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K Y B E R N E T I K A - V O L U M E 20 (1984), N U M B E R 

DUAL METHOD FOR SOLVING A SPECIAL PROBLEM 
OF QUADRATIC PROGRAMMING AS A SUBPROBLEM 
AT LINEARLY CONSTRAINED NONLINEAR MINIMAX 
APPROXIMATION 

LADISLAV LUKSAN 

The paper describes the dual method for solving a special problem of quadratic programming 
as a subproblem at linearly constrained nonlinear minimax approximation. Complete algorithm 
of the dual method is presented and its convergence after a finite number of steps is proved. 

1. INTRODUCTION 

This paper refers to a special problem of quadratic programming which occurs 
as a subproblem at linearly constrained nonlinear minimax approximation where 
a point x* e Rn is sought such that 

{ E(x*) = min ( max j;(x)) 
XEL„ ieMt 

where 
L„ = {x e Rn: afx g bh i e M2}_ 

In (1.1), f,(x), i e Mj are real-valued functions defined in the n-dimensional vector 
space Rn with continuous second-order derivatives and Mt u M 2 — {1, ..., m}, 
M, n M2 = 0. Recently the problem (1.1) has been attracting a considerable atten
tion. To solve this problem, several approaches have been developed, especially 
the product form of variable metric methods with generalized reduced gradients [4], 
the methods of recursive linear programming [6] and the methods of recursive 
quadratic programming [3]. 

The methods of recursive quadratic programming for solving the problems of 
minimax approximation were developed in analogy with their original application 
in the field of nonlinear programming, where we seek a pair (x*, z*)eNn + l such 
that 

z* = min z 

where 
!V„ + i = {{x, z) e R„ + 1:/,.(x) ^ z, i e M , ; a]x £ bh i e M2} 
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Applying the method of recursive quadratic programming [7] to the problem (1.2) 
we obtain one of the methods described in [3]. This method can be described roughly 
in the following way: 

Step 1: We choose an initial feasible point x e L„ and an initial symmetric positive 
definite matrix G. We compute j ; = fi(x),ieM1, at = gi(x),ieM1 and 
F = F(x) = maxji(x) («,•(*) is the gradient ofj;(x) at the point x e R„). 

Step 2: We find the pair (s, z)eR„ + 1 which is the solution of the quadratic programm
ing problem (1.3). 

Step 3: If |s | | ^ £ where £ is a small enough positive number, the computation is ter
minated else we find a steplength a, 0 < a < 1, for which 

F(x + as) <L F(x) - rjasTGs 

where 0 < lr\ < 1. Taking x+ = x + as, we compute j + = j , ( x + ) , ieMu 

a+ = gt(x
+), ieM1 and F+ = F(x+) = max/,{x+). 

isM, 

Step 4: We update the matrix G to make it positive definite and as good approximate 
as possible to the Hessian matrix of Lagrangian function for (1.2). Usually 
this purpose is attained by means of quasi-Newton corrections determined 
by using the differences x+ — x, a+ — at, i e M1 and Lagrange multipliers 
for quadratic programming problem (1.3). 

Step 5: We set x = x+,f( = j + , i e Mu at = a+,ie Mu F = F+ and go to Step 2. 

The most important step of this method is the solution of quadratic programming 
subproblem in which we seek a pair (s*, z*) e R„+1 such that 

(p(s*, z*) = min (p(s, z) 
(s,z)eL„ + l 

where 
(-•3) \ cp(s, z) = ^sTGs + z 

and 
Ln + 1 = {(s, z) e Rn + 1: j ; + ajs <, etz , i e M1 u M2} 

and wherej ; = ft(x), et = 1 for i e Mx and j ; = a]x — bh et = 0 for i e M2. 

It is apparent that (1.3) is a quadratic programming problem with a singular 
positive semidefinite matrix. Effective methods solving this problem require non-
singularity, however, owing to very specific form of the matrix in our case, it is 
possible to develop methods overcoming the singularity drawback. In this paper, 
we are going to present one of these methods, which is based on the solution of dual 
quadratic programming problem. 

