAM д M 

2 Note that we are talking about an extended design model. In practice, it will only be an 
approximation of a class of possibly infinite dimensional and time-varying true systems. 

3 If unstable poles were exactly known, a finite estimation error could be obtained, by a filter 
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Al. The coefficients of AC and of AB are independent. 

A2. The covariance matrices P A C , P A B and P A M are Hermitian and positive 
semidefinite. 

It is necessary to assure A2 when the covariance matrices are used pragmatically, 
as "robustness tuning knobs". Design equations could be derived for situations 
with correlations between AC and AB. Assumption Al does, however, simplify the 
solution, and seems reasonable. 

Model error covariances may be obtained from identification experiments, or from 
frequency domain data on system variability. See [7], [8] and [26]. If a fixed filter is 
to be designed for a large number of systems, the statistics may be obtained from a 
representative sample of systems. (Under the name of "statistical quality control", 
sampling techniques for obtaining means and variances of important properties are 
becoming increasingly widespread within manufacturing industries.) 

Probabilistic error models remain useful also when statistics is hard to obtain. 
Those who prefer a Bayesian view could then interprete error distributions as sub­
jective probabilities. Others may just use them pragmatically, as robustness "tuning 
knobs". The covariances are then altered until satisfactory spectral properties of the 
filter are obtained. 

If only the signal to noise ratio is uncertain, we may set A c = A S = AM = 0, 
and use a higher equivalent noise variance. A model (3.1), with uncertain noise 
variance but well-defined noise spectrum, is given by M/N = Mo/No+MoAm/No = 
(MQ/NO)(\ + Am), with a scalar stochastic Am. It corresponds to regarding the 
noise as having variance p(\ + E'lAmp). 

Another special case is the use of FIR- or MA-filters (i.e. no denominators): 

u(t) = (Co + AC)e(t); y(t) = q-k(B0 + AB)u(t) + (M0 + AM)v(t). (3.3) 

In (3.3), degrees of stochastic polynomials may be set higher than those of the 
nominal polynomials, 6c > nco, etc. This can be used to guard against under-
parametrization. However, for systems with long or infinite impulse responses, error 
models with denominators are more appropriate than FIR-models. 

The structure (3.1) covers multiplicative as well as additive descriptions of model 
errors. A multiplicative error is obtained with e.g. B\ = BoBm,A\ = AoAm, with 
Bm arbitrary and Am stable. 

4. DESIGN OF ROBUST FILTERS 

We proceed'from the model (2.1), (2.2) and (3.1). The coefficients of AC, A S and 
AM are random variables, whose possible values parametrize a set of systems. We 

which cancels unstable poles by zeros in the total signal path to the estimation error. Such a strategy 
is, of course, highly non-robust to mis-modelling of unstable poles. With uncertain unstable poles, 
the design problem becomes unsolvable, in the open-loop context considered here. (Therefore, a 
general solution involving two coupled Diophantine equations will not be of interest here.) 
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will minimize the averaged mean square error (MSE) criterion 

E(E\z(t)\2); z(t)=^(u(t)-u(t\t + m)). (4.1) 

Here, E represents expectation over noise and E is an expectation over the model 
error distribution, i.e. over the coefficients of AC, AB and AM. We thus seek a 
single estimator which provides the best MSE performance, on average, when applied 
on randomly selected systems within the specified class. Above, V/U represents a 
frequency dependent weighting, with both V and U being stable polynomials. In 
the nominal case (no uncertainty assumed), (4.1) reduces to an ordinary frequency 
weighted MSE criterion. 

The averaged MSE has been used in connection to other robust filtering formu­
lations, e.g. by Chung and Belanger [5], Speyer and Gustafson [23] and by Grimble 
[9]. These works were based on the assumption of small uncertainties and on series 
expansion of uncertain poles. In our design philosophy, we start from a model struc­
ture (3.1), and adjust it to the uncertainty directly. Large uncertainties can then be 
described in a much better way. (Examples are discussed in [26].) 

4 . 1 . T h e averaged spect ra l factorizat ion 

An averaged spectral factor fl(q~l) is defined as the numerator polynomial of an 
averaged innovations model of the measurement. In the present case, it is given by 
the stable and monic solution to 

-/?/?„ = E{CCtBBtNN,+pMM,AAtDDt} (4.2) 

with scalar r. Define double-sided polynomials 

CC. = E(CC*), BB. = E(BB,), MM. = E(MM*). (4.3) 

Then, the use of (3.1) gives 

CC* = C0C0.DiDu + DoD0.CiCi.E(ACAC») 

BB. = B0B0*AiAi* + A0A0*BiBi.E(ABAB.) 

