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K Y B E R N E T I K A - VOLUME 27 (1991), NUMBER 4 

FINITE SETTLING TIME STABILISATION 
OF A FAMILY OF DISCRETE TIME SYSTEMS 

NICOS KARCANIAS, E. MILONIDIS 

The problem of finding a compensator C, that stabilises in the Finite Settling Time (FST) 
sense, a family of k distinct discrete time plants {P(, i— 1, ..., fc}, is referred to as Simultaneous 
FST Stabilisation Problem (S-FSTSP) and it is examined here. The general case of many input, 
many output plants is considered first and algebraic conditions for the existence of a S-FSTS 
controller are derived in terms of the properties of the plants family matrix. For the special case 
of single input many output (SIMO), and many input single output (MISO) plant families, 
testable necessary and sufficient conditions for solvability of S-SFTSP are derived and whenever 
a solution exists, the family of solutions is given. The nature of the results is algebraic, since they 
depend on the properties of a rational vector space associated with the family; however, the final 
conditions are expressed as standard linear algebra tests. 

1. I N T R O D U C T I O N 

The problem of stabilising a family of k distinct plants [Ph i = 1 ,2 , . . . , k} with 

a common controller C is known as Simultaneous Stabilisation Problem (SSP) 

(cf. [2] , [10], [ H ] ) . SSP is a type of robust stabilisation problem and arises naturally 

in the synthesis of control systems with different modes of operation, due for in­

stance to some structural changes; SPP also naturally arises when Pl5 ..., Pk represent 

linearised models of a nonlinear plant, around a number of operating points, and 

a common controller C is required to stabilise the whole family. Necessary and 

sufficient conditions for solvability of SSP have been given in [2] and [11], but 

these conditions are not computationally verifiable. The aim of this paper is to 

examine SSP in the context of discrete time systems and for the special type of 

stab ;lisation, known as Finite Settling Time Stabilisation (FSTS); for this case, it 

is shown that testable solvability conditions may be derived. 

The Total (or State) Finite Settling Time Stabilisation Problem, or simply 

FSTSP is unique in disctete time systems and it is a generalisation of the extensively 

studied dead-beat response (cf. [3] , [6] , [7] , [8] , [12]). In the FSTS case all internal 
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and external signals of the system are required to settle to a new steady state after 
a finite time from the application of a step change to its inputs (cf. [5]). The simultane­
ous FSTS problem of km x I discrete time plants {P,-. i = 1, 2, ..., k] is then 
referred to as S-FSTSP. 

In this paper the general case of S-FSTSP is considered first for plants of m x / 
common dimension and the results are then specialised to the case of m x 1, of 
1 x / families of plants for which testable necessary and sufficient conditions are 
derived. With a family of k plants of m x / dimension (P,, /' = t, 2 , . . . . k] we may 
associate a family matrix and its properties lead to a classification of the various 
types of families, as well as general conditions for solvability of S-FSTSS. In the 
special case of vector plant families ( / = 1, or m — 1) testable necessary and sufficient 
conditions are given and when a solution exists, the family of S-FSTS controllers 
is derived. The necessary and sufficient conditions are expressed as properties of the 
plant family matrix and may be tested using tools of the minimal basis theory of 
rational vector spaces (cf. [1]), or equivalent standard linear algebra tests. 

}U2 

Fig. 2.1. Standard Feedback Configuration. 

Throughout the paper, d denotes the delay operator (d - r""1), R(d), R[d] are 
the sets of rational functions, polynomials in d respectively, J*rmX"[</J is the set of 
m x n matrices with elements from ^(^ - R\d\ or R(d)) and Wm[d] is the set 
of m x m R[d] unimodular matrices. If A e F " " " , where # is a field, then Q(A) 
denotes its rank and J/~r(A), Jr

t(A) denotes the right, left null space over #". 