The fact that the matrix G is positive definite implies that the problem (1.3) is 
convex and therefore we may apply the duality theory to it [ l ] . Thus we obtain 
a dual quadratic programming problem, where we seek a vector u* e Rm such that 
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(1.4) 

\jj(u*) = min \ji(u) 
UEL,„ 

v/here 

./'(«) = \uTATHAu - fTu 

and 

Lm = {ueRm:eTu - 1, M =- 0} 

Here H = G~x, A = [au ..., am] is a matrix the columns of which are vectors ah 

ieM1 u M 2 and furthermore 

И j = rjr 
J-j 

where j ; = L(x), ei = 1 for «' e Mt and j ; = aTx - bh e ; = 0 for i e M2, The 

solution of the problem (1.3) can be obtained from the solution of the problem 

(1.4) by means of 

( s* = -HAu* 

(1.5) \ and 

( z* =fu* - (u*)T ATHAu* 

as it follows from the theory of duality. The vector M* which is the solution of (1.4) 

is also the optimal vector of Lagrange multipliers for (1.3). 

The problem (1.4) is a convex one. Hence the vector u* e Rm is the solution of 

(1.4) if and only if Kuhn-Tucker conditions are valid (see [1]), i.e. if and only if 

f eTu* = 1 
(1.6) \ 

I u* ^ 0 

and there exists a number z* such that 

f v* = ATHAu* - f + z*e > 0 
(1-7) 1 
V ; I (v*)T u* = 0 
The vector v* is the vector of Lagrange multipliers for (1.4). Conditions (1.6) and 

(1.7) together imply that z* in (1.7) is identical with the z* in (1.5). This in turn 

implies that v* is, at the same time, the vector of values of constraints of (1.3). 

The dual method for solving (1.3) that is under examination in this paper is essen

tially the method of active constraints applied to (1.4) and is similar to the dual 

method described in [5]. Main difference between the method described in this 

paper and the method [5], which is conditioned by the linear constraints, consists 

in the fact, that (1.3) need not have any feasible solution. Further advantage of the 

new method as compared with the method [5] consists in a combination of non-

singular and singular cases by introducing an artificial parameter n > 0. This im

provement considerable simplifies the algorithm, which becomes more compact. 

The algorithm described in this paper was verified in conjunction with the method 

for linearly constrained nonlinear minimax approximation. The results obtained will 

be presented in a separate paper [9]. 
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2. ANALYSIS OF THE DUAL METHOD 

Let M = M, u M2 and / c M. Let D(l) denotes the problem which results 
if we substitute / for M in the problem (1.4). Let P(l) has the similar meaning with 
respect to the problem (1.3). The problem D(I) is dual to the problem P(l). 

Let the Lagrange multipliers uh i el be the solution of the problem D(l) and the 
pair (s, z) e R„ + 1 be the solution of the problem P(l). In order to simplify the nota
tion we can introduce symbols u denoting the vector containing all uh i e / , /denot ing 
the vector of/,-, iel, e denoting the vector of eh iel and A denoting the matrix 
containing a,, iel as its columns. Obviously et = 1 for i e Mx and et = 0 for 
ieM2. We assume troughout this section that e + 0, i.e. I n Mt + 0 . Denote 

A = 

[-*]• ' - [M 
where H is the symmetric positive definite matrix as in (1.4) and where \i > 0 is some 
positive number. We assume troughout this section that A has linearly independent 
columns. In this case ATHA is positive definite and we can define the matrices 

C = ( A W ) " 1 = (ATHA + nee*)'1 

Q = H - HACATH 

and the vector 
p = Ce 

Clearly QA = 0 and QGQ = Q, where G = H " 1 . 

(2.1) 

Definition 2.1. We say that Lagrange multipliers uh iel are a basic solution 
of the problem D(l) and that the pair (s, z) e R„ + 1 is a basic solution of the problem 
P(I) if vt = ajHAu - ft + zet = 0 for all indices i e I. 

