
Kybernetika

Jiří Kopřiva
A contribution to the top-to-bottom recognizer rehabilitation

Kybernetika, Vol. 4 (1968), No. 3, (193)--200

Persistent URL: http://dml.cz/dmlcz/124629

Terms of use:
© Institute of Information Theory and Automation AS CR, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124629
http://project.dml.cz

K Y B E R N E T I K A ČÍSLO 3, R O Č N t K 4/1968

A Contribution to the Top-to-Bottom
Recognizer Rehabilitation

M i KOPRIVA

The method of parsing of the deterministic context-free languages described by D. E. Knuth
in [1] is interpreted there only as a bottom-to-top analysis. It is shown here that this method also
admits to be treated as a kind of the top to-bottom parsing.

1. INTRODUCTION

As shown in [1], deterministic context-free languages (i. e. sets of such strings
over a finite alphabet that are recognized by deterministic push-down automata)
coincide with the languages generated by grammars translatable from left to
right with bound k (briefly "LR(/c) grammars"). That means if we interpret the
method of parsing described in [1] as BT-analysis, each reduction (i. e. the replacing
of an occurrence of the right-hand side of a production by its left-hand side) can
be performed once for all on the basis of certain information on the string to the
left of this occurence and on the k terminal characters to its right. In order that the
necessary information on the string to the left may be recorded and also the k terminal
characters to the right may be compared, certain sets Sf and 9' of so called states are
built up during the process. These states contain also the information on all product
ions (i. e. rules of the considered grammar) we are already working on and we might
begin to work on. From the point of view of TB-analysis, it is a record of productions
such that some of them might label the stage by stage arising vertices of the phrase
marker. A performed reduction means then the exhaustion of such part of the
(terminal) input string that is a "value" of the corresponding intermediate symbol
and return to the superior level (cf. for instance the description of TB-analysis in
[2]). Thus the succesive changes of the analysed string (caused by the reductions)
need not be performed. They may be replaced by a suitable record concerning the
productions whose use either has been found or will be found later. Therefore,
the process loses the character of BT-analysis and becomes a kind of TB-analysis.

In what follows a detailed explanation of this approach will be given and the algo
rithm of the corresponding TB-analysis will be formulated.

A phrase marker is a rooted oriented tree, each vertex of which is labelled by a
production. Let two branches, having their final vertices labelled by productions (ru
les) r2, r3, have their common initial vertex labelled by rt. Then in the derivation
of the corresponding string, the right-hand sides of r2, r3 are substituted for two
intermediates from the right-hand side of rx. If in the graph of the tree the branch
rtr2 is situated on the left of rtr3, then the right-hand side of r2 is substituted for
an intermediate laying in rx to the left of the intermediate replaced by the right-
hand side of r3.

For the grammar

1. F-+U A P , 5. P - > U A P ,

(1) 2. F - U v S , 6. P - U ,

3. F ->U =>U , 7. S -» U v 5 ,

4. F - U , 8. S - U ,

where F is the designated symbol (cf. [3]),

9. U-(E), 12. L - p ,

10. U- 1 U, 13. L-> PM

11. U-L, 14. M - » ' ,

15. M -+'M ,

number of level

(2) 11 -

12-

6

I
•10

11

12

1

2

3

4

5

6

....7

is the phrase marker of the string

(3) (p A - | p) ZD p'.

In (2), the productions are replaced by their ordinal numbers taken from (1). In what
follows the set of productions is always supposed to be ordered and the correspond
ing ordinal number is used as the "name" of the production.

All vertices with the same distance from the root (i. e. the paths connecting them
with the root have the same number of branches) build a level. The levels are de
signated by ordinal numbers beginning from the root (cf. (2)).

The phrase marker is fully described by a partially ordered set of pairs (/, r),
where / is level and r production, provided that all pairs (/, r) with the same / constitute
a linearly ordered set. This ordering «< reflects the position of the intermediates in
the string whose phrase marker is a subtree of the considered tree such that it
contains only levels 1 , /— 1. Furthermore, some further obvious conditions
must hold.

The algorithm of TB-analysis described below yields a sequence of pairs (lg, rg),
g = 0 , 1 , m, such that for (/,-, r), (l}, r,), where /; = l}, from i < j follows
Qbrt)<(lprj).