2. THE FINITE SETTLING TIME STABILISATION PROBLEM: 
DEFINITIONS AND BACKGROUND RESULTS 

Consider the standard feedback configuration of Figure 2.1, where P and C are 
the pulse transfer function matrices of the discrete time plant and controller re­
spectively, u1, u2 are the externally applied inputs and yt, y2 the outputs of the system. 
It is assumed that Pe RmXl(d), Ce R,Xm(d) they are causal and that Sp, Sc are the 
state space descriptions of the plant and controller respectively. The finite settling 
time response of the standard feedback configuration is defined below (cf. [5]): 

Definition 2.1. The discrete time feedback system of Figure 2.1 is said to exhibit: 
(i) an External-Finite Settling Time (E-FST) Response, or to be Externally-FST 
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stable (E-FSTS), if for any step change in the components of the input vectors 
#1, u2, all signals y{, y2 settle to a new steady state value in a finite number 
of steps, 

(ii) an Internal-Finite Settling Time (I-FST) Response, or to be Internally-FST 
stable, if for every initial state vector and any step input, all states settle to a new 
steady state in finite time. 

Note that in the above definition the values of the finite settling time and of the 
steady state are left free. The dead-beat response corresponds to the case where we 
have perfect tracking of step inputs and thus, it is a special case of the FST response. 

Let H(P, C) denote the transfer function matrix of the closed-loop feedback 
configuration from the input u = [«[, uT

2]
T to the error vector e = [e], el]J. If 

the feedback system is well formed (\l + CP\ = \l + PC| + 0) it can be shown that 

e(d) = H(P, C) u(d), H(P, C) - r i1 + PC)'1 ~P(I + CP)' 
c(i + pcyl

 (I + CP)-1] W 
In the following we assume that the feedback configuration is also well-formed 

(i.e. composite state-space model is regular, not singular). The conditions for FST 
response of the feedback system are expressed by the following results (cf. [5], [9]): 

Proposition 2.1. The feedback configuration of Figure 2.1 exhibits an external 
FST response, if and only if H(P, C) e R(w + /) x {m + l)[d], i.e. it is a polynomial matrix 
in d. 

Remark 2.1. If SP, Sc are stabilisable and detectable, then the condition that 
H(P, C) is a polynomial matrix implies that the feedback system is internally stable 
(cf. [11.]); however, the latter condition does not necessarily guarantee internal 
FST stability. 

Proposition 2.2. If SP, Sc are both controllable and observable, then the feedback 
configuration of Figure 2.1. exhibits a total (external, as well as internal) FST response, 
if and only if H(P, C) is a polynomial matrix in d. 

From the above result and using the standard results for the analysis of the feedback 
configuration (see e.g. [7], [11] we have the main result (cf. [9]): 

Theorem 2.1. Let P = ND-1 = D-1N, C = NcDc ' = Dc *Nc be R[d]-coprime 
MFD's for the plant and controller. The solution of the FSTSP exists, if and only if 

I3Dc + NNC E Jl/m[d] or DCD + NCN e <#,[tf] (2) 

Moreover, the family of all FSTS controllers is given by: 

NC = X+DR, DC=Y-NR, ReRlXm[d], | Y - N R | ^ 0 (3) 

NC = X + RD , 5C=Y-RN, ReRlXm[dll, | Y - R N | = j = 0 (4) 

where R, R are arbitrary and X, Y, X, fare appropriate R[d] matrices satisfying the 
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following Bezout identity 

L-N D] 
X 

-Y 
= I (5) 

The above family of FSTS controllers is identical to the Kucera-Bongiorno-Youla 
family. If the plant and controller are both stabilizable and detectable, then the above 
family defines the solution to External-FSTSP; when both plant and controller are 
controllable and observable, then the family defines the solution to Total-FSTSP. 

3. THE SIMULTANEOUS FSTSP: STATEMENT OF THE PROBLEM 
AND BACKGROUND RESULTS 

Let Ik = {Pt: Pt e RmX\d), i = 1, 2, ..., k} be a fc-family of discrete time control-
able and observable plants, represented by their pulse transfer function matrices P„ 
or by their R[<f]-coprime MDF's Pt = NiDf1 = i ^ N V The problem of finding 
the conditions under which there exists a controller C that stabilises in the FST 
sense all plants of the Ik family is referred to as Simultaneous Finite Settling Time 
Stabilisation Problem (S-FSTSP) and the controller that solves S-FSTSP will be 
called a rfc-S-FSTS controller. 