Lemma 2.L Let Lagrange multipliers uh i e I be a basic solution of the problem D(I) 
and let the pair (s, z) e R„ + j be a basic solution of the problem P(l). Then 

(2.2) 

PTf-í 
z = џ+ í ^ — 

P e 

u = Cf - (z - џ)p 

s = -HAu 
Proof. Since vt = 0 for all indices iel, we have ATHAu - / + ze = 0 by (1.7). 

Applying (1.6) we obtain 

ATHAu -f+(z-n)e = 0 

so that u = Cf - (z - fj) p. Furthermore 1 = eTu = pTf - (z - p) pre by (1.6), 
which means z = fi + (pTf - \)\pTe. Mutual duality of D(l) and P(l) brings s = 
= -HAu (see (1.5)). • 
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The formulae (2.2) may be formally applied to an arbitrary subset I cz M = 
= M j U M2 . However, a situation can arise in which M; ^ 0 does not hold for all 
indices i e I. In this case there is no basic solution of the problem D(l). Each problem 
D(I), where I n M± = {1} is a single-element subset of M 1 ; has a basic solution, 
for ul = 1 holds of necessity by (1.6). 

Suppose Lagrange multipliers uh iel are a basic solution of the problem D(l) 
and the pair (s, z) e R„ + 1 is a basic solution of the problem P(l). If vt = arHAu — 
- j ; + ze; 5: 0 for all indices i e M\I, then the vector M* = [MT, 0 ] T is the solution 
of the problem (1.4) (assuming a suitable ordering of indices) and the pair (s*, z*) = 
= (s, z) is the solution of the problem (1.3). In the other case there exists an index 
ke M\I such that vk = aTHAu - fk + zek < 0, which suggests that the index k 
has to be added to I. 

Let us set I+ = I u {k}. Since the problem D(l+) need not have any basic solution, 
we want to find a subset I cz I+, kel, such that the problem D(l) may have a basic 
solution and, at the same time, (p(s,z) < q>(s, z), where (s,z)e Rn + 1 is a basic 
solution of the problem P(I) and <p(s, z) is defined by (1.3). 

Let DX(I+) be the problem we obtain from D(l+) after substituting L(A) = f, + 
+ (1 — X)vh iel+ for j ; , iel+ and let Px(l

+) have an analogical meaning with 
respect to P(I+). Let us suppose 0 <, X ^ 1. Let Lagrange multipliers u,(A), f e / + 

be the solution of the problem Dx(l
+) and let (s(X), z(Xj) e Rn+1 be the solution 

of the problem Px(l
+). Let u(X) denote the vector containing ut(X), i e L 

Lagrange multipliers M ;(0) = uh iel and uk(0) = 0 are a basic solution of the 
problem D0(l

+). We want to find the maximum value of the parameter X such that 
Lagrange multipliers ut(X), iel+ are a basic solution of the problem Dx(l

+). 

Lemma 2.2. Suppose Lagrange multipliers M ;(0), i el+, M;(/1), i el+ and the pairs 
(s(0), z(0))e R„ + 1, (s(X),z(X))e Rn + 1 are basic solutions of the problems D0(I

+), 
DX(I+) and P 0 ( / + ) , PA(/+) respectively. Let us denote at = [aT, - efc]

T and introduce 

qk = CArHak = CATHak + fxekp 

h = ek - eTqk 

yk = Pk/p
Te 

$k = aT
kQak = aJ

kH(ak - Aqk) + fiekPk 

(2.3) 

assuming ßkyk 

í 

+ àk + 0. Then 

u(X) = м(0) - a(qk + ykp) 

(2-4) щ(X) = uk(0) + a 

z(X) = z(0) + ayk 

where 

(2.5) a = X V« 
a «. i я Pkyk + K 



Proof. Using the definition of a basic solution we can write 

\ATHl, FHaJ \u(X) 1 = [ / - (z(X) - n) e 1 
\aTHl, aT

kHak\ \uk(X)\ [fk + (\-X)vk- (z(X) - /.) ekj 

(see also the proof of Lemma 2.1). Subtracting these equations for various values 
of the parameter A, we get the equation 

\ATHA, A^Hakl \u(X) - «(0) 1 = - \(z(X) - z(0)) e 1 
\aTHA, aTHak J \uk(X) - uk(0)j \kvk + (z(X) - z(0)) ek\ 

which has the solution (2.4) with a given by (2.5) (see also [5], proof of Lemma 2.2). 

