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KYBERNETIKA — VOLUME 27 (1991), NUMBER 4

A STRUCTURAL ANALYSIS
OF THE POLE SHIFTING PROBLEM

AYLA SEFIK, MESUT EROL SEZER

Pole assignability and stabilizability problems are investigated qualitatively. Both problems
are first formulated algebraically and then translated to a structural setting via graph-theoretic
formulations. Graphical sufficient conditions concerning the closed-loop system digraph which
determine pole assignable and stabilizable structures are developed.

1. INTRODUCTION

The concept of structure was first introduced by Lin [1] in his characterization
of structural controllability for single-input systems. Since then many researchers have
demonstrated (see, for example, [2] and the references therein) the use of a qual-
itative approach based on system structure in the analysis of such properties as
controllability, observability, existence of fixed modes, etc., which describe latent
qualities possessed by a system. Such an approach is consistent with physical reality
since system parameter are never known precisely. On the other hand, the insight
into the system structure gained by a qualitative analysis is often helpful in establish-
ing a way-out through certain problems that arise due to features as high-dimen-
sionality, uncertainty in system parameters and constraints on information structure.
A qualitative analysis also enables investigation of general system properties from
the genericity point of view.

In this paper, we present a qualitative analysis of the pole assignment and stabi-
lization problems. We assume that the nonzero system parameters are algebraically
independent, and realize a qualitative analysis of the problems of pole assignability
and stabilizability in terms of the structure of the closed-loop system. Using graph
theoretic formulations due to Reinschke [3], we develop graphical results which can
be used to characterize certain pole assignable and stabilizable structures.

We first present an algebraic formulation of the two problems combined as the
general problem of pole-shifting. The preliminaries for the establishment of the
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structural framework needed for our graph-theoretical approach is followed by the
main results concerning the two problems. Proofs, which are avoided in this paper,
can be found in [4].

2. ALGEBRAIC CHARACTERIZATION OF THE POLE-SHIFTING
PROBLEM \ , ‘ ,

Consider a linear, time-invariant system described as
&F: x = Ax + Bu

o

where x(t) € R", u(t) e R™, and y(t) e R" are the state, input, and output of &, and
A, B, and C are real, constant matrices of appropriate dimensions. Applying a con-
stant output feedback

F: u=Fy » » (2
to & in (1) results in a closed-loop system k
P(F): %= (A4+ BFC)x

y =Cx

0

y = Cx
having a characteristic polynomial
p(s) = det(sI — A — BFC) = s" + pis" ' + ... + p,=yS + D, . 4)

Let the m x r feedback matrix F have u < mr nonzero elements which can
be chosen arbitrarily. If f = (f,f5,....f,) € R* and p = (py, P2, ..., P,) € R" re-
present the nonzero elements of F and the coefficients of p(s) in(4) respectively, then
the relation between p and f can be represented by a smooth mapping g: R* — R" as

p=g(f). | o)
The problem of pole-shifting is concerned with the existence of a solution f e B* of
(5) for every given pe R" (arbitrary pole assignment problem) or for some pe R"
corresponding to a stable polynomial (stabilization problem).

We assume that x4 > n (note that this is a necessary condition for arbitrary pole
assignability), and partition the feedback variables fi, f5, ..., f, into two disjoint
subsets f, and f,, containing n and u — n elements respectively. Fixing the variables
in f, at particular real values, (5) reduced to

p=4(f), | (6)
where g: R" — R” is a restriction of g to R". The following results give sufficient
conditions for pole assignability and stabilizability.

Lemma 1 [3]. Suppose that after appropriately fixing the elements of f,, the deriva-
tive g, of g in (6) is unimodular. Then the system & is arbitrarily pole assignable
by the feedback &.
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Note that unimodularity of g, implies that § is a homeomorphism, and hence
for every p e R", there exists a unique f, € R satisfying §(f,) = g(f,, f.) = p.