If C = NcDc1 = D^NceR^^d), then according to Theorem 2.1, C is a 2> 
S-FSTS controller, if and only if 

;D, 1,2, - c + $iNc = UiC®m[dl 

or equivalently 

DcDi + NcNt = 0t G %i[d\ , i = 1, 2, 

The above conditions may be expressed as 

TkL = Qu, Tk 

Dt Nt 

L = Qu = 

£/i 

uh 
oг 

LŤk =QU, Ťk в 
\DU...,DЛ 

[N 1 ? . . . ,NJ' L= [Dc, Яc], 

(6) 

(7) 

(8) 

(9) 

Qu= [0t)...,0k] 

where Tk, Tk are referred to as left-, right-plant Family matrix (L-PFM, R-PFM) 
respectively; the matrices Qu e RkmXm[d], Que Rlxkl[d~] are called Partitioned 
Unimodular and the corresponding sets will be denoted by °Ukm[d\, ^kj[d\ re­
spectively. The matrices L, L are referred to as Right, Left-Composite Representations 
(R-CR, L-CR) and characterise the corresponding MFD's. In the study of S-FSTSP 
either (8), (9) may be used. We shall refer to (8) (9) as the right, left formulation 
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of S-FSTSP respectively; in the following, we will work with the right formulation 
of S-FSTSP and all definitions and results can be translated to the left formulation 
in the obvious manner. We shall use the left formulation, whenewer (due to dimen­
sions) there are certain advantages. Some preliminary definitions and results are 
considered first. 

Remark 3.1. If / _ m, the zVS-FSTS controller represents a precompensator, 
in the standard configuration, whereas if / ^ m it represents an output feedback 
compensator. 

Definition 3.1. A matrix L= [DT, NT]TeR(m+J)xm[tf|, D_RmXm[„] with |D| =|= 0 
is called column regular (CR). If Lis CR and |D(0)j -£ 0, it will be called column 
normal (CN). Any Le RpXk[d] will be called coprime, if all its invariant polynomials 
are units of R[„]. A matrix L= [D, N] e R/x(/ + m)[cE] will be called row regular 
(RR), row normal (RN), if LT is CR, CN correspondingly. 

Remark 3.2. If L = [DT, NT]T e R(m+/)xm[„] is CR, then it defines a right MFD of 
a matrix C = ND_1 e RlXm[d~\; furthermore, C is causal is Lis CN and the MFD 
is irreducible if Lis coprime. 

The solvability of S-FSTSP may be summarised as follows: 

Remark 3.3. The S-FSTSP is solvable if and only if 

TkL=Qu (10) 

has column regular solution L for some partitioned unimodular matrix Qu. If 
S-FSTSP is solvable and Lis also column normal, then the compensator C is causal 
and S-FSTSP will be called Causal-S-FSTSP (C-S-FSTSP). 

The set of all families Ik of k, m x / systems will be denoted by S£k
ml. If Ik e S£k

ml 

and S-FSTSP is solvable then it will be called S-FSTS family and the set of all 
such families in _?* , will be denoted by £?m>l. 

Remark 3.4. For any _/c e S£ml the L-PFM Tk is uniquely defined modulo permuta­
tions of the k row blocks and premultiplication by diag [Uu ..., Uk], where Ut G 
e<%m[d], i = 1, 2, ..., k. 

A preliminary property of Tk matrices is given below. 

Proposition 3.1. Let _k e _e^ , and Tk be a L-PFM. If r = rankR(d){Tfc}, then the 
following hold true: 

(i) m = r = m + / (11) 

(ii) If {fi(d), i e r} is the set of invariant polynomials of Tk, then the fx(d) = ... 