• 
Lemma 2.3. Let the assumptions of Lemma 2.2 hold. Then 

(2.6) <p(s(X), z(Xj) = cp(s(0), z(O)) + ia(pkyk + 8k) (uk(X) + uk(0)) 

Proof. Using (1.5) and (2.4) we get 

(2.7) s(X) - s(0) = -HA(u(X) - «(0)) - Hak(uk(X) - uk(0)) = 

= aHA(qk + ykp) - aHak 

and 

(2.8) s(0)= -HAu(0)-Hakuk(0) 

Considering (2.1) we obtain 

ATHAqk = PHlqk - fieerqk = ATHak + p&e 

and 
ATHAp = ATHA~p - neeTp = (1 - /ieTp) e 

which, applying (2.3), yields 

(2.9) ATHA(qk + ykp) = ATHak + yke 

Now, using (2.3) and (2.7)-(2.9), we can write 

(s(X) - s(0))T G s(0) = -a((qk + 7kp)T AT - aT
k) HA «(0) -

- *((qk + ykp)T AT - a[) Hak uk(0) = -a(aT
kHA + yke

T - ajHA) «(0) -

- a(fiekpk - 5k + yke
Tqk - nekyke

Tp) uk(0) = 

= -ayk + a(ekyk - eTqkyk + dk) uk(0) = 

= -ayk + a(pkyk + Sk) uk(0) 

and 

(S(A) - s(0))T G(s(X) - 5(0)) = a2((qk + ykPf AT - aT) H(A(qk + ykp) + ak) = 

= a2(aTHA + yke
T) (qk + ykp) + a2aT

kHak - 2a2aT
kHA(qk + ykp) = 

= a2(yke
Tqk + pkyk) + a2(5k - nejk - fke

Tqk + p.ekyke
Tp) = a2(pk7k + dk) 
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which, applying (1.3), yields 

<p(s(X), z(X)) = cp(s(0), z(0)) + (S(X) - s(0))T G s(0) + 

+ l(s(X) - s(0)f G(s(X) ~ 5(0)) + (z(X) - z(0)) = 

= ep(s(0), z(0)) - a.yk + a(j3fc7fc + 5k) uk(0) + \a(pkyk + 5k) (uk(X) -

- uk(0)) + ayk = <p«0), z(0)) + \a(f$kyk + 8k) (uk(X) + «fc(0)) 

and the lemma is proved. D 

The maximum value of the parameter X, for which the problem Dj^I*) has a basic 
solution, is determined by the condition u(X) >. 0. Let us write 

(2.10) 
hyk + K 

uj(0) . ( щ(0) 
a, = ~-í— = min I  

ici Vis; + ykPi ikj + ykPj 

where I = {i el, qki + ykpt > 0}, qki is the ith component of the vector qk and pt 

is the ith component of the vector p. Let us set a = min (ocu a2). Then the maximum 
value X0 of the parameter X is defined as X0 = xjau 

When a = at (i.e. X0 = 1), Lagrange multipliers ut(X0), i el+ are a basic solution 
of the problem D(I+) and we can set I = I+. In this case we can construct matrices 
A = [A , afc] and 

(2.11) C = r ^ ' ^ C + ^ ^ 

(for the derivation of this formula see for instance [2]). We show that the assumption 
PkVk + <>k + 0 implies the inequality 5k + 0, so that the formula (2.11) is valid. 
Assume on the contrary that 8k = 0. Then there exists a nonzero vector w such that 
afc = Aw (see (2.3)), i.e. 

ak = Aw 

ek = erw 

Hence we obtain by (2.1) and (2.3) 

pk-ek- erqk = erw - eTClTHAw = eTw - eTw = 0 

so that <5fc + fikyk = 0, which is in contradiction with the assumption 5k + pkyk + 0. 
When a + a! (i.e. X0 < 1), we have Uj(X0) = 0 by (210). Let us set Ix = I\{j}, 