The description of the analysis algorithm uses the notions and designations from
[1], For better understanding we introduce the most necessary of them here.

p-th production of the considered grammar is supposed to have the form

Ap->XPtlXp>2...XpMp), »(p) = 0 .

Thus Ap is an intermediate and XpJ, 1 g i g n(p), are intermediates or terminals.
The case n(p) = 0 corresponds to a production with empty right-hand side, i. e.
Ap -* A. The so called "zeroth" production of the form

(4) S 0 - * S - | * (-)« means H .. . -|)

/c-times

is added, where S is the designated symbol of the original grammar. The existence
of k symbols to the right of the just scanned symbol of the input string in any stage
of process is insured in this way. Symbol H is supposed to belong neither to the
original terminal alphabet not to the set of intermediates.

Instead of states [p,j; a] from [1] two kinds of states will be introduced here.

(a) States of the 1st sort having the form

(5) [t : p,j; p(t),j(t); p(t - l),j(t - 1);... ;p(l),;(l)] .

Here, t designates the level and p the production (or, more precisely, its ordinal
number) that could be used on level t. j means that scanning the input (analysed)
string and, if need be, descending at the same time to lower levels and returning to
superior ones, exactly j initial symbols of the right-hand side of the p th production
have been found. A descent to a lower level means that scanning the right-hand
side of some production an intermediate was met and the future possible application
of the productions having this intermediate their left-hand side was prepared. Each
met terminal symbol (of the right-hand side of some production) is compared at
once with the corresponding symbol of the input string. A return to the superior
level means that the right-hand side of some production has been exhausted is this

way and therefore the definitive decision concerning the application of certain
production on certain level has been done.

The following members p(i), j(i) in (5) designate also a production and subscript
of a symbol of its right-hand side resp. But they are used to forming the k-letter
strings which, on a suitable stage, are compared with fc following up to now unused
symbols of the input string. E. g. for (5), the corresponding fc-letter strings are built
in the following way: All the strings that can be derived from the final segment of
the right-hand side of the production p(t) beginning with Xp(t)J(t) are concatenated
with all the strings that can be derived from the final segment of the right-hand
side of the production p(t — 1) beginning with Xp(t-X)tKt-1), etc. Only initial fc-letter
terminal substrings of the formed strings are considered. It is obvious that the number
of "double components" p(i), j(i) can be limited so that it corresponds to the shortest
string

(") Xp(t)j(t)Xp(t)j(t) + i •••Xpit)Mp(t))Xp(t-i)j(t-i)Xp(t-i)j(t-i)+.i •••

such that contains exactly fc symbols such that each of them is either terminal or,
if it is intermediate, then all productions with this symbol on their left-hand side
have a nonempty right-hand side.

(b) States of the 2nd sort having the form [t : p, n(p); a] . Here, the first three
components have the same meaning as in (a); of course, j = n(p), i. e. all n(p)
symbols of the right-hand side of production p have been determined, a stands for
k-letter terminal string.

In [1], only the analogues of the states of the 2nd sort are used. But, as it is obvious
from the course of the process of analysis, the k-letter terminal strings need not
be produced before certain stages of the process; elsewhere only a record of in
formation on from what final segments of what productions they should be built
is sufficient. It is suitable to establish the states of the 1st sort only for comparatively
great k's, while for small k's it would be better to use only the states of the 2nd
sort, where a is replaced by k-letter strings generated from (6).

For the reason of a brief record the sets Hk(a) and H'k(a) are introduced. One
defines Hk(a) to be the set of all k-letter terminal strings a (-\ is treated as a terminal
here) such that string afi for some /? is generable from a with respect to the considered
grammar. H'k(a) means the same as Hk(a) except omitting all derivations that contain
a step where an intermediate as the initial character is replaced by A.

For instance (see [1]; upper case letters S, B, C, D stand for intermediates and
lower case letters c, d, e stand for terminals) in the grammar

S -> BC -l-H, B -> Ce, B -• A, C -* D, C -• Dc, D -» A, D -> d

we have

II3(S) = {-H-l> C-H> ceH. cec> d-H> dee, de-\, dec, ded, e-H, ecH, ed-\, edc) ,

H'3(S) = {dee, del, dec, ded) .