. . . = f m ( d ) = J - _ 
Proof. Since [Dh N,} for any i is a rank m coprime matrix, part(ii) follows as well 

as that r _ m. The rest of the proof is obvious. • 
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Remark 3.5. For any ZkeJ?mJ the Smith form of any L-PFM, Tk, with r 
•• rankR ( d ) {Tk}, is of the type: 

7„. o" 

s(тk) S* 
0 0 

[ f ° ] , S* = diag {/.+ 1, ..../,} (12) 

U 

According to the properties of the Smith form we may classify the families Ik as 
shown below: 

Definition 3.2. Let Ik € ^mA and Sk be the Smith form of a L-PFM Tk, as in (12). 
The family Ik will be called: 

(i) Degenerate, if r < min {m + /, km} and strongly degenerate, if r = m; 
otherwise, if r = min {km, m + 1} it will be called nondegenerate. 

(ii) Coprime, ifj"m+i = ... = fr = 1; otherwise, it is called noncoprime. 
(Hi) Complete, if it is nondegenerate and coprime. 
(iv) Square if r = /cm = m + /, left regular if r = km <. m + 1'and right regular, 

if r = m + I <: km. 

The analysis of S-FSTSP is based on the matrix equation (10) and some useful 
notions related to the analysis of such equations are defined below. 

Definition 3.3. Let A e RpXq[d], and r = rankR(d) {A} <. min (p, q). Consider the 
Smith form decomposition of A defined by 

LAUR = [o4 o] = SA ~ A = ULSAUR (13) 

where SA is the Smith form of A, S* its r x r essential part and UL, UL= UL
 1 e 

e°Up[d], UR, UR = UR
 1 e °Uq[d]. If 0L, UR are partitioned according to the parti­

tioning of SA, i.e. 

^ = [ ^ 1 , 0R = [At,Af] ' (14) 

then A,+ eRrXp[d], Ar e RqXr[d] are called left, right-projectors respectively and 
Af e R(p~r)xp[d], Af e Rqx{q~r)[d] are called left-, right-annihilators correspond­
ingly of A. 

With the system Ik e ifm , and for the Tk L-PFM we may associate rational vector 
spaces and R[d] modules as: 

3CT = rowspanK(d) {Tfc} , 3Cc = col. spanR(d) {Tfe} (15) 

Jtr = row spanR[d] {Tk} , Jtc = col. spanR[d] {Tk} (16) 

where Xr, 3Cc are the row, column-R(d)-spaces and Jir, Jic are the row-, column-R[d] 
modules of Tk respectively. We shall denote by Jl*, Ji* the maximal R[J]-modules 
i n 9CT, 9Cc respectively. Using the same notation as in Definition 3.3, we may illustrate 
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the significance of above defined concepts by the following result obtained in [4]: 

Lemma 3.1. Let AeRpXq[d], r = rankR(d) {A} and let {A + ,Af}, {A +Af} be 
pairs of left projector, left annihilator, right projector, right annihilator of A re­
spectively. Then, 

A + A = A,, A\A = 0 , (17) 

AAr
+ = Ar, AAf = 0 (18) 

where A., Ar are basis matrices for the row, column R[d]-modules of A respectively 
and A\, Af are least degree bases for the left, right R(d)-spaces A"t{A}, -T'r{A} 
correspondingly. Furthermore, we may write 

At = Zl
AA*, Ar = A*Zr

A (1.9) 

where Af, A* are minimal basis matrices for the row, column of A and ZA, ZA are 
r x r matrices R[d]-equivalent to 5* (essential part of the Smith form of A). 

A matrix Z e RrXr[d], which is R[d]-equivalent to S* (essential part of Smith 
form) is called a Left-Right Divisor (LRD) (cf. [4]; clearly, ZA, Zl

A above are LRD's. 

Remark 3.6. For any pair (A+, A\), or (A+ , A\) defined on A, we have that 

Qi = [ ^ i ] e «Up[d] , Qr = [Ar
+, Af] e %[d] (20) 

If A has full rank, then at least one of annihilators does not exist. 