I+ - i+ \ {j} ; and «$*' = ( 1 - A0) u;, i el+. Let DA(/+) denotes the problem resulting 
from the problem D(l+) after substituting ft(X) = ft + (1 - X)v\1\ iel+ (where 
0 g A g 1) for / , iel+. Lagrange multipliers M*-1)(0) = ut(X0), iel+ are a basic 
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solution of the problem D0(I
+). Again we want to find the maximum value of the 

parameter X, for which Lagrange multipliers u^\X), i el+ are a basic solution of the 
problem DX(I+). On this purpose we can apply the preceding process (Lemma 2.2 
and Lemma 2.3), with the exception that instead of values referring to the problem 
D(I+) we use values referring to the problem D(I+). Especially, the matrices A, C 
are to be replaced with the matrices Au Ct respectively such that A1 = AU), which 
is the matrix A with the jth column removed, and 

(2.12) Ci = C07) - ~ L l W J 
CJJ 

where CUJ) results from C by removing the jth row and the ;'th column, C[p results 
from the jth column of C by removing the element Cu. (For the derivation of this 
formula see for instance [2]). 

Suppose X(
0

X) = a(1)jaii) is the maximum value of the parameter X, for which the 
problem Dx(l

 + ) has a basic solution. If X(
0

X) = 1, we set J = I+, else we repeat all the 
process. In this manner we obtain a sequence 1+, ...,1+ of subsets of the set 1 +. 
The cardinality of each of these subsets is by one element less than the cardinality 
of its predecessor. But the set I+ is finite, I+ n Ml 4= 0 and the problem D(I+) 
has a basic solution provided I+ n M, is a single-element subset of M«, therefore 
we attain, after a finite number of steps, a subset I+ c I + , kel+ such that the prob
lem D(I + ) has a basic solution. Thus we can set J = / + . 

So far we have been treating the case fikyk + 3k 4= 0. Now let suppose fikyk + Sk = 0 
In this case, there exists no nonzero value of the parameter X such that the problem 
DX(I+) has a basic solution. On the other side, the problem D0(I

+) has several basic 
solutions that are defined by the equations 

(213\ | MW = M(°) - <«* + V*P) 

1 uk(a) = uk(0) + a 

The condition fikyk + Sk = 0 is valid only if fik = 0, yk = 0 and dk = 0 (this is 
implied by the fact that C is positive definite, Q is positive semidefinite, and by (2.3)). 
Therefore z(a) = z(0) (see (2.4)) and s(a) = s(0) (see (2.7)) since Sk = 0 implies 
Qak = Hak - Rlqk = 0 which gives Hak - HAqk = 0. The problem P0(l

+) has 
a unique solution (s(a), z(a)) = (s(0), z(0)) so that cp(s(a), z(aj) = cp(s(0), z(0)) for 
an arbitrary value of the parameter a. 

Lagrange multipliers i/,(a), iel+ are a basic solution of the problem D0(I
+) 

only if u(a) 2: 0. When I = {i e I, qki + ykPi > 0} + 0, there exists a finite value a2 

in (2.10). When we choose a = a2, then Uj(a) = 0 holds for some index jel. Let us 
set It = I \ {j}, I+ = I+ \ {j}, and v\r> = vh i e I + . Let DX(I+) denotes the problem 
D(I+) after substituting f-(X) = / f + (1 - X) vY\ iel+ (where 0 = X = 1) for / , , 
iel+. Then Lagrange multipliers u\l)(0) = ut(a), iel+ are a basic solution of the 
problem D0(I

+). Thus we can proceed in the same way as we did in the case where 
hlk + <5* * 0 and a #= a1; only for pkyk + dk = 0 we set formally at = oo in (2.10). 
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When k e M l 5 we have 7 4= 0 since (2.3) implies 

e\qk + ykP) = eTqk + --~^-~ eT p - ek - 1 
eTp 

Therefore there exists at least one index i e I such that qki + ykpt > 0. When k e M 2 

and 7 = 0, the problem P(l+) has no solution. 