MM* = M0M0.N1N1* + NoNo.MiMi^AMAM*). (4.4) 

We can now simplify (4.2). 

L e m m a 1. Let assumption Al hold. Then, (4.2) can be expressed as 

rPf3* = CC,BBtNN*+pMM.AA*DD, (4.5) 

P r o o f . The coefficients of a polynomial AP are zero mean stochastic variables. 
Coefficients of A P A P , will also be stochastic variables, having expected values given 
by (4.7) below. The coefficients of (AS, AC), are independent, and so are the 
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coefficients of ABAB*, AC AC*. Using independence for complex parameters, the 
right-hand side of (4.2) becomes 

E(CC,)E(BB*)NNr+PE(MM*)AA*DD* a 

The averaged factors in (4.4) can be evaluated as follows. For a stochastic error 
model numerator AP(g _ 1 ) , as in (3.2), let the Hermitian parameter covariance 
matrix be 

£7|Ap0|2 . . . E(APoAp*Sp) 

P д p = 

L (APSpAp*0) ... Ë\APSţ 

(4.6) 

Denote the sum of the diagonal elements ho, the sum of elements in the z'th 
super-diagonal h,-, and the sum of elements in the zth subdiagonal h_,-. Note that 
h_,- = h*. Then it becomes evident, by direct multiplication of AP(g _ 1 )AP«(g), 
and taking expectations, that 

E(APAPt) = 

hdpq-dp + ••• + Kq'1 + ho + hi? + . . . + hdpq
dP. (4.7) 

Thus, the averaged factors in (4.4) are readily obtained. Above, dp < Sp (the degree 
of A P ( g - 1 ) ) . If coefficients are uncorrelated, dp = 0. 

In (4.4), CC* will contain powers up to g ± n c , where nc = max{nco + ndy, nd0 + 
nci+dc], with analogous expressions for nb, nrh. Since N = N0N\ etc, the averaged 
spectral factor in (4.5) has degree 

n/? = max{nc+ n6 + nno + nni,nfh+ na0 + nax + nd0 + nd\} 

The factorization (4.5) is solvable with respect to a unique stable (3(z~l) iff its 
right-hand side is positive on \z\ = 1. Introduce the assumptions 

A3. Co, C\E(ACACtf), pM0 and pM\E(AMAM*) have no common zeros 
on \z\ = 1 

A4. So, BiE(ABAB*), pM0 and pM\E(AMAM*) have no common zeros 
on \z\ = 1. 

L e m m a 2. Let D, A and At be stable and assumption A2 hold. Then, a unique 
stable spectral factor /?, satisfying (4.5), exists, if and only if both of assumption A3 
and A4 are true. 

P r o o f . See Appendix A. D 

The conditions A3 and A4 are mild. They will almost always be fulfilled, even if 
Co, B0 and M0 have zeros on the unit circle. In fact, the conditions are more relaxed 
than for the nominal case, due to the presence of averaged factors E(-). 
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4 .2 . The cautious Wiener filter 

Theorem 1. Assume an extended design model (2.1)-(3.1) to be given, with 
known covariances of the stochastic polynomial coefficients. Assume A1-A4 to hold. 
An estimator of u(t) then minimizes (4.1), among all linear time-invariant estimators 
based on y(t + m), if and only if it has the same coprime factors as 

- / # I # J . . Q t, L \ Q Q\N0N\AQA\ 

u(t\t + m)=-y(t + m); - = — (4.8) 

Here, P(q~x) is obtained from (4.5), while Q\(q~l), together with L*(q), is the 
unique solution to 

q-m+kVCCtBo,AuN0.Nu = r/3,Q\ + qUD0D\L, (4.9) 

with polynomial degrees 

nQ\ < max(nt; + nc — k + m, nu + ndo + nd\ - 1) 

nL < max(nc + n6o + nai + nno + n n i + i t — m, n/3) — 1. 