Lemma 2 [4]. Let the feedback variables in f, be renumbered as fi, f3, ..., f,.
Suppose that the mapping § between p and f can be written in the ‘staircase’ form

p1 = !71(fu) = oy + (a,f; + ¢4) b11'+ o+ (afi + Ck) by + ‘f‘ (anfs + €4) bay
Py = gk(fv) = oy + (akfk + Ck) bkk_ + ..+ (a,,f,, + cn) by

Pn=3lf)) = o, + (a.fy + ¢,) bu

(7
where a,, b,;, ¢, are polynomials in fy,....fio, | Sk =<n, 1 =)< k—1, with
a, # 0 £ b, and «, are constants. Then & is stabilizable with .

The result of this lemma depends on the fact that the structure in (7) allows for
stabilization of p(s) in (4) by a recursive root-locus technique, utilizing arbitrarily
high feedback gains of appropriate sign at each step [4].

3. PRELIMINARIES

A structured matrix M [5] is a matrix whose entries are either fixed zeros or
algebraically independent parameters in K. If M has p nonzero entries, then we
associate with these a parameter space #* such that every data point d € R* defines
a matrix M = M(d). Two matrices M, and M, are said to be structurally equivalent
if there corresponds the same structured matrix M to both, and M represents the
equivalence class of structurally equivalent matrices.

Let IT be a property asserted about the structured matrix M. Then it is a mapping
IT: R* — {0, 1} defined as

_ {1, if IT holds for M(d)
11(d) = {O , otherwise

If the set {d e R* | II(d) = 0} is included in a variety in R* characterized as the
set of zeros of a nonzero polynomial in d, then IT is said to be generic. A generic
property holds almost everywhere in R".

A digraph [6] is an ordered pair @ = (77, &), where ¥ is a finite set of vertices
and & a set of oriented edges. And edge oriented from v; € ¥~ to v;€ ¥~ is denoted
by the ordered pair (v;, v;). If (v}, v;) € &, then v, is said to be adjacent to v;, and v,
adjacent from v;. Adjacency relation can be described by a square binary matrix,
R = (r;;) such that r;; = 1if and only if (v}, ;) € &. A sequence of edges {(v,, v,),
(v2, v3), -+, (k- 1, 0)} where all vertices are distinct is called a path from v, to v,.
If v, coincides with v, then the path is called a cycle. Any two cycles are said to be
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disjoint if they have no common vertices. A collection of disjoint cycles is called
a cycle family.
Associated with the system & of (1), we define a square structured matrix as

ABO
S=[000 (8)
cCoo

called the system structure matrix. Viewing the matrix S as a binary matrix with
zero and nonzero elements, we define the digraph 2 = (“I/, &) which assumes S as
its adjacency matrix to be the digraph of the system &. For convenience, the vertex
set of 2 can be partitioned as ¥ = # V¥ U ¥, where %, £ and ¥ are the sets of
input, state and output variables, respectively. The system digraph 2 completely
characterizes the structure of &. We say that two dynamic systems are structurally
equivalent if their digraphs are the same up to an enumeration of %, Z, and %.

When a feedback of the from (2) is applied to & of (1), the resulting closed loop-
system of (3) has the system structure matrix

AB O
SF)=|0 0 F (9)

Cco o
Accordingly, the system digraph becomes 2(F) = (¥, & U &), where &p =
= {(v;, u;) | f;; 0} is the set of feedback edges. For convenience, the edges in & are
called the d-edges and those in &4 the f-edges. Accordingly, a cycle is called an
f-cycle if it contains at least one f-edge and a d-cycle otherwise. Similarly, a cycle
family is called an f-cycle family if it contains at least one f-edge, a simple f-cycle
family if it contains one and only one f-edge, and d-cycle family otherwise. Where
necessary, we will represent a cycle family as a collection of cycles which in turn are
represented by the set of the weights of the edges contained. Note that if a feedback
variable f;; is given a fixed nonzero value, then the corresponding f-edge {y,, u;)
becomes a d-edge as f;; is no more different from a nonzero parameter of A, B or C.

4. STRUCTURAL FORMULATION OF THE POLE-SHIFTING
PROBLEM

We first state our definition of a structurally pole assignable (respectively stabiliz-
able) system.

Definition 1. A system & of (1) is said to be structurally pole assignable (respecti{rely
stabilizable) by a feedback # of (2) if there exists a system structurally equivalent
to & which is pole assignable (respectively stabilizable) by #.