Lemma 2.4. Let the pair (s(0), z(0))eR„ + 1 be a basic solution of the problem 
P0(I

+). Let ftkyt + dk = 0 and aT s(0) + fk - z(0) ek > 0. If fc e M 2 and 7 = 0, 
where 7 is the same set as in (2.10), the problem P(I+) has no solution. 

Proof. We have aj s(0) + fk - z(0) e, > 0 and AT s(0) +f~ z(0) e = 0 by the 
assumption. Let the pair (s +, z+) e R„+1 be a solution of the problem P(I+) (it need 
not be a basic solution). Then aTs+ + fk — z+ek = 0 and ATs+ + / - z + e < 0 
must hold. Since k e M2, we have ek = 0, so that 

aT
k(s

+ - s(0)) < 0 

AT(s+ - s(0)) - (z+ - z(0)) e < 0 

Since fikyk + dk = 0, we have /?* = 0, yk = 0 and 5k = 0, which by (2.3) implies 
Qak = 7?ak — HAqk = 0 and therefore Hak — HAqk — 0. Since the matrix H is 
positive definite, we get ak — Aqk, so that 

(2.14a) q\AT(s+ - s(0)) < 0 

(2.14b) AT(s+ - s ( 0 ) ) < ( z + - z ( 0 ) ) e 

Since 7 = 0 and yk = 0, the inequalities qki < 0 must hold for all indices iel. 
Furthermore fik = ek - eTqk = 0, so that eTqk - ek = 0. Thus we get 

g T A T ( s + - s ( 0 ) ) ^ ( z + - z ( 0 ) ) g T
e = 0 

from (2.14b), which is in contradiction with (2.14a). Therefore the problem P(I+) 
has no solution. • 

We have shown that either the problem P(I+) has no solution or we can 
construct a subset I <=: I + , kel such that the problem (P(7) has a basic solution. 
It remains to prove that <p(s, z) > <p(s, z). 

Theorem 2.1. Suppose (s, z)e Rn+i is the solution of the problem P(l) and (s, z) 6 
6 R„ + 1 is the solution of the problem P(I). Then (p(s, z) > <p(s, z). 

Proof. The set 7 is obtained after a finite number of steps, in which we construct 
subsets 7 = i + c : . . . c : / + c : / + . Since all steps are formally equivalent, it suffices 
to analyze the first step. Let (s(0), z(0)) e R„ + 1 be the solution of the problem R0(I

+) 
and (s(a), z(a)) e R„+1 be the solution of the problem P0(I+)- Two cases are possible. 
If hyk + <5* = 0, then s(a) = s(0) and z(a) = z(0) so that q>(s(a), z(a)) = cp(s(0), 
z(0)). If pkyk + 5k 4= 0, we get, by (2.4) and (2.6), 
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<p(s(a), -(«)) = <3»(S(0), z(0)) + ±a(pkyk + Sk) (2 uk(0) + a) 

But pkyk + 5k > 0 (because pkyk + 8k = 0 and pkyk + 8k # 0), uk(0) = 0, and 
a = 0, so that q>(s(a), z(a)) = cp(s(0), z(0)) and <p(s(a), z(a)) = <p(s(0), z(0)) holds 
if and only if a = 0. Combining both cases into one, we obtain 

(2.15a) cp(a) = <p(0) 

(2.15b) cp(a) = 9 ( 0 ) < = > s(a) = s(0), z(a) = z(0) 

where cp(a) = <p(s(a), z(a)) and <p(0) = <p(s(0), z(0)). Now we are proving that 
<p(s, z) > cp(s, z). The validity of (2.15a) in each step yields <p(s, z) = <p(s, z). Now 
let us suppose cp(s, z) = cp(s, z). Since (2.15b) is valid in each step, we have s = s 
and z — z. Therefore 

h = zek ~ ajs - fk = zek - a~s - fk = vk < 0 

which is a contradiction, for k el and (s, z) e R n + 1 is a basic solution of the problem 
P(I), and consequently, vk = 0 . • 

3. ALGORITHM OF THE DUAL METHOD 

In Section 2, we have described the construction of the major step of the dual 
method for solving the problem (1.3). Now we are describing the algorithm that 
contains these major steps. 