For the ensemble of systems, the minimal criterion value becomes 

(4.10) 

-*мoь. = -Ьjř 

+ 

2*i JWssl UU 

ČČ*ČČ«Ě(AGAG.)AAtNNt 

LLt CC,MM,AA* 
rßß,+P rßß, + 

DD,rL 
Az 

(4.11) 

P r o o f . See Appendix B. For a derivation of (4.11), see [26]. (The expression 
derived in [26] is slightly different, due to the absence of a weighting V/U.) D 

R e m a r k s . The equations for minimizing (4.1) are (4.5), (4.7) and (4.9). The 
corresponding equations for the nominal case (no uncertainty) can be found in e. g. 
[1] or [26]. In a robust design, the only new type of computation, as compared to a 
nominal solution, is trivial: summation of covariance matrix elements, diagonalwise. 

Note that the "error denominators" N\ and A\ affect the filter (4.8) directly. If 
l/N\ or l/A\ in the error models have resonance peaks, indicating large uncertain­
ty, the filter (4.8) will have low gain at those frequencies. With increasing model 
uncertainty, the zeros of /? are moved inward in the unit circle. Resonance peaks of 
the estimator are lowered and broadened. 

Equation (4.9) will have a unique solution, with degrees (4.10). Note that )3*(z) 
(unstable) and U(z~1)Do(z~1)D\(z~1) (stable) have no common factors. 

The averaged estimation error (4.H) consists of three terms. Term 1 represents 
the effect of finite smoothing lag m. It can be shown that L,(q) —• 0 when m —• oo. 
The second term mainly represents the effect of noise. It vanishes for p = 0. Finally, 
the third term represents degradation caused by errors AG — B\AB/A\ in the 
transducer model. It vanishes only when AG = 0. 
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In situations with little noise and sufficiently large smoothing lag m, term 3 in 
(4.H) will dominate the error. This is not surprising; a deconvolution smoother then 
essentially inverts Q. This operation is sensitive to model errors there. 

4 .3 . Analytical expressions for performance evaluation 

Theorem 2 . Let a nominal estimator Qo/Ro be designed based on a nominal 
model, as in e.g. [1],[2]. Applying it, instead of (4.8), on an ensemble of systems 
results in an increase, compared to (4.U), of the mean MSE EE\z(t)\2. The increase 
is given by 

mmi-mm\i,„ = ^J l^fl-eJ'Ife-fil'i (4.i2) 2wi j[A=11U| \DAN\ \R0 R\ 

where r, /? are defined by (4.2)-(4.5) and Q/R is the optimal robust filter, given by 
(4.8). 

P r o o f . To obtain (4.12), the nominal filter Qo/R0 is expressed as Q/R + 
(Qo/Ro - Q/R)- The optimality of Q/R implies that any modification of it gives 
an orthogonal contribution to the criterion. This, and the use of (4.2), gives (4.12). 
Mixed terms vanish, due to the orthogonality. • 

Theo rem 3. Let a robust estimator Q/R be designed by (4.5)-(4.9). When 
applying it on a system equal to the nominal model, the increased MSE, compared 
to the minimum, is 

E\z(t)f-E\z(t)\l=£Lj \U 
iiri J\z\ = l \U I 

0o h Q _ Q o | 2 d i ( 4 1 3 ) 
\D0A0No\ \R Rol 

where Po/D0A0N0 is the nominal innovations model, and where r0 and f30 are ob­
tained from the spectral factorization of the nominal model 

roPoPo* = C0C0tB0B0ttN0No* + MoMo*AoAo*D0D0* 

P r o o f . Analogous to Theorem 2, by expressing Q/R as Q0/R0+(Q/R-Q0/R0). 
a 

Remarks. The expression in (4.12) can be used for arbitrary linear estimators 
Qo/Ro, far example minimax-designs. We thus do not have to evaluate the mean 
performance of alternative designs by Monte-Carlo simulation. The filter magnitude 
|VyU|2, together with the magnitude of the mean innovations model [5/DAN in 
(4.12), and the nominal innovations model j30/DoAoN0 in (4.13), can be seen as 
weighting functions. In frequency regions where their magnitude is large, differences 
between the two estimators will have a large impact on the performance. 

If the variance of broad-band measurement noise is increased, the gains of both 
the nominal and the robust filters decrease. If the noise level is high, performance 
differences between nominal and robust solutions tend to be small. 
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5. A NUMERICAL EXAMPLE 

Consider an extended design model (3.3), with a FIR nominal model given by 

C0(«7-1) = l - 0 . 9 5 g - 1 ; B0(q~1) = 0.5-OAq'1; M^q'1) = I - OSq'1 (5.1) 

k = l, p = 0.001. 