Let us assume, that the nonzero parameters of the system structure matrix S
in (8) are algebraically independent, and correspond to a data point d € R*. Then,
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the relation in (5) can be expressed as

p=g(df) (10)

to indicate the dependence of g on the system parameters. Clearly, a system is struc-
turally pole assignable if for some d* € R* the equation
p = g(d*.f) = g*(/) (11)
has a solution for every given p € R". Similarly, structural stabilizability is concerned
with the existence of a particular d* € R" for which one can find an f that satisfies
(11) for some p e R" corresponding to a stable polynomial. We note that, due to
the nonlinearity of (10), neither structural pole assignability not stabilizability
are generic properties, in general. However, in this paper, we aim at obtaining
graphical conditions which guarantee genericity of the two structural properties. The
formulation due to Reinschke [7], which is summarized below, serves this purpose.
Consider the closed loop system digraph 2(#) = (¥, & U &) associated with the
system structure matrix S(F) of (9). By assigning a weight to every edge, 2(%)
becomes a weighted digraph. The weight of a d-edge is the corresponding nonzero
parameter value of A, B or C, and the weight of an f-edge is the corresponding
variable feedback gain. Accordingly, the weight of a path, a cycle or a cycle family is
the product of weights of all edges involved. Denoting the number of cycles in a cycle
family € by o(€F), the weight of ¢ by w(¢.F), and defining the width y(4#) of
EF to be the total number of state vertices covered by ¥4, Reinschke proved the
following: ’ ' ' '

Lemma 3. The coefficients p, = g,(f}, k = 1, 2, ..., n, of the closed loop character-

istic polynomial are given as

g9{f) = Y (=)D u(¢F) : (12)

NEF )=k

where the summation is carried over all cycle families of width k.

5. GENERIC POLE ASSIGNABILITY
The following result, which is a special of Lemma 1, gives algebraic sufficient
conditions for generic pole assignability:

Corollary 1. Let f, and f, be as defined in Lemma 1, with the feedback variables
in f, renumbered as fy, f3,...,f,. For a partitioning # = S U (A4 — #), with
J * 0, of the index set &~ = {1,2, ..., n}, let the auxiliary variables f, be defined as

= o ke f
= 3
= v, her = s (13
where 0, = 0,(d) are nonzero polynomials in d, and ¥, = Yi(d, ) are polynomials
in f;, | € #, with coefficients being polynomials in d. Suppose that the restriction g
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of g in (6) to R" is given by . .
gk(d>fv) = gk(dsf) = ak +l§—‘:leklfl’ k = 15 29 e (14)

where o, = a,(d) and e,, = e,(d). Then, & is generically pole assignable by & if
the coefficient matrix E = E(d) = (ex) has full generic rank.

Under the conditions of Corollary 1, the mapping g can be decomposed as § =
= § < h, where §: R" — R" is the affine mapping defined in (14), and h: R" - R"
is defined in (13), both mappings being homeomorphisms. With Lemma 3 on hand,
the assumptions and the full generic rank condition on the matrix E of the corollary
can be characterized in terms of the closed-loop system digraph. This leads us to the

following two main results which give sufficient conditions for generic pole as-
signability.

Theorem 1. Suppose that in 9(F) there exists a choice of n distinct f-edges, re-
numbered conveniently as f;, f5, ..., f,, which after converting the remaining f-edges
into d-edges by fixing their weights at arbitrary values, satisfy the following conditions.

(i) No two f-edges occur in the same cycle;

(if) All f-cycles have a vertex in common;

(iii) For k = 1,2, ..., n, there exist particular SImple f-cycle families of width k,
denoted by (597,‘ , such that
(a) f,eéF;, and
(b) any other simple f-cycle family of width k which contains an f-edge f,

I £ k, also contains a d-edge which appears in no %ﬁ;,j < k.
Then & is generically pole assignable with #

Note that conditions (i) and (ii) in the statement of Theorem ! guarantee that
every f-cycle family is a simple f-cycle family. Thus, each g, in (12) is an affine func-
tion of f4, f5, ..., f, as in (14), so that g has the structure in Corollary 1 with & = 4"
Conditions (iii) establish the generic nonsingularity of the coefficient matrix E.