For improving the stability of our algorithm, we use the triangular decomposition 
RTR = A^HA instead of the inversion C = (A^-fifA")-1. The upper triangular matrix 
R is computed recursively. Let (R+)T R+ = (Z+)T Hl+, where 1+ = [J, ak~. Then 

(3.1) 

R+ = 

where 
m 

RTr1 = ATHak + \ieke 

r\ = a\Hak + \ie\ - r\r^_ 

(see for instance [8]). After deleting the index j from the set /, we need find the de
composition (R-)T R- = (A~-)T HA~-, where A~ results from the matrix A after 
deleting the column ctj. Let P be a permutation matrix which transfers the column a} 

of the matrix 1 to the last position so that RP is an upper Hessenberg matrix. Let Q 
be an orthogonal matrix such that QRP = R, where R is an upper triangular matrix. 
Then RTR = PTRTQTQRP = PTRTRP, so that 

~R~, ^1 
0, ř2\ (3.2) and 

(R-ŢR- =(Ã-)TйÃ-
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The number p. > 0 in (2.1) must be taken to guarantee the positive definiteness 
of the matrix ATHA. Most advantageous choice of the number p. > 0 is that, which 
makes the matrix ArHA~ optimally conditioned. However, it is computationally 
time-consuming. Therefore we use simple choice /J. = 1 in the algorithm. 

Algorithm 3.1. 

Step 1: Choose arbitrarily an index keMx and set « = 1. 

Step 2: Set I := {k}, u := [1]. e := [1], A : = [ a j , R := U(alHak + A*)] and 
calculate z : = fk — aTHak. 

Step 3: Calculate s := —HAu and 

vk := zek-fk- aT
ks = min (ze£ - j , - aTs) 

ieM\I 

where j ; = ft(x), et = 1 for i e Mx and j ; = aTx — for, e; = 0 for i e M 2 . 
If ut = 0, terminate computation ((s, z) e R„+1 is the solution of the problem 
(1.3)). If vk < 0, set uk : = 0 and go to Step 4. 

Step 4: Determine the vector p as a solution of the equation RTRp = e and the 
vector qk as a solution of the equation RTRqk = ATHak + \xeke. Calculate 
h := e* - eTfe 7* :«- At/i^e and 8k := r\ where r | is given by (3.1). If 
Pk7k + $k — 0» s e t «i : = oo else set 

Äľќ + ðk 

Determine the setľ : = {i єl : qki + ykpi > 0}. If I = 0, set a 2 : = oo else set 

U: . I U; 
a2 : = = min 9kj + ykPj & \qu + ykVu 

Set a : = min(a t , a 2 ). If a = oo, terminate computation (the problem (1.3) 
has no solution). In the opposite case calculate u : = u — a(qk + ykp), 
uk : = uk + a, z : = z + ayk and vk : = (1 — a/ax) t>t. If a = a x go to Step 5. 
If a 4= at go to Step 6. 

Step 5: Set I : = 7 u {fc}, u : = [«T, u , ] T , e : = [eT, ekf, A : = [A, ak] and R : = R + 

where R+ is the upper triangular matrix determined from (3.1). Go to Step 3. 

Step 6: Set J : = / \ { / } , u:=uU), e : = e U ) and A : = A0), where u 0 ) and e 0 ) 

result from u and e after deleting the elements Uj and ej respectively and 
where AU) results from A after deleting the column aj. Set JR : = R~ where 
i?" is the upper triangular matrix determined from (3.2). If I n Mi 4= 0 go 
to Step 4. If/ n M t = 0 then set z : = z — vk and go to Step 5. 

Step 6 of Algorithm 3.1 contains a test on / n Ml = 0. We show that this case 
arises only if k e Mu so that, after applying Step 5, we get / n Mt =t= 0. 
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Lemma 3.1. Let the assumptions of Lemma 2.2 hold. Let k e M2 and let J n Mt = 
= {j} be a single-element subset of Mv Then Uj(X) = w/0). 