Using the above concepts we may express the solvability of matrix equations AX = 
= B in the following way [4]: 

Lemma 3.2. Let AeRpXq[d], BeRpXt[d], r = rankR(d){A} = min {p, q} and 
consider the matrix equation over R[d] 

AX = B, XeRqXt[d] (21) 

(i) For any (A+, A\) pair, there exists a pair (A + , Af) such that if 

~Xi~ = 
X = [A+\Af] ... = A r

+ X 1 + A r - X 2 (22) 

-X*-

the equation (21) is equivalent to (22) together with 

AfB = 0 (23) 

ZX! = A,+ B (24) 

where Z is a LRD of A. 
(ii) Conditions (23), (24) are necessary and sufficient for solvability of (21). If these 

conditions are satisfied, then for any Xt solving (24), there exists a family of X 
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matrices defined by (22), where X2 is an appropriate dimensions arbitrary R[d] 
matrix. 

The above Lemma provides tools for the study of S-FSTSP. Some results on the 
general case are considered first. 

Proposition 3.2. If Ek is strongly degenerate, then: 
(i) For every pair of systems Sh Sj described by (Dt, N(), (Dj, ftj), there exists 

Qtj e °Um[d] such that 

[Pj, Nj] = Ql7[D\, NJ Vi,j,ek = {1,2,...,k} (25) 

(ii) There exists a family of ^-S-FSTS controllers, which is the family that stabilises 
any pair (D{, ft,) e Ik. 

Proof, (i) If Ik is strongly degenerate, then any [D,, ft,] matrix, which by definition 
has full rank and it is coprime, defines a least degree basis matrix for the 3Cr space, 
or a basis for the maximal module Jt*. Clearly, any two bases of M* are related 
by R[d]-unimodular matrices. Part (ii) readily follows from part (i). 

Theorem 3.1. Let Zk e ^ m > ; and assume that Ik is both left regular and coprime. 
The causal S-FSTSP is always solvable on the Ik family; furthermore, if Tis a L-PFM, 
there exists a pair of right projector and annihilator (Tr

+, Tr
L) such that the family 

of solutions of S-FSTSP is given by 

L=Tr
+Qu+Tr

xX (26) 

where Qu e ^kttn[d] is an arbitrary partitioned unimodular and X an appropriate 
dimension but otherwise arbitrary R[<f]-matrix. 

Proof. If TeRkmX(m+l)[d] is a L-PFM of a left regular and coprime matrix, 
there exists U e°km + i[d] such that 

TU = [Ikm 0] = ST. (27) 

By partitioning U as U = [T+, Tr
x] according to the partitioning ST and by writing 

L = [Tr
+,Tr

x]H-=rr
+L1 + r /L 2 . (28) 

(10) is reduced to L{ = Qu with L2 arbitrary and this proves that Lis written as in 
(26). Since Qu is an arbitrary partitioned unimodular and X also arbitrarily selected, 
it is readily seen that there always exists a pair (Qu, X) such that L is column normal 
and thus column regular. • 

Remark 3.7. Lit U = [T+, Tr
L] be the pair defined in Theorem 3.1 and partition 

U(0) 
N 

1/(0) = . . . , N€Jr*<*+l)=|- 0 (29) 
N' 
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uт = 
*m+I 

0 
гj 

For every pair of partitioned unimodular Qu and arbitrary X in (26) such that 

The S-FSTSP defined on the left regular, coprime Ik, has a causal solution. 

We consider now the case of right regular families, for which we may state the 
following result: 

Theorem 3.2. Let Ik e ££mJ and assume that Ik is right regular and coprime. If T 
is a L-PFM, (Tt

+, Tx) a pair of left-projector, -annihilator of Tand fj+ is first m-row 
block of Tj+, then necessary and sufficient condition for the causal S-FSTSP to be 
solvable is that there exists Qu e °Ukm[d\ such that 

TtQu = 0 (31) 

|T. + (0)Q u (0) |*0 (32) 

If the above conditions are satisfied, then the solution is given by 

L=Tl
+Qu. (33) 