The second result characterizes a larger class of pole assignable structures:

Theorem 2. The result of Theorem 1 remains valid if condition (ii) is replaced by
(if) To any two f-edges f, and f, that appear in disjoint cycles there corresponds
a unique pair of edges f, and d, such that
(a) d, appears in every cycle of f, but in no cycle of f, or f,, and
(b) to any two disjoint cycles €, and €, of f, and f, there corresponds a cycle
%, of f, which covers exactly the same state vertices as €, and €, cover,
and vice versa.

Under condition (i)’ of Theorem 2, 2(#) may contain at most two pairwise
disjoint f-cycles, and hence each product term in w(4%) of (12) contains at most
two variable weights. Also the correspondence between the pair (£, d,) and the pair
(fp f,) in the statement of condition (i) is one-to-one, and if f, appears in a product
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term in some gi(f) of (12), then so does the product f,f,, and vice versa. Moreover,
all the product terms that contain f, in any g,(f) are of the form e, (e,f, + e,,f,f,),
where ¢,,, e,, and e,, are polynomials in d with e, and e,, being the same in all such
expressions. These allow for defining the index set .# and the auxiliary variables f,
in Corollary 1 uniquely such that the indices of all such e,’s are included in #* — #
and 0, = e, ¥, = e, f,f, in (13).

The usefulness of these two theorems is due to the fact that they can easily be
translated to an algorithm which identifies a possible choice of n feedback gains to be
included in f,, as well as the fixed values to be assigned to those in the corresponding

e

5.1. Examples of Generically Pole Assignable Systems

The following discussion on examples of classes of pole assignable structures
demonstrates the nontriviality of our results.

It is a fact that pole assignability under state feedback is a generic property of
a structurally controllable system. Consider such a system described by

& x = Ax + Bu, » (15),
and a full state feedback law
F: u= Fx, (16)

where x € R" and u € R™. The resulting closed-loop system (%) can be represented
by the reduced system structure matrix

so =[5 o] (1)

Let 2,(%) = (X V%, &,, U &) denote the closed-loop system digraph. Then, we
have the following result, which relates the pole assignability of &#(#) to Theorem 1.

Theorem 3. The following are equivalent.
(a) & is structurally controllable.
(b) #(F)is generically pole-assignable.
(c) There exists a choice of n feedback edges such that when the remaining feedback
edges are assigned suitable fixed weights, 9,,(%) satisfies the conditions of
Theorem 1.

The proof of this theorem hinges on the fact that the special structure of the
system digraph implied by structural controllability allows for a systematic selection
of the feedback edges fi, f, --.,f, that satisfy the conditions of Theorem 1.

Our second example is a characterization of a class of structurally controllable
and observable systems with dynamic output feedback which satisfy conditions of
Theorem 2. For this, consider a structurally controllable and observable single-
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input/single-output plant
F: X = Ax + bu (18)

v =cx

to be controlled by a dynamic output feedback of the form

F: 2 =Ax + by

(19)

where £ € R® is the state of the controller . We know [8] that the problem of
assigning the poles of & using & is equivalent to the problem of assigning the poles
of the augmented system

L ]| R [

[yv] PT 07 x
| Ve N “0 I_J | £

by using constant output feedback of the form

Fu] [f T -y:I
F . =" 2 21
c b Ay @9

L - L

u=2e"%+fy

Thus, our graph-theoretic approach can be used to attack the problem. Let 2
denote the digraph corresponding to the plant & and 9(f) the digraph of the closed-
loop system consisting of & and the (scalar) constant output feedback

F:ou=fyr.

Since & is structurally controllable and observable, it has no structurally fixed
modes [9]. Equivalently, 2(f) is strongly connected and contains a cycle family of
width n [10]. ‘

We choose the order of the controller &% to be A = n — 1, and fix the structure
of (4, ¢") to be in the observability canonical form. Thus, of the n? elements of #,
in (21), n* — (2n — 1) are fixed at 0 or 1 with the remaining 2n — 1 left as variable
parameters. -

We have the following result about the pole assignability of &,(#,).