Sf and S/" with indices (below and above) stand for the sets of states. The meaning
of the other used symbols and letters will be patent from the description of the
algorithm (the current member of the input analysed string is a,). For the reason of
briefness, this description (given in the following section) is written in a pseudo-
algol form (e. g., it uses some kinds of ALGOL statements, integers as labels, etc.).
The resulting phrase marker contains also a zeroth level on which only one (viz.
the zeroth) production is used (see values /0 and r0 in statement 1 of the algorithm).

The considered grammar is supposed not to contain intermediates with the left
recursion. A procedure removing such intermediates and then giving the syntactic
structure with respect to the original grammar is described e. g. in [4].

The problem of deciding, for a given grammar ©, whether or not there exists a
k = 0 such that © is LR(fc), is recursively unsolvable. This is proved in [1], where
also certain methods for finding this property for a grammar, when k is given, are
described. See also the note beyond the algorithm in the next section.

2. THE TB-ANALYSIS ALGORITHM

begin

1: i. -= n : = f0 : = r0 : = 0 ; £fn : = {[0 : 0, 0]} ;

2: h : = 0 ; hSf"n : = Sfn ;

3: h : = h + 1 ;

"&"n : = {[(+ 1 : q, 0; p,j + 2; p(t),j(t); . . .] | [t: p,j; p(t),j(t);...]

e " " 1 ^ A XpJ+1 =AtA-](Aq-+ A)} U

{[t + 1; q, 0; a] | [t; p,j; p(t),j(t);...] eh^Sf'n A XpJ+1 = Aq A

Aq -> A A ae Hk(XpJ+2XpJ+3 ...Xp^V)Xp(thmXp(thm+1 ...

•••xP(t)MP(t)) ••• H) } ;
A - l

if hSf'n = 0 then begin 9"n : = U '&"», goto 4 end else goto 3 ;
j=o

comment: All productions we might begin to work on are prepared.;

4: for p : = 1 step 1 until 5 do

if ai+1 ... ai+k e {a\[t : p, n(p); a] e Sf'n} then goto 5;
comment: The whole righthand side of the p th production exhausted — return

to the superior level follows.;

if ai+1...ai+ke{a\\t : p,j; p(t),j(t); ...]e S"n A

aeH'k(XpJ+1XpJ+2 ...XpMp)Xp(thmXp(thm+1 ...Xp(thn(p(t))... -{)}

then goto 6 else stop — analysed string does not belong to the language;

comment: The whole righthand side of the corresponding production has not

been found — shift to the next symbol follows.;

5: lg : = t; rg : = p;

if lg = 1 A a,+ 1 = -\ then srop — end of analysis;

g : = g + 1; n : = n - n(p); X : = Ap; goto 7;

6: j : = i + 1; X : = a,-;

7: n :n + 1;

yn: = {[t : PJ + i ; Kt),i(t); -] | [t : pjl P(t)j(t); . . .] e ̂ . . A

X = XPtJ+1 A j + K n (p) } U

{[f : p, n(p); a] [[f : j>, j ; p(t), j(t); . . .] 6 $Tm_x A

* = ^ P , „ (P) A n(p) = ; + 1 A Kefl s(l f(t) , j(t)IP(Oj(o+ i •••

• • •^P(O,«(P(O) ••• H *) } ;

comment: The new £?„ has been formed.;
if £?„ = 0 then srop — analysed string does not belong to the language

else goto 2
end

Note. The sets of the terminal strings a, which are built in statement 4 for particular
p's, and the set built in the following one must all be disjoint sets, or the grammar
is not LR(/c). There exists only finite number of combinations we get for a given
k in that way. The investigation of them is one of the methods for finding the
property LR(/c) for the considered grammar.

3. EXAMPLE

From the detailed investigation of the grammar (l) it follows it is LR(1). In the
first place obviously a found p or ' causes a return (to the superior level) according
to production 12 or 14 resp. or a shift to the next symbol of the input string (with
subsequent return according to production 13 or 15) on the basis of knowledge of one
following character of the input string (whether it is ' or another symbol). One symbol
to the right allows also, for found U, to decide whether a return (according to one of
productions 4, 6 and 8) or a shift to the next character of the input string will be
performed. The latter event happens if U is followed by one symbol of A , v , =>,
the former in another case. Of course, which of productions will be applied for the
return, this is decided not only according to one following symbol to the right itself
but also according to the knowledge of up to now investigated initial segment of
the input string (i. e. according to the productions whose numbers are the second
members of the corresponding states). Similarly for found strings U A P and
U A S. Let us show this procedure with help of the part of analysis of the string
(3), which, of course, has to be written in the form

(PA ~] p) ^ p' -{

Grammar (l) contains no production with an empty right-hand side. Therefore, 199
since fc = 1, only states of the 1st sort having the form [t : p, j ; p'',/], will be
sufficient (besides states of the 2nd sort, of course). (We shall use the states of the
1st sort here in spite of we have fc = 1.)