The covariance matrices of AC, A S and AM are 

P _ f 0 0 1 . _ _ [ 0.0025 0 ] . _ _ [ 0 0 1 
F A C - [ 0 0.040 J ' F A B _ [ 0 0.0225 j ' F A M ~ [ 0 0.010 J 

This corresponds to standard deviations 0.20 for the coefficient C\, 0.05 for &o, 0.15 
for b\ and 0.10 for m\. We would like to obtain a robust filter ii(t\t) = (Q/R)y(t). 
This estimator should, essentially, perform a one step prediction to obtain u(i), since 
the transducer q~kB(q~1) has a one step delay. Using (4.7), we obtain 

E(ACAC„) = 0.040, E(ABAB„) = 0.0250, E(AMAMt) = 0.010. (5.2) 

Inserting (5.2) into (4.5) gives 

rp0. = (1.9425-0.95(g + g-1))(0.435-0.2(g + g-1)) + 0.001(1.65- O^q + q'1)). 

By solving for the stable monic /?(g -1) and r, we obtain 

j3(q~1) = 1 - 1.46595-1 + 0.5315?-2, r = 0.3575. 

Proceed to calculate the filter polynomial <3i(g_1) from (4.9), in which U = V = 
A\ = N0 = N\ = D0 = D\ = 1. With degrees nQ\ = 0,nL = 2, we obtain, with 
Qi(q~1) = c, 

g(1.9425 - 0.95(g + g-x))(0.5 - 0.4g) = 

0.3575(1 - 1.4659g + 0.5315g2)c + q(£0 + £\q + ^ g 2 ). 

Equating for different powers of q gives 

QifoT1) = -1.3288; I*(g) = 0.6549 - 0.9995g + 0.380g2. 

The robust estimator (4.6) is u(t\t) = (Q\/(3)y(t), or 

^'i-u^Twuf*'' (53) 

It has poles in z = 0.8086 and z = 0.6573. The nominal filter polynomials are 

Qnom(g"1) = -1-8413; i?nom(g_1) = 1 - 1.7206g-x + 0.7365g-2 (5.4) 
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with estimator poles in z — 0.9206 and z — 0.80. The robust estimator has decreased 
the gain and moved the poles inward. It has become more cautious. 

The performance of nominal and robust estimators is exemplified in Figure 1, 
The MSE is much lower for the robust filter, for most parameter values. For a wide 
range of parameter variations, the performance of the robust estimator is close to 
that which could be obtained if the true parameters were known. 

In Figure 2, the mean performance (4.1) was calculated, for nominal and robust 
estimators, as a function of the standard deviations of some of the parameters. 
As expected, the mean performance is much better for the robust filter for large 
parameter deviations. In situations with small model errors, we might just as well 
use the nominal estimator. This is also true when the noise level is high; when 
£'t)(<)2 > 0.1, the difference between robust and nominal filters is very small. 

Fig. 1. Variation of one parameter, while the others are nominal. The MSE Ez(t)2, as a 
function of the zero -c i of the signal model (left) and of -6i in the transducer (right). 

Performance of a nominal design (solid), of the robust filter (4.8) (dashed) is compared to 
the lower bound (dotted), achievable with the knowledge of the true parameter value. 

Fig. 2. Mean performance EEz{t)2, when standard deviations of ci (left) and either 60 

or 6i (right) are varied, while other coefficients are nominal. Nominal filters (solid) are 
compared to robust filters, designed for the corresponding parameter variance (dashed). 
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In Figure 3, we compare with minimax-designs, assuming two distributions, both 
with the same variances as above. 

1. rectangular distribution, with hard bound at = \/3standard deviations 

2. 5-point distribution for each parameter, with bound ±0.5 for ci,&i,mi,±0.2 
for 6Q. 

Fig. 3. Error variance Ez(t)2 for nominal (solid) and robust (dashed) filters, as in 
Figure 1. We also illustrate a minimax-design assuming rectangular distributions 

(dashed-dotted), a minimax-design based on 5-point distributions (crosses) and also a 
nominal filter, designed using p = 0.1 (dotted). 

In the minimax design, filters were constructed for the worst case (giving highest 
MSE). When these filters were applied to other systems in the class, the MSE was 
never higher than in the design case. Thus, a saddle point condition was fulfilled, 
and the minimax solution had been found4. The worst case for the rectangular 
distribution was 

C(q-1) = l-l.Zq-1, B(q-1) = 0Al-0Mq-1, M(q~x) = 1 - 0.63g_1 

and for the 5-point distribution 

C(q-1)=l-lA5q-\ B(q-1) = 0.Z-0.9q-\ M(q~1) = 1 - 0.3g_1. 