Theorem 4. Suppose that Z(f) contains a cycle family of width n, each cycle of
which has a vertex in common with some input-output path in &. Then 2,(#,)
satisfies the conditions of Theorem 2 with »n replaced by n, = 2n — 1.

Under the conditions of Theorem 4, each of the n, feedback edges can be associated
in a systematic way with one of the particular cycle families 4%, 1 < k < n,
in the statement of Theorem 1. Note that the assumption of the theorem which puts
a constraint on the structure of Z(f) is not essential for structural pole assignability
of & using dynamic output feedback controller &. However, it is needed for proving
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gengeric pole assignability using Theorem 2. On the other hand, the restriction of
& to be single-input/single-output can be relaxed since preliminary constant output
feedback can be employed to reduce the system to a single-input/single-output one
- without destroying structural controllability and observability.

6. GENERIC STABILIZABILITY

We first state a result which is the structural counterpart of Lemma 2.

Lemma 4. Let f, = (f,.f,, ..., f,) and f, be as in Lemma 2 and suppose that the
relation p = g(d, f,) can be written as in (7), where a, = a,(d, f,), b,,(d, f;) and
¢, = ¢(d, f;) are polynomials in d with f, = (fi, ... ficy) LSk <n, 1 <j <k
and %, = o,(d) are polynomials in d with a, and b, bsing nonzero. Then, & is
structurally stabilizable by #. ‘

Now, let 9(F) = (¥, & U &) be the digraph associated with the closed-loop
system & (%), in the usual way. The definition below is a generalization of condition
(ii)’ of Theorem 2 to any pair of edges of the digraph.

Definition 2. In Z(%), consider a pair of edges, denoted by {e,, e,} which never
appear in the same cycle. Suppose that there corresponds to the pair {e,, e,} a unique
ordered pair of edges (e,, ¢,) such that,

(a) e, appears in every cycle of e, but in no cycle of e, or ¢, and

(b) to any two disjoint cycles %, and %, of e, and e,, there corresponds a cycle %,
of e, which covers exactly the same state vertices as %, and %, cover, with no
input and/or output vertices that occur in ¥, U €, taking part in a cycle disjoint
from ¥%,, and vice versa.

Then. we say that {e,, e,} is a pair biased to (e,, e;) and that any cycle family of

{e,. e,} in an accompanying cycle family of e,.

We now state our first result on stabilizability:

Theorem 5. Suppose that in Z(%) there exists a choice of n distinct f-edges, re-
numbered conveniently as f, f, ..., f,, which after converting the remaining f-edges
by fixing their weights at arbitrary values, satisfy the conditions listed below. Then,
& is structurally (generically) stabilizable with Z.

There exists an integer 7, 1 < 7 £ n, such that,

(i) for k = n,n — 1, ..., 7, there exist particular cycle families of width k, denoted
by €#; such that f, € 6F}, f; ¢ ¢F;,j > k and either of the following holds.
(a) Any cycle family of width [ < k which contains f, either contains or is

an accompanying cycle family of some f;, j > k, or
(b) Any other cycle family of width k which neither contains nor is an ac-
companying cycle family of any f;, j > k, contains either f, or a pair of
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edges {e,, e,} biased to (f;, e) for some e such that if e, = f, (respectively
e, = f1), then € does not contain e, (respectively e,), | < k.
(ii) With f, and all {e,, e,} which are biased to (f,, e) for some e removed for k = 7,
the remaining digraph satisfies Theorem 1, with n replaced by i — 1.

Under the conditions of Theorem 3, (6) takes the special form

a.(f.) = hy(fis oo fam1) + (aﬁfﬁ + Cr.) bs; + + (anfn + Cn) b,

Fa-1(/,) - hae1(f1s s fam1) + (anfs + ¢3) bass + + (@nfs + €4) bt (22)

gr‘r(fv) = OC” + (aﬁfr‘l + Cﬁ) br'l,i + + (anfn + C,,) bn,ﬁ
gn(fv) = ' %, + (anfn + Cn) bnn
where ¢, contain the edges biased to f;, k = 7, and h(fy, ..., fz—) are linear in

fis s fi-1s 1 S k< n —1asin Theorem 1. The result then follows from a com-

bination of Lemma 2 and Theorem 1.