First, we get pair (Z0, r0) = (0, 0); this is a trivial result of each analysis if we use
a grammar with an added zeroth production of the form (4). It is

S-0 = {[0; 0, 0]}

and we get

• n = ^ o U {[1 : ", 0; 0, 2] | u = 1, 2, 3, 4} U

{[2 : u, 0; v, 2] j u = 9, 10,11; v = 0 ,1 , 2, 3} U

{[3 : M, 0; v, 2] | u = 12, 13; v = 0, 1, 2, 3} .

Since a. = (, we get

S*x = { [2 :9 , l ; » , 2] | c = 0, 1,2,3}
and

y\ = ^ U {[3 : M, 0; 9, 3] | M = 1, 2, 3, 4} U {[4 : u, 0; v, 2] | u =

= 9,10, 11; t>= 1,2,3}U

{[4 : M, 0; 9, 3] | u = 9, 10, 11} U {[5 : u, 0; v, 2] | u =

= 12, 13; u = 1,2,3}U

{[5 : M, 0; 9, 3] | u = 12, 13} .

Now, from a2 = p follows

&2 = {[5:12, 1; a] | a = A , V , =>,)} U {[5 : 13, 1; v, 2] | » =

= 1,2, 3} U {[5:13, 1; 9, 3]}

and thus

&>'2 m &>2 U {[6 : «, 0; i>, 2] | u = 14, 15; s - 1, 2, 3} U

U { [6 : M , 0 ; 9 , 3] | M = 14,15}.

It is a3 = A and, therefore, we get further pair (Z-, r t) = (5, 12), i. e. the definitive
decision is done that the production 12 is used on the level 5. Since A12 = L, after
return to S"[, we get the new

Se2 = { [4 :11 , 1; a] | a = A , V , =>,)};

by it,

^ 2 = ^ 2 •

a3 = 1 gives (Z2, r2) = (4,11), etc.

In this way, we obtain successively the sequence of pairs (including those which
were found above)
(0,0), (5,12), (4,11), (7,12), (6,11), (5,10), (4,6), (3,1), (2,9), (4,14), (3,13), (2,11), (1,3).
This sequence really describes phrase marker (2), which has to be completed by

0

I
above.

I think, it will be possible to find other reasons to the fact that there are many
intrinsic connections between TB and BT-analysis particularly if some special kinds
of languages are dealt with. Another example yields standard grammar.

(Received September 11th, 1967.)

REFERENCES

[1] Knuth, Donald E.: On the Translation of Languages from Left to Right. Information and
Control 8 (1965), 607-639.

[2] Floyd, R. W.: The Syntax of Programming Languages — A Survey. IEEE Transactions
on Electronic Computers (Aug. 1964), 346—353.

[3] Brooker, R. A.: Top-to Bottom Parsing Rehabilitated? Comm. ACM 10 (April 1967), 2,
223-224.

[4] Kurki-Suonio, R.: On Top-to-Bottom Recognition and Left Recursion. Comm. ACM 9
(July, 1966), 7, 527-528.

Příspěvek k rehabilitaci syntaktické analýzy shora

JIŘÍ KOPŘIVA

Hlavním výsledkem práce je algoritmus potvrzující možnost interpretovat způsob
syntaktické analýzy deterministických bezkontextových jazyků, popsaný D. E.
Knuthem v [1], jako syntaktickou analýzu shora (top-to-bottom analysis) bez ná
vratů, tj. analýzu, při níž každé rozhodnutí o použití určitého gramatického pra
vidla pro přepis jednotlivých metaproměnných je definitivní.

Dr. Jiří Kopřiva CSc, Laboratoř počítacích strojů, Třída Obránců míru 21, Brno.

		webmaster@dml.cz
	2012-06-04T16:43:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