Figure 3 clearly reveals the weaknesses of minimax designs: for wide model error 
distributions, with unlikely remote values, the filter performance for the nominal 
case deteriorates. More reasonable filters are obtained when the most remote value 
is close to the standard deviation of the distribution. However, even the assumption 
of a rectangular distribution results in a more conservative design than our cautious 
Wiener filter. 

4 On closer investigation, this turned out to be a fortunate coincidence. In many similar examples, 
minmax ^t maxmin, so the above technique cannot be used. A minimax MSE design then involves 
an exhaustive numerical search, and not even the polynomial degrees of the optimal filter can be 
determined a priori. 
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The simplest way of robustifying an estimator is to just increase the noise vari­
ance p used in a nominal design. The performance of this technique is also illustrated 
in Figure 3. The result around the nominal case is not as good as for our robust 
filter. The difference can be expected to be even larger in more high-order examples. 
The use of just one single robustification parameter mostly provides insufficient de­
grees of freedom. It can only vary the spectral factor /? along a single root locus 
trajectory. 

An extensive simulation study of the performance of robust filters is presented in 
[26]. 

6. CONCLUSIONS 

Estimation, based on imperfectly known linear discrete-time models, has been con­
sidered. Model errors were represented as additive transfer functions, with random 
numerators. A robust design was obtained by minimizing the squared estimation 
error, averaged both with respect to model errors and noise. This allows large but 
unlikely model errors to be taken into account, without dominating the design. The 
resulting filter becomes cautious, but not conservative. 

With the presented polynomial equations approach, the robust filter design be­
comes simple and straightforward: just sum elements along diagonals of covariance 
matrices. Then, solve somewhat modified, "averaged", spectral factorizations and 
Diophantine equations. 

The methodology can be applied to any open loop problem. Robust state esti­
mation, feedforward regulation, servo feedforward design and model matching are 
discussed in [26]. Application to the related problem of decision feedback equal­
ization, discussed in [24], is straightforward. See [25]. Singular and non-singular 
continuous-time problems are presently under investigation. Multivariate design is 
discussed in [29]. 

With very large system variations, the performance of even a robust linear filter 
will be unsatisfactory. An approach analogous to gain scheduling in feedback control 
can then be of use. A bank of filters is designed, with each filter attuned to a subset 
of the total system class. By using the output or auxiliary information, the most 
likely subset is selected, and the corresponding filter is used. See e.g. [16] or [21]. 
Robust design is a complement to this appoach. By utilizing robust filters, which 
give acceptable behaviour for large model subsets, the number of filters in the filter 
bank may be reduced. 

Robust design could also complement adaptation. Adaptive robust filtering, 
based on on-line estimation of nominal models and also of error model parameters, 
is a challenging subject. It is a main goal motivating our present research. 

APPENDICES 

A. Proof of Lemma 2 . Introduce a vector 

A 
/(w) = ( \eiu ... e* W p ) т . 
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Then, 

f (« )P A p/ (w) = hdpe-iwap + ... + h*e~iu + h0 + hie
iu + ... + hdpe

iudr 

This real-valued scalar is the polynomial E(APAP*) from (4.7), evaluated on z = 
e'w. Thus, since P A C > P A B and P A M are all assumed positive semidefinite, the 
corresponding polynomials from (4.7) will be non-negative on the unit circle. This 
is a sufficient condition for the expressions (4.4) to be non-negative on the unit 
circle. If M\E(AM AM*) has no zeros on the unit circle, the same will then be 
true for MM: it can only have zeros on \z\ = 1 which are common to M0M0* and 
M\M\*E(AMAM*). Such zeros are zeros also of CC* or BB* in (4.5) only if either 
of A3 or A4 is violated. This holds for the special case p = 0 as well. 

B . P roof of T h e o r e m 1. A technique for simple constructive derivation of poly­
nomial design equations for Wiener filters is presented in [2], [3] and [4]. It is based 
on the evaluation of orthogonality in the frequency domain. This technique will be 
utilized here, and be shown to be applicable to the averaged criterion (4.1). 

With (2.1)-(3.1), the estimation error z(t) in (4.1) is 

• M - H ' - * - * ! ! ) ^ - ^ . , . (B" 
All admissible alternatives to a proposed weighted estimate, given by (2.3), can 

be described by 

d(t) = ~u(t) + n(t); u(t) = Qy(t + m): n(t) = My(t + m). 