Proof. The vector e contains only one nonzero element e,- = 1. Thus, applying 
(2.3), we get 

<lk] + ykPj = eTqk + yke
Tp = eTqk + ((ek - erqk)je

Tp) eTp = ek = 0 

since k e M2 implies ek = 0. Using (2.4) we obtain Uj(X) = Uj(0). • 

The case / n Mx = 0 and J n M2 = 0 can also occurs in Step 6 of Algorithm 
3.1. If it is the case, we have I = $ and we must work formally with empty vectors 
and empty matrices. 

Now we are proving the convergence of the dual method for solving the problem 
(1.3). 

Theorem 3.1. Algorithm 3.1 finds the solution of the problem (1.3) after a finite 
number of steps or it shows, after a finite number of steps, that the problem (1.3) 
has no solution. 

Proof. During the execution of Algorithm 3+ we construct a sequence of subsets 
I j c M, j = 0. Theorem 2.1 assures the validity of <p(iij, Zj) > (p(sj-i, Zj-i), j = 1 
(the pair (s,, Zj)eRn + 1 is a basic solution of the problem P(Ij)). Hence the sets 
I j c M, j = 0 must be distinct. Since M is finite, the sequence of mutually distinct 
subsets Ij c M, j = 0 is also finite. Therefore, Algorithm 3.1 must terminate after 
a finite number of steps either in Step 3 (the solution of (1.3) is found) or in Step 4 
(the problem (1.3) has no solution). • 

4. CONCLUSION 

Algorithm 3.1 was implemented and tested in the connection with methods for 
linearly constrained nonlinear minimax approximation. Successful results obtained 
will be presented in the forthcoming paper [9]. Main advantage of Algorithm 3.1 con
sists in little demans on computer storage. It uses only the matrices A, H needed for 
minimax approximation, the triangular matrix R of order n + 1 and several n + 1 
dimensional vectors. For n = 30 and m = 300, we have to store about 10 000 
numbers. Simplex based methods, which can be also used for problems with singular 
matrices, require the tableau with n + m + 1 rows and 2(n + 1) + m + 1 columns. 
Since the matrices A, H have to be stored for minimax approximation, these methods 
require 120 000 numbers for n = 30 and m = 300. This comparison prefers Algo
rithm 3.1 because m is usually large for typical problems of minimax approximation. 

(Received August 20, 1983.) 

456 



R E F E R E N C E S 

[1] M. S. Bazaraa and C. M. Shetty: Nonlinear Programming — Theory and Algorithms. Wiley, 
New York 1979. 

[2] D. Goldfarb: Extension of Davidson's variable metric method to maximization under linear 
inequality and equality constraints. SIAM J. Appl. Math. 17 (1969), 4, 739—764. 

[3] S. P. Han: Variable metric methods for minimizing a class of nondifferentiable functions. 
Math. Programming 20 (1981), 1, 1-13. 

[4] L. Luksan: Variable metric methods for linearly constrained nonlinear minimax approxima
tion. Computing 30 (1983), 3, 315-334. 

[5] L. Luksan: Dual method for solving a special problem of quadratic programming as a sub-
problem at nonlinear minimax approximation. Computing (submitted for publication). 

[6] K. Madsen and H. Schjaer-Jacobsen: Linearly constrained minimax optimization. Math. 
Programming 14 (1978), 2, 208-223. 

]7] M. J. D. Powell: A fast algorithm for nonlinearly constrained optimization calculations. 
In: Numerical Analysis, Dundee 1977 (Lecture Notes in Mathematics 630, G. A. Watson, ed.). 
Springer-Verlag, Berlin—Heidelberg—New York 1978. 

]8] P. Wolfe: Finding the nearest point in a polytope. Math. Programming 11 (1976), 2, 128— 149. 
19] L. Luksan: An implementation of recursive quadratic programming variable metric methods 

for linearly constrained nonlinear minimax approximation. Kybernetika 21 (1985), 1 (to 
appear). 

Ing. Ladislav Luksan, CSc, Stfedisko vypocetni techniky CSA V {General Computing Centre — 
Czechoslovak Academy of Sciences), Pod voddrenskou vizi 4, 182 07 Praha 8. Czechoslovakia. 

457 


		webmaster@dml.cz
	2012-06-05T12:58:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