The next two results, which are based on an asymptotic approach justified by
the use of high gains in stabilization by Lemma 2, characterize systems whose char-
acteristic polynomial coefficients are not in the form of (6) but can be effectively
brought into that form by neglecting certain system parameters.

Theorem 6. Suppose that, for k = 1,2, ..., n, there exist particular cycle families
of width k, denoted by ¥Z; in 9(#) such that

(i) fi e 6FF and f; ¢ 6F,.,j > k;

(i) for any other f-cycle family €%, of width k, #f(¢F,) < #f(4#}), with strict
inequality if 4%, contains no f;,j > k, where #f (+) denotes the number
of variable f-edges in (+).

Then & is generically stabilizable by % .

The proof of this theorem relies on the fact that with f, = of,, those f-edges that
are included in ¥%; bzcome dominant in g,(f,) as ¢ — oo, which, in turn, satisfy
conditions of Theorem 1.

Our last result on generic stabilizability of &(#) depends on the following recur-
sive reduction process applied to the closed-loop digraph 2(%).

(i) Delete from 2(& ) all edges that do not appear in any cycle.
(if) Let a be a d-edge such that to every cycle %7, I = 1,2, ..., that contains a,
there corresponds a cycle family €7 with the following properties.
(a) €F| covers the same state vertices as 7 does,
(b) €7 covers no input or output vertices which are covered by some f-cycle
disjoint from %7,
(c) €#7 includes all the f-edges that appear in %] and at least one additional

f-edge.
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Let &7(f) denote the set of the additional f-edges in ¥%7, but not in %}. Delete a,
and record &7(f).

Let the digraph obtained from 2(#) by successive application of (i) and (ii)
above be denoted by Z(F). We state the following.

Theorem 7. Suppose Z(F) satisfies either Theorem 5 or Theorem 6 with at least
one f-edge from each &7(f) included in f,, 1 = 1,2,.... Then ¥(&F) is generically
stabilizable.

6.1. A Class of Generically Stabilizable Systems

Consider a system & composed on 4 interconnected structurally controllable
sub-systems described by

N
L Xi=Ax;+ Y Adyx; +bu;, i=12,..,N. (23)
i=1 .
Suppose that local state feedback law ‘
Fiou = fix;, ’ ‘ (24)
is applied to the decoupled subsystems '
PP %= Ax, + bu;, o (25)
N

where x;e R, and ue R, with Y n,=n, and f| = (fir, fizs -+ s f1n,)- We know
i=1

from our results on pole assignability that each decoupled subsystem 5”?(,97 ;) is
generically pole assignable. We assume that each (4;, b;) is controllable canonical
form, and that the interaction bstween the states of the subsystem satisfies the
following condition:

ImA;; cImb;, i+j, i,j=12,..,N (26)

With 2(#) denoting the closed-loop system digraph, the following result concerns
the generic stabilizability under this well known restriction on the interconnection
structure.

Theorem 8. All the d-edges of 2(F) corresponding to the interconnection matrices
A;; of (25) can be deleted by the reduction process. The resulting digraph 2(F)
consists of decoupled components & (F;) associated with the decoupled systems
F2F,). Since FL(F,) are generically stabilizable by Theorem 3, then so is #(F)
by Theorem 7.

7. CONCLUSIONS '
A qualitative investigation of the two aspects of the basic problem of pole-shifting,
namely, arbitrary pole assignability and stabilizability is realized. The analysis

depends on the closed-loop system structure. The results obtained are essentially
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algebraic ones, which are stated in graph-theoretical terms. The graphical nature
of the sufficient conditions guarantees genericity of the results and allows for trans-
lation to an algorithm.

An observation about the results on generic pole assignability is remarkable:
In some systems for which the renowned results of Brasch an Pearson [11] and of
Kimura [12] require dynamic compensation in order to place all the poles at desired
locations, our results show that constant output feedback or at least a dynamic
compensator of smaller order is sufficient for the job.

We note that the closed-loop system structures required either for generic pole
assignability or generic stabilizability are characterized as special cases of more
general results which have possible hints for characterizing broader classes of pole
assignable or stabilizable structures.

(Received November 30, 1990.)
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