Here, M(q~x) is a causal, stable but otherwise arbitrary rational function. Opti­
mally of (2.3) is obtained if no perturbation n(t) can improve the mean estimator 
performance. This occurs if and only if the corresponding error z(t) is orthogonal 
to any admissible estimator variation n(t), i.e. EEz(t)n*(t) = EEz(t)*n(t) = 0. 
Then, the perturbed criterion value reduces to 

EE | £ „ ( . ) - d(t)^ = EE ( £ ( „ ( . ) - «(<)) - "(*)) ( £ ( « ( . ) - u(t)) - n( t ) )* 

= EE( | z (0 | 2 - z(t)n*(t) - n(t)z*(t) + \n(t)f ) 

= EE(\z(t)f + \n(t)\2) (B.2) 

which is obviously minimized by n(t) = 0. Since all systems included in the extended 
design model (2.1)-(2.3) are assumed stable, both z(t) and n(t) will be stationary. 
Parseval's formula can then be used, to express EEz(t)n*(t) as 

--{S[('-^(£)^§H}{^f^"W 
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a - i V \( k-m QB\ C B,C. 

=E™L.iu[\a
 -ŘA)ĎA~Ď:-P 

QMMA .. dz Al* — 

1 /Д{^-"1VCaď łЛt,ЛГЛД-ì/o,(eo łgB.ЛtЛ г

ł+pMM tAA>oo ł)} dг 

2irt j UDNARNtA,D, 
(B.3) 

The denominator has no zeros on the unit circle. We are allowed to move the 
expectation E inside the integration, since, for any particular realization of AC, AB 
and AM, the integrand is Riemann integrable on the unit circle. See e.g. [11] 
Theorem 3.8. The expectation E operates on the numerator, since stochastic vari­
ables are present there only. Using the spectral factorization (4.1), and the fact that 
neither of V, N,A, R or Q contain stochastic variables, (B.3) can be expressed as 

J _ I {zh-mVNN*ARE(CC*B*) - VQrpfr) dz 

2irif UDNARNtA*D* * z ' K ' ' 

Now, EEz(t)n*(t) = 0 is fullfilled if all poles in \z\ < 1 of the integrand are 
cancelled by zeros. Since M and NAD are stable, (l/N*A*Dt)M* will have poles 
only in \z\ > 1. All other poles are in \z\ < 1. Thus, we require 

zk-mVNN*ARE(CC*B*) - VQr/30t = zLtUDNAR 

for some polynomial L*(z) or, equivalently, 

(zk-mVN*E(CCtB*) - zL*UD)NAR = Qr(3+0V (B.5) 

The right-hand side of (B.5) must contain R as a, factor. Since R must be stable, 
its factors cannot include factors of/?*. Thus, PV = RH for some stable H(z~1). 
Now, cancel R in (B.5). Observe that NA must be factor of QH, i.e. QH = QiNA. 
The filter Q/R = (QiNA/H)/((3V/H) is (4.8). Cancel NA and exchange q for z in 
(B.5), to obtain 

qk-mVN*E(CC*B*) = r/3,Qi + qUDL,. (B.6) 

This is (4.9), since by using independence and E(AB) = 0, 

E(CC*B*) = E(CC*)E(BoAi + A0BiAB), = CC*B0*AU. (B.7) 

The "only if '-part of the result follows because choices of Q/R other than (4.8) 
correspond to n(t) ^ 0, which, according to (B.2), increase the criterion value. 

R e m a r k on t h e degrees (4.10). Diophantine equations in general have an infi­
nite number of solutions. In (4.9), however, causality requires Qi to be a polynomial 
only in q~1, while optimality requires L„ to be a polynomial in q. (If L, were allowed 
to have negative powers of z as arguments, poles at the origin would be introduced 
in the integrand of (B.4). The path integral would then not vanish.) 
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T h e generic degrees (4.10) are t hen uniquely de te rmined by the requi rement t h a t 
the highest occurr ing powers of q~l a n d q, respectively, mus t be covered by the 
variables in (4.9). T h i s gives an equal number of equat ions and unknowns . T h e 
l inear sys tem of equa t ions is nonsingular , since /?* and UD have no common factors . 
A more general discussion of these po in t s can be found in [3], Section IV of [2] and 
in [14], [15]. 

(Received February 25, 1993.) 
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