Proof. Since Tis right regular and coprime, there exists U e °Ukm[d\ such that T 
is reduced to its Smith form as: 

-[?] (34) 

By partitioning U as shown above it is clear that (10) is equivalent (after premulti-
plication by U) to 

[Sh-lSl"-.*?. 
It is clear from (35) that (32) is the condition that guarantees that L is CN and thus 
also DR. • 

Theorems 3.1, 3.2 cover the generic cases where either km < m + I, or where 
km > m + I, since nondegeneracy and coprimeness are generic properties. Using 
Lemma 3.2 we may state the conditions characterising the solvability conditions 
for the general case. 

Theorem 3.3. Let Zk e J2*fl, T be a L-PFM, rankK(d) (T) . r. For any (T,+ , T,1) 
pair, there exists a pair (Tr

+, Tr
x) such that if 

L= [Tr
+, Tr

x]|^ = Tr
+L: + T/L. (36) 

[_L'2_ 

then S-FSTSP is solvable if an only if there exist Qu e
 <%km[d~] such that 

TtQu = 0 (37) 

ZL , . T;
+Q„ (38) 
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where Z is a LRD of T If (37), (38) are satisfied for some Qu, then the family of 
solutions is given by (36), where L2 is an arbitrary R[d] matrix of appropriate 
dimensions. 

The proof follows from Lemma 3.2, whereas the existence of column normal and 
column regular solutions may be argued as in Remark 3.7. 

Remark 3.8. If ^T,{T} =# {0}, condition (37) is present and expresses the fact 
that for solvability of S-FSTSP, it is necessary that the R(d)-column space 3Cc of T 
contains vectors which form a partitioned unimodular matrix. This alternative 
formulation of (37) is also valid, when also J^^T) = {0}. We shall refer to this 
condition as the space structural condition (SSC) of S-FSTSP. 

Remark 3.9. Since Z, Lx in (38) have dimensions r x r, r x m respectively and 
r _• m, the solvability of (38) is not a trivial divisor condition, unless r = m. Note, 
that if r — m, then Ik is strongly degenerate and by Proposition 3.2 it follows that 
Z is R[c/]-unimodular. Condition (38) is thus an essential condition when r > m 
and shall refer to it as the extended-divisor condition (EDC) of S-FSTSP. 

Remark 3.10. If the family Ik is degenerate, but coprime then any LRD Z of Tis 
R[d]-unimodular and the space structural condition is the only condition which 
has to be tested. 

The conditions (37) (38) may be combined to give the following alternative formula­
tion of the problem. 

Corollary 3.1. Let Ik e $emA, Tbe a L-PFM, r = r a n k ^ {T}, r £ min {km, m + 
+ /}. The S-FSTSP is solvable, if and only if for any pairs ( if , T,+), (Tr\ Tr

+) and 
associated LRD Z, the following conditions are satisfied: 
(i) There exists a solution X e R<-km+')*m[d] of the equation 

z - T , + 

0 T,1 0 , X = Quє%m[d]. (39) 

Qu 

(ii) For any Lv Qu solution of (39), there exists L2 of appropriate dimensions such 
that 

L=Tr

+Lx + Tr

LL2 (40) 

is column regular. 

Equation (39) reduces the overall problem to an investigation of existence of 
a matrix, which is partially partitioned unimodular and has its columns from a given 
rational vector space. It is worth pointing out that if km +- m + I, then generically, 
the families of S£ml are nondegenerate and coprime. The space structural condition 
thus becomes the most significant. For special families of systems, this condition 
takes a rather simple form that allows the derivation of testable solvability conditions. 
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4. THE S-FSTSP ON FAMILIES OF VECTOR PLANTS 

The analysis so far has shown that if km < m + I, then for a generic family Ik, 
the S-FSTSP is solvable, whereas if km > m + I, and the family Ik is once more 
generic, then solvability of S-FSTSP is reduced to a testing of the space-structural 
condition. The general problem associated with SSC, that is finding the conditions 
for the existence of partitioned unimodular matrices in a given rational vector space, 
is still open; however, this problem takes a rather simple form in certain special cases. 
From the formulation of S-FSTSP we note: 

Remark 4.1. For families S£\ x and iP*f l the solvability of S-FSTSP is reduced 
to the study of the following equations: 
(i) S£\A families: From (8) we have: 

Tkl=qu, TkERk^l+l)[d], / 6 R ( / + 1 ) [ J ] , queRk (41) 

where qT = [cly ..., ck], ct #= 0, for all i = 1, 2, ..., k. In this case, / is the R-CR 
of the vector precompensator c = ncd~x. 

(ii) S£)n t families: From (9) we have: 

Tfk = qT
u, TkeR(m+')xk[d], 7 e R l x ( m + 1 ) [ J ] , queRk (42) 

where qT = [cu ..., ck], ct 4= 0 for all i = 1, 2, ..., k. In this case, /T is the 
L-CR of the vector feedback compensator cT = d~lnc. 

The families S£\x, S£]nX contain systems with either one output, or one input 
and thus they have vector transfer functions; We shall refer to such families as 
families of vector plants. It is clear, that the study of S-FSTSP on such families is 
simpler, since the partitioned unimodular matrices become constant vectors with all 
components nonzero; we shall denote by Ro, all vectors of Rk with all coordinates 
nonzero. In the following, the case of many-input single output (MISO) families 
is considered, whereas the results for the single input many output (SIMO) case are 
similar. The case of left regular families has already been discussed. Since we want to 
explore space structure condition we shall assume throughout this section that the 
families are always coprime and nondegenerate. 

Theorem 4.1. Let Ik e S£\ >t be a right regular coprime family and assume that 
k > k + I. If T is a L-PFM and (T;

+, T,1) a pair of left projector, annihilator as­
sociated with Tand tT is the first row of T,+ , then the causal S-FSTSP is solvable 
on Ik if and only if there exists a c e Ro such that 

T/-c = 0 (43) 

tj(0) c * 0 (44) 

If the above conditions are satisfied, then the solution is given by 

/ = [ í ] = ~+< («) 
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This result follows from Theorem 3.2. The significance of condition (43) is emphasi­
sed by the following result. 

Corollary 4.1. Let Iks&\>x, T be a L-PFM and assume that .^,{T} * {0}. 
Necessary conditions for S-FSTSP to be solvable on Ik is that either of the following 
equivalent conditions hold true: 

(i) If Jtc is the column module of T, then Jtc has at least a zero dynamical index; 
furthermore, id J?c is the submodule characterised by the zero dynamical 
indices, then Jfc n R0 #= 0. 

(ii) If Tftd] = T0 + dT1+...+ dnTn and T - [TT, TT, ..., Tn
T]T, then 

J/r{f) n R0 4= 0. 

(iii) If Ti(d) = \tx(d), ..., tk(d)~\, then the set {tt(d), i = 1, 2, ..., k) is completely 
dependent over R (i.e. no coefficient in the relationship is zero). 

Proof. Note that T^(d) c = 0 is a necessary condition for solvability of S-FSTSP, 
when J/"i{T) #= {0}. Clearly conditions (ii) and (iii) express the T^(d) c = 0 condition. 
Condition (i) is also obvious and expresses the formulation of the problem as in (4.1). 

Note that part (i), or (ii) also provide tools for the computation of the vectors 
c e R0 which satisfy the space structure condition. 

Remark 4.2. If N is a basis matrix for J/"r{t), then the space structure condition 
is satisfied, if and only if the matrix N has no zero rows. 

5. CONCLUSIONS 

The S-FSTSP has been addressed and necessary and sufficient conditions for its 
solvability have bsen given. It has besn shown that for the left regular and coprime 
families a solution always exists, whereas for the left singular case of plant families 
the space structure condition is the key one. For the case of families of vector plants 
the latter condition is readily testable using standard linear algebra tools. The 
derivation of testable criteria for the space structure condition in the general case is 
under investigation. 

(Received December 13, 1990.) 